West of Devers Upgrade Project

Tower Height

The West of Devers Upgrade Project requires removal of existing transmission towers and construction of new stronger towers to carry the heavier conductors that can carry more electricity. Table 1 presents the range of tower height within each existing segment and the average height of existing towers. In the last column, the table presents the range and average height of the proposed new towers. Note that the segment numbers and locations are defined on pages 2 and 3 of this document.

Table 1. WOD Upgrade Project - Height of Existing and Proposed Towers

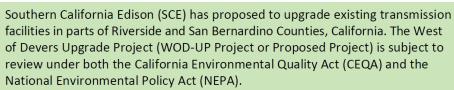
Seg- ment No.	EXISTING 220 kV Single Circuit Towers **		EXISTING 220 kV Double Circuit Towers		PROPOSED NEW 220 kV Double-Circuit Towers	
	Range of <u>Existing</u> Tower Height	Average Existing Tower Height	Range of <u>Existing</u> Tower Height	Average <u>Existing</u> Tower Height	Range of <u>Proposed</u> Tower Height	Average <u>Proposed</u> Tower Height
1	none	none	116' - 170'	136 feet	65' – 180'	134 feet
2	none	none	111' - 174'	139 feet	113' – 193'	146 feet
3	73' – 108'	86 feet	116' - 182'	139 feet	112′ – 180′	143 feet
4	47' – 108'	84 feet	115' - 182'	139 feet	113' – 180'	141 feet
5	53' – 117'	84 feet	121' - 171'	140 feet	105′ – 180′	140 feet
6	61' – 109'	82 feet	115' - 187'	141 feet	113′ – 185′	156 feet

^{**} All existing single circuit towers are proposed to be replaced with double circuit towers.

Schedule for CEQA/NEPA Process

Table 2 presents a preliminary schedule for issuance of the Draft and Final EIR/EIS that will evaluate the environmental impacts of the project proposed by SCE. The first step in the process will be public scoping, when the lead agencies will reach out to the public, appropriate local and regional agencies, and tribal governments. Concurrently, the BLM is beginning its process for outreach to Native American tribes as part of Section 106 of the National Historic Preservation Act.

Table 2. Proposed EIR/EIS Schedule


CEQA/NEPA Process Steps	Timeframe		
Scoping and Agency Outreach	Spring 2014		
Draft EIR/EIS	Late 2014		
Public Comments on Draft EIR/EIS	Late 2014		
Final EIR/EIS	Early 2015		
Agency Decisions	Early 2015		
Construction	2016 to 2020		

Fact Sheet

West of Devers Upgrade Project

Riverside and San Bernardino Counties

The environmental review of the WOD-UP Project is being managed by the California Public Utilities Commission (CPUC) and the United States Department of the Interior, Bureau of Land Management (BLM). The CPUC, as the lead agency under CEQA, and the BLM, as the lead agency under NEPA, will prepare and publish a Draft and Final Environmental Impact Report/Environmental Impact Statement (EIR/EIS) in compliance with CEQA and NEPA requirements.

Project Overview

If the Proposed Project is approved, 618 existing 220 kilovolt (kV) towers would be removed and two sets of 220 kV double-circuit towers would be constructed in the existing 48-mile corridor. As shown on the map on the following page, these lines interconnect the following substations:

- Devers Substation (North Palm Springs)
- El Casco Substation (Riverside County)
- Etiwanda Substation (San Bernardino)
- San Bernardino Substation (San Bernardino)
- Vista Substation (Colton).
- Other project elements include:
- Upgrades of smaller subtransmission lines and improvements at the Timoteo and Tennessee substations
- Installation of telecommunication lines and equipment for the protection, monitoring, and control of transmission lines and substation equipment.

Project History

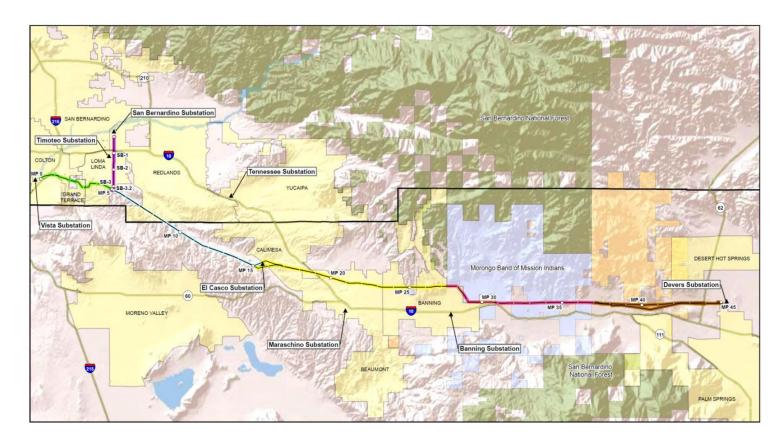
SCE previously proposed to upgrade these transmission lines in April of 2005, as part of an SCE application for a new 500 kilovolt (kV) interstate transmission line project in Arizona and California known as the Devers–Palo Verde No. 2 (DPV2) Project. As proposed in 2005, the DPV2 project had three major components:

- A 500 kV transmission line from Arizona to Blythe, California
- A 500 kV line from Blythe to Devers Substation north of Palm Springs
- Upgrades to SCE's 220 kV transmission system west of Devers Substation.

The CPUC and BLM approved the proposed DPV2 Project in January 2007, except for the West of Devers Upgrades. The upgrades were replaced by an alternative 500 kV transmission segment between the Devers and Valley Substations. The proposed 220 kV West of Devers components could not be approved by the CPUC and BLM because at the time of agency decisions the Morongo Band of Mission Indians had not reached an agreement with SCE regarding the renewal of the right-ofway (ROW) for the segment of the corridor crossing tribal land.

In May 2008, SCE modified the approved project so it would extend only from a new Colorado River Substation near Blythe to the Devers Substation and then onto the Valley Substation in Romoland. The modified project was approved and it has been constructed. The new transmission line was energized in 2013.

Current Project Details


In 2013, SCE and the Morongo Band agreed on terms for ROW renewal for the portion of transmission corridor on Morongo tribal land. According to SCE, the Proposed Project is needed to facilitate delivery of new electric power into the greater Los Angeles area by increasing the capacity of the transmission system. The Proposed Project would facilitate progress towards meeting California's Renewable Portfolio Standard goals requiring utilities to produce 33% of their electricity sales from renewable energy sources by 2020.

For additional information on the WOD-UP Project, and a schedule of public meetings, please check the CPUC project website at:

http://www.cpuc.ca.gov/environment/info/aspen/westofdevers/westofdevers.htm

Alternatively, you can call the project hotline at (888) 456-0254 or send an e-mail to the project team at westofdevers@aspeneg.com.

Spring 2014 Spring 2014

Project Overview

The Project would be located primarily within the existing West of Devers transmission right-of-way (ROW) in Riverside and San Bernardino Counties. The ROW crosses unincorporated county lands, reservation trust land of the Morongo Band of Mission Indians, and the Cities of Banning, Beaumont, Calimesa, Colton, Grand Terrace, Loma Linda, Palm Springs, Rancho Cucamonga, Redlands, San Bernardino, and Yucaipa (see map).

The existing 220 kV transmission lines are supported by a mix of lattice steel towers, tubular steel poles, and wood pole structures.

Over 600 tower structures would be removed as part of the Project. These would be replaced with about 560 new structures.

The Project is divided into six segments, as shown on the map above. The segments are described in the following paragraphs, starting at the west end of the corridor. Additional detail on each segment is available on the project website (see page 1).

Segment 1: San Bernardino

This segment is 3.5 miles long and connects the San Bernardino Junction (where the transmission corridor from the east splits into two separate routes) with the existing SCE San Bernardino Substation. It passes through the Cities of San Bernardino, Redlands, and Loma Linda.

Transmission line work within Segment 1 would include removal of approximately 45 double circuit towers (average height 136 feet) and installation of 61 towers (average height 135 feet), within the existing ROW.

Also within Segment 1, SCE would relocate some lower voltage 66 kV lines to allow for construction space in the ROW, and install new telecommunications lines on existing wood or steel poles.

Segment 2: Colton and Loma Linda

Segment 2 connects the Vista Substation (located adjacent to I-215 at Newport Avenue in Grand Terrace), the westernmost point of the Project, with the San Bernardino Junction.

Within this segment, one double-circuit tower line would be removed. It would be replaced in the same corridor along an approximately 5-mile segment, passing through the Cities of Colton, Grand Terrace, and Loma Linda.

Project work within Segment 2 would include removal of 29 double-circuit towers (average height 139 feet) and installation of 35 towers (average height 146 feet).

Segment 3: San Timoteo Canyon

Segment 3 extends east from the Loma Linda area, through San Timoteo Canyon. Approximately 10 miles long, the segment ends at SCE's existing El Casco Substation, located on San Timoteo Canyon Road just west of Beaumont.

Segment 3 includes three separate sets of existing towers that would be removed and replaced with two sets of new 220 kV double circuit towers. Project work within Segment 3 would include removal of 116 towers (average height 86 feet for single-circuit towers and 139 feet for double-circuit towers) and Installation of 133 towers (average height 143 feet).

Segment 4: Beaumont and Banning

Segment 4 is about 12 miles long, extending east from El Casco Substation through Beaumont, to San Gorgonio Avenue at the eastern edge of the City of Banning.

Project work in this segment would require removal and replacement of three existing 220 kV transmission lines. This includes removal of 175 towers (average height 90 feet for single circuit towers and 139 feet for double circuit towers) and installation of 136 new towers (average height 142 feet).

Segment 5: Morongo Tribal Lands and Vicinity

Segment 5 extends east approximately 9 miles from San Gorgonio Avenue in Banning to the eastern limit of the Morongo Indian Reservation at Rushmore Avenue in the San Gorgonio Pass. About 3 miles of the existing ROW through the Morongo Indian Reservation would be abandoned and replaced with a new relocated 3-mile alignment pursuant to an SCE-Morongo ROW agreement. Project work within Segment 5 would include removal of 137 towers

(average height 83 feet for single-circuit towers and 140 feet for double circuit towers) and installation of 108 towers (average height 144 feet).

Segment 6: Whitewater and Devers Substation

Segment 6 extends east from the Morongo Indian Reservation to SCE's existing Devers Substation, north of Palm Springs. This segment includes

removal of 116 transmission towers (average height 83 feet for single-circuit towers and 141 feet for double-circuit towers) and installation of 93 new towers (average height 157 feet). The new towers would interconnect at the Devers Substation.