TABLE OF CONTENTS

1 – INTRODUCTION... 1
2 – OBJECTIVES ... 1
3 – APPLICABLE DUST CONTROL REQUIREMENTS .. 1
 3.0 San Diego Air Pollution Control District Rules ..2
 3.1 MMCRP Mitigation Requirements..2
 3.2 SDG&E Best Management Practices for Dust Control ...2
4 – MITIGATION MEASURES ... 2
5 – PLAN IMPLEMENTATION ... 4
 5.0 Water Trucks..4
 5.1 Dust Palliatives ..5
 5.2 Speed Limits ...5
 5.3 Tracking Controls ..5
 5.4 Clearing and Grading ...6
 5.5 Material Storage and Handling ..6
 5.6 High-Wind Events ...6
6 – REFERENCES .. 7

LIST OF ATTACHMENTS

Attachment A: SDG&E Best Management Practices for Dust Control
1 – INTRODUCTION

This Dust Control Plan (Plan) describes the measures to be taken by San Diego Gas & Electric Company (SDG&E) and its contractors to address implementation and monitoring of dust control measures in accordance with federal, state, and local regulations during construction of the East County (ECO) Substation Project (Project). The Project involves the construction of a new 500/230/138 kilovolt (kV) ECO Substation, rebuild of the Boulevard Substation in a new location, and construction of an approximately 14-mile-long 138 kV transmission line, consisting of overhead and underground segments in southeastern San Diego County.

This Plan was prepared in accordance with Mitigation Measure (MM) BIO-4a of the Mitigation Monitoring, Compliance, and Reporting Program (MMCRP) for the Project, which stipulates protocols for the development of the Plan and implementation of the procedures to be followed in the field in order to minimize impacts to biological resources from construction-related fugitive dust. MM BIO-4a further provides that the Plan must be developed to be consistent with the requirements of MM AQ-1 to reduce fugitive dust and other criteria pollutant emissions during construction of the Project. MM AQ-1 requires that construction activities must comply with all applicable San Diego Air Pollution Control District (SDAPCD) rules and regulations. Rules 50 and 55 of SDAPCD Regulation IV provide standards related to particulate matter and fugitive dust control. This Plan was developed to assist with compliance pursuant to those standards, as well as the requirements stipulated by the Bureau of Land Management (BLM) and California Public Utilities Commission (CPUC) in the MMCRP. This Plan will pertain to all construction areas on the Project, including staging areas.

2 – OBJECTIVES

The purpose of this Plan is to provide the SDG&E construction management team with a description of measures that will be implemented to reduce fugitive dust emissions associated with construction of the Project. This Plan provides specific information for implementing the MMs, as well as the means of monitoring the effectiveness of the Plan through implementation of the control measures during Project construction. The management practices and activities in this Plan are intended to accomplish the following objectives:

- Minimize fugitive dust emissions associated with construction of the Project
- Maintain consistency with applicant-committed BMPs and MMs specified in the Project’s MMCRP, as well as with applicable rules and regulations provided by the SDAPCD

3 – APPLICABLE DUST CONTROL REQUIREMENTS

Construction activities that may generate fugitive dust are governed by rules and regulations issued by the SDAPCD, as well as by several MMs and applicant-proposed measures (APMs) developed as part of the MMCRP. This Plan is designed to reduce fugitive dust emissions associated with the Project to a minimum.
3.0 SAN DIEGO AIR POLLUTION CONTROL DISTRICT RULES

SDAPCD Rule 50, adopted in August 1997, applies to the discharge of any air contaminant other than uncombined water vapor. Rule 50 prohibits any activity that will create air contaminant emissions darker than 20-percent opacity for more than an aggregate of three minutes in any 60-minute period.

SDAPCD Rule 55, adopted in July 2009, prohibits visible dust emissions beyond property lines for periods aggregating more than three minutes in any 60-minute period. This rule also requires control of visible roadway dust by minimizing track-out/carry-out and removing it from public roads.

3.1 MMCRP MITIGATION REQUIREMENTS

Several MMs and APMs related to the control of fugitive dust were developed in the MMCRP. Some of the MMs include environmental measures that are already required by existing regulations and local policies, while others are standard SDG&E practices designed to address temporary and permanent impacts. The Project MMs and APMs were developed for the following:

- suppressing dust at work areas and staging areas,
- reducing dust on access roads and unpaved surfaces,
- preventing the transport of mud and dust onto paved roadway surfaces and onto public roads, and
- allowing for adequate public liaison and a complaint response.

3.2 SDG&E BEST MANAGEMENT PRACTICES FOR DUST CONTROL

SDG&E’s BMP Manual includes additional dust control requirements, as well as photographs demonstrating implementation of some of the dust control measures described in this Plan. The BMPs that may be implemented to control dust include BMP 1-07: Tracking Controls, 1-08: Stockpile Management, 4-05: Soil Binders, and 4-08: Dust (Wind Erosion) Control. Descriptions of these BMPs are provided in Attachment A: SDG&E Best Management Practices for Dust Control.

4 – MITIGATION MEASURES

The Construction Contractor will control fugitive dust by watering or applying chemical dust suppressants to disturbed construction areas, as described in this Plan, and by implementing standard construction BMPs to reduce the potential of exposed soils to wind erosion. The Construction Contractor will take all reasonable precautions to prevent the generation of dust, which include the measures required by the CPUC and specified in MM BIO-4a and MM AQ-1 of the MMCRP.
MM BIO-4a specifies that SDG&E will implement the following measures to control dust:

- If construction activity causes persistent visible emissions of fugitive dust beyond the work area, all unpaved access roads, parking areas, and staging areas will be paved, have water applied three times daily, or have non-toxic soil stabilizers applied.
- Sites will be pre-watered up to 48 hours in advance of clearing to control fugitive dust.¹
- The amount of disturbed area will be reduced where feasible.
- All dirt stockpile areas will be sprayed daily as needed.
- Loads in haul trucks will be covered or at least six inches of free-board will be maintained when traveling on public roads.²
- Import and export dirt, sand, or loose materials will be pre-moistened prior to transport.
- Streets will be swept daily with water sweepers if visible soil material is carried onto adjacent public streets, or trucks and equipment will be washed before entering public streets.
- Vegetative ground cover will be planted in disturbed areas to meet the criteria of the Habitat Restoration Plan.
- Chemical soil stabilizers will be applied, or water will be applied to form and maintain a crust on inactive construction areas (disturbed lands that are unused for 14 consecutive days).

This Plan also incorporates measures within MM AQ-1 to reduce fugitive dust during construction activities. MM AQ-1 specifies that SDG&E will implement the following applicable measures to control dust:

- Rock aprons or rattle plates will be installed as needed at the intersection of dirt access roads and paved public roadways to clean the tires of equipment prior to leaving the site.
- All active construction areas, unpaved access roads, parking areas, and staging areas will be watered or stabilized with nontoxic soil stabilizers as needed to control fugitive dust.
- All public streets will be swept or cleaned with mechanical sweepers if visible soil material is carried onto them by construction activities or vehicles.
- Exposed stockpiles (e.g., dirt, sand, etc.) will be covered and/or watered or stabilized with nontoxic soil binders as needed to control emissions.

¹ Pre-watering may not be necessary if the site is already wet from precipitation or otherwise.
² This portion of the measure is inconsistent with MM AQ-1, which specifies that two feet of free-board space is required. Because MM AQ-1 is more restrictive, it will take precedent.
• Trucks transporting bulk materials will be completely covered unless two feet of freeboard space from the top of the container is maintained with no spillage and loss of material. In addition, the cargo compartment of all haul trucks will be cleaned and/or washed at the delivery site after removal of the bulk material.

• Movement of bulk material handling or transfer will be stabilized prior to handling or at a point of transfer with application of sufficient water, chemical stabilizers, or by sheltering or enclosing the operation and transfer line.

• Traffic speeds on unpaved roads and the right-of-way will be limited to 15 miles per hour.

• The construction contractor will prepare and implement a high-wind dust control plan3 and terminate soil disturbance when winds exceed 25 miles per hour.

• Construction activities will comply with all applicable SDAPCD rules and regulations.

5 – PLAN IMPLEMENTATION

5.0 WATER TRUCKS

As previously discussed, water trucks may be utilized to apply water to areas to control fugitive dust as follows:

• on unpaved Project access roads and work areas;
• prior to clearing a work area;
• on inactive stockpiles; and/or
• prior to, during, or after earthmoving operations, such as transporting dirt, sand, or loose materials to or from the Project site.

The construction sites will be pre-watered up to 48 hours in advance of vegetation clearing, or as directed by SDG&E’s designated representative. Loading activities will be accomplished with the bucket close to the truck when dumping to reduce fugitive dust, and water will be applied as necessary during loading.

Water trucks will be dedicated to the Project and available for operation during all work hours when construction-related activities are occurring, as necessary, to control fugitive dust. In addition, a water truck will be available for use on site in the event that fugitive dust becomes a safety or air quality compliance issue during non-construction hours. During active construction, SDG&E will maintain at least one water truck at each substation site and one for the transmission line and other work areas. If the number of water trucks designated for each Project area cannot adequately control fugitive dust—as determined by SDG&E’s designated

3 MM AQ-1 for the Project provides that a high-wind dust control plan will be prepared and implemented for the Project and that soil disturbance will be terminated when winds exceed 25 mph. Section 5.6 High-Wind Events of this Plan is intended to act as the ongoing plan for high-wind events. For the purpose of implementing these measures, soil disturbance has been interpreted to include grading and excavation activities.
representative upon inspection—SDG&E will provide additional water trucks or implement additional measures to control dust. If wind speeds become excessive and watering does not afford adequate dust control, SDG&E will implement additional, reasonable efforts, including shutting down mobile equipment or increasing watering to adequately control fugitive dust, as described in Section 5.6 High-Wind Events. In accordance with Rule 55(d)(1) of SDAPCD Regulation IV, dust control would be considered inadequate if fugitive dust was observed leaving the Project limits for a period or periods aggregating more than three minutes in any 60-minute period. In the event that operations are shut down as a control method, watering of the Project area will continue if deemed appropriate by SDG&E’s designated representative.

5.1 DUST PALLIATIVES

Dust control during construction will be achieved primarily through the application of water, but in some instances and/or locations, the limited use of a chemical dust palliative or plant-based tackifier (hydromulch) may be deemed advantageous by SDG&E. Per MM Bio-4a, dust palliatives may be applied in lieu of water to form and maintain a crust on inactive construction areas (disturbed lands that are unused for 14 consecutive days). Dust palliatives or tackifiers will be environmentally safe; comply with federal, state, and local regulations; and will not produce a noxious odor or contaminate surface water or groundwater. Chemical dust palliatives will be those that have been approved for use by SDG&E’s Water Quality Specialist and, if necessary, the Colorado River Basin Regional Water Quality Control Board (RWQCB) and/or land-management agency prior to use. SDG&E’s Water Quality Specialist will determine whether RWQCB approval is required prior to the use of chemical dust palliatives or tackifiers. Application rates for dust palliatives will follow the manufacturer’s recommendations.

5.2 SPEED LIMITS

The speed limit of 15 mph for construction vehicles will be implemented at the two substation sites, on unpaved roads, and within the ROW. SDG&E will implement the Project speed limit by posting “Project Speed Limit 15 MPH” signs along unpaved access roads. In addition, the Project speed limit and the reasons for the speed limit will be included in the Project Environmental Awareness Training Program that will be provided to all Project personnel. On paved roads, vehicle speeds will comply with the posted speed limit, or as conditions warrant to ensure safety.

5.3 TRACKING CONTROLS

Dust can result from soil and debris being tracked onto paved surfaces, and the subsequent detachment by local and construction traffic. As previously discussed, SDG&E will minimize tracking to reduce the potential for dust generation from adjacent paved surfaces by installing rock aprons or rattle plates at the intersections of dirt access roads and paved public roadways to clean the tires of equipment and vehicles prior to leaving the site. In addition, streets will be swept at the conclusion of each workday when active operations cease if visible soil material is carried onto adjacent public streets. In accordance with SDAPCD Regulation IV, Rule 55(d)(2)(ii), only street sweepers with inhalable particulate matter (PM$_{10}$) efficiency and certified to meet the most current South Coast Air Quality Management District (SCAQMD) Rule 1186
requirements will be used. Blowers will not be used to remove track-out/carry-out. For small areas, manual sweeping is an acceptable means for removing sediment from pavement.

5.4 CLEARING AND GRADING

Clearing and grading activities during construction of the Project will be limited to designated areas and kept to the minimum necessary to safely construct the Project. Vegetation will be cut at ground level, where possible, to minimize the amount of disturbed soil. Clearing and grading is anticipated to be required at the entire ECO Substation and Boulevard Substation sites. The amount of clearing and grading that is required along the transmission line will be minimized to the extent feasible. In addition, sites with low soil moisture content that will be cleared will be pre-watered up to 48 hours in advance, as needed, to help control fugitive dust from leaving the work area.

5.5 MATERIAL STORAGE AND HANDLING

SDG&E will not handle or store any material in a manner that results in excessive generation of dust. Topsoil and subsoil stockpiles maintained as a part of the Project will be sufficiently wetted to reduce wind-blown dust. If the crust created from wetting stockpiles is not sufficient to prevent wind erosion, additional treatment—such as covering the stockpiles or applying a light tackifier—may be required.

Any Project-related person operating a vehicle on a paved and public roadway with a load of dirt, sand, gravel, or other material—which may be susceptible to being dropped, spilled, or leaked, or susceptible to generating dust—will comply with California Vehicle Code Section 23114 and employ measures to control fugitive dust. The measures will include covering the load or maintaining two feet or more below the lowest part of the rim of the truck bed and applying water to the load to control dust emissions during transportation on a paved and public roadway to or from work sites.

5.6 HIGH-WIND EVENTS

SDG&E will monitor the weather forecasted by the National Weather Service for the Project area during the construction of the Project. If sustained wind speeds over 25 mph are predicted for the Project area and it is safe to do so, all disturbed areas or stockpiled materials will be pre-watered prior to the high-wind event to minimize the amount of fugitive dust that may be carried off site by high winds. SDG&E’s designated representative will determine which areas are most susceptible to wind erosion and will advise on areas that require pre-watering. If sustained wind speeds of 25 mph or greater occur in the Project area, as specified by the most proximate National Weather Service monitoring station, SDG&E will terminate grading and excavation activities in those areas if feasible until the wind speeds fall below 25 mph, as specified in MM AQ-1.
6 – REFERENCES

ATTACHMENT A: SDG&E BEST MANAGEMENT PRACTICES FOR DUST CONTROL
BMP 1-07: Tracking Controls

What
Tracking controls consist of constructed/manufactured steel plates (rumble plates) or gravel. Tracking controls reduce offsite tracking of sediment and other pollutants by providing a stabilized entrance at defined soil disturbance activity site entrances and exits with materials that aid in removing sediment from vehicles, especially their tires or tracks. Controls can also consist of providing methods to clean-up sediment or other materials to prevent them from entering a storm drain, such as sweeping or vacuuming. Tracking controls can also include implementing tire washing.

When
- Stabilized entrances/exits should be implemented on each soil disturbance site having a defined entrance/exit consisting of soil which terminates into a paved roadway or substantial paved surface. Stabilized entrances/exits are in addition to other applicable BMPs.
- Daily sweeping or vacuuming should be implemented when sediment is tracked from the site onto public or private paved roads, typically at points of site exit.
- Install and implement tire washing when the above methods are not adequately controlling track-out.

Where
Use stabilized entrances and/or sweeping (and tire washing, if needed) at construction and “construction like” operations and maintenance activity sites:
- where dirt or mud is tracked onto public roads;
- adjacent to water bodies;
- where poor soils are encountered, such as soils containing clay; and
- where dust is a problem during dry weather conditions.

How
Stabilized Entrances
- Limit the points of entrance/exit to the construction or operations and maintenance site by designating combination or single purpose entrances and exits. Require all employees, subcontractors and others to use them. Limit speed of vehicles to control dust.
- Where feasible, grade each construction entrance/exit to prevent runoff from leaving the construction site.
- Route runoff from stabilized entrances/exits through a sediment-trapping device before discharge (see BMP 1-10).
- Design stabilized entrance/exit to support heaviest vehicles and equipment.
- Select construction access stabilization (aggregate, asphaltic concrete, concrete) based on longevity, required performance, and site conditions.
- Use of constructed or constructed/manufactured steel plates with ribs for entrance/exit access is allowed.
- If aggregate is selected, place crushed aggregate over geotextile fabric to at least 12 inches deep, or place aggregate to a depth recommended by a geotechnical engineer. A crushed aggregate greater than 3 inches but smaller than 6 inches shall be used.

Street Sweeping and Vacuuming
- Inspect potential sediment tracking locations routinely.
- Visible sediment tracking should be swept or vacuumed as needed. Manual sweeping is appropriate for small jobs.
- For larger projects, it is preferred to use mechanical sweeping methods that collect removed sediment and material.
- If not mixed with debris or trash, incorporate the removed sediment back into
the project or dispose of in accordance with federal, state and local requirements.

Tire Washing
- Design wash rack to support the heaviest traffic loads.
- Provide a turnout or doublewide exit to avoid traffic from entering through the tire washing area.
- Design a drainage ditch to route all rinse or wash waters from the tire washing area to a sediment trapping device (see BMP 1-10) to prevent any wash runoff from leaving the site.
- Hoses should be equipped with automatic shutoff nozzles.

Maintenance and Inspection

Stabilized Entrances
- Inspect routinely for damage and assess effectiveness. Remove sediment and repair if the stabilized entrance/exit is clogged with sediment.
- Perform routine inspections of BMPs, prior to and after storm events, and daily during extended rain events throughout the construction and/or clean-up activity (e.g., weekly, or in compliance with the frequency specified in the CGP, if applicable). Initiate repairs related to a storm event within 72 hours of identifying the problem or as soon as possible but prior to the next predicted storm event, per the CGP.
- Where tracking has occurred on roadways, sweeping should be conducted the same day. Water should not be used to wash sediment off the streets, unless necessary. If water is used, it must be captured, preventing sediment-laden water from running off the street or site.
- Keep all temporary roadway ditches clear.

Street Sweeping and Vacuuming
- Inspect silt fences prior to and after each storm event, daily during extended rain events during the construction and/or clean-up activity (e.g., weekly, or in compliance with the frequency specified in the project specific SWPPP, if applicable). Initiate repairs related to a storm event within 72 hours of identifying the problem or as soon as possible but prior to the next predicted storm event, per the CGP.
- Inspect all site paved access roads daily and remove any sediment or other materials on the roads by vacuuming or sweeping daily, as needed, and prior to any rain event in accordance with the CGP Risk Levels 2 & 3 requirements.
- Be careful not to sweep up any unknown substance or any object that may be potentially hazardous.
- After sweeping is finished, properly dispose of sweeper wastes.

Tire Washing
- Inspect BMPs prior to and after each storm event, daily during extended rain events during the construction and/or clean-up activity (e.g., weekly, or in compliance with the frequency specified in the project specific SWPPP, if applicable). Initiate repairs related to a storm event within 72 hours of identifying the problem or as soon as possible but prior to the next predicted storm event, per the CGP.
- Inspect rack and/or sediment trap system routinely for damage and assess effectiveness. Remove accumulated sediment to maintain system performance.
Pictures

Manufactured metal plates knock dirt off vehicle tires before exiting a site.

Drive through wheel wash before exiting a site.
BMP 1-08: Stockpile Management

What
Stockpile management consists of placing temporary BMPs, such as secured covers, over the piles, and/or placing berms, silt fences, fiber rolls, sand/gravel bags or straw bale barriers around the perimeter of stockpiles. Soil stabilizers/binders may also be used to augment stockpile management (BMP 4-05).

When
Use this BMP when construction projects or operation and maintenance activities require stockpiled soil, waste materials, and/or paving materials. Protection of stockpiles must be implemented whenever there is a potential for transport of materials by a water source or by wind.
- Construction and waste material stockpiles require protection from rain and wind at all times unless actively being used (protect during non-activity). Projects with SWPPPs require protection at the end of each day.

Where
Stockpiles at construction and “construction like” operation and maintenance activity sites, protecting against both run-on and run-off.

How
One or more of the following options may be used to manage stockpiles and prevent stockpile erosion and sediment discharges for storm water and non-storm water runoff/run-on.
- Stockpile may be returned to the excavation if precipitation is forecast.
- Sufficient BMP materials for temporary stockpile protection should be available onsite. Select cover materials or methods based on anticipated duration.
- Protect stockpiles from storm water run-on and sediment runoff from the stockpiles using a temporary perimeter sediment barrier such as berms, silt fences, fiber rolls, sand/gravel bags, or straw bale barriers, as appropriate.
- Cover stockpiles to prevent erosion. Note that the CGP requires that inactive stockpiles be covered. Where feasible, cover/protect stockpiles using a soil binder, according to BMP 4-05. Alternately, secure stockpiles with covers such as Visqueen weighted down with gravel bags, or sand bags. Plastic should be properly re-used or disposed of properly. Note the CGP discourages the use of plastic materials for cover when more sustainable alternatives can be used.
- Stockpiles may be hauled off or temporarily stored in a protected location off site.
- Keep stockpiles organized and surrounding areas clean.
- Protect storm drain inlets, watercourses, and water bodies from stockpiles, as appropriate.
- Implement dust control practices as appropriate on all stockpiled material.
- Stockpiles should be covered, stabilized, or protected prior to the onset of precipitation.

Maintenance and Inspection
- Repair and/or replace covers, and perimeter containment structures as needed.
- Inspect BMPs prior to and after each storm event, daily during extended rain events during the construction and/or clean-up activity (e.g., weekly, or in compliance with the frequency specified in the project specific SWPPP, if applicable). Initiate repairs related to a storm event within 72 hours of identifying the problem or as soon as possible but prior to the next predicted storm event, per the CGP.
Pictures

Stockpile covered with plastic and secured with large rocks.

Silt fence used for stockpile perimeter control.
BMP 4-05: Soil Binders

What

Soil Binders is a procedural BMP for applying soil binder material to the soil surface to temporarily prevent water-induced erosion of exposed soils on construction or applicable operations and maintenance sites. Soil binders bind with the soil, creating a crust that sheds water and prevents the water erosion. Soil binders also provide temporary dust, wind, and soil stabilization benefits.

When

Soil binders are typically applied to disturbed soil areas that require short-term temporary protection.

Soil binders have the following application timing limitations:

- May not cure when low temperatures occur within 24 hours of application.
- Soil binders generally experience spot failures during heavy rain and may need reapplication after a storm.
- Some soil binders may not perform well during periods of low relative humidity.

Where

Soil binders can be used for any disturbed soil area. Soil binders can often be incorporated into the work so they may be a good choice for areas where grading activities will soon resume or that experience light construction traffic.

Soil binders have the following limitations for particular areas of application:

- Soil binders may not penetrate areas where soil surfaces are made up primarily of silt and clay, particularly when compacted.
- Soil binders may not hold up well in areas of heavy pedestrian or medium to heavy vehicular traffic.

How

Selection of soil binders should be approved by the project Field Environmental Representative after an evaluation of site-specific factors. Chemical soil binders must be on the SDG&E List of Approved Products. These approved soil binder products have low or no toxicity to aquatic organisms and wildlife and may not trigger the construction site sampling requirements of the CGP. Follow manufacturer’s recommendations for application procedures and cleaning of equipment after use. Any onsite cleaning must use appropriate BMPs (BMP 2-02 “Material Use”, 2-03 “Spill Control”, 2-04 “Solid Waste Management”, 2-08 “Liquid Waste/Drilling Fluid Management”, and 3-03 “Vehicle and Equipment Washing”).

- Prior to application, roughen embankment and fill areas. Track walking shall only be used where rolling is impractical.
- Soil binders should not be applied during or immediately before rain events. Soil binders must be applied no less than 24 hours before rain to cure and dry and become fully effective.
- Avoid over-spray onto paths, sidewalks, lined drainage channels, sound walls, and existing vegetation.
- Do not apply soil binders to frozen soil, areas with standing water, under freezing conditions, or when the temperature is below 40°F during the curing period.
- More than one treatment is often necessary, although the second treatment may be diluted or have a lower application rate.
- For liquid agents:
 - Crown or slope ground to avoid ponding.
 - Uniformly pre-wet ground according to manufacturer’s recommendations.
 - Apply solution under pressure. Overlap solution 6 to 12 inches.
 - Allow treated area to cure for the time recommended by the
- Apply second treatment before first treatment becomes ineffective, using 50 percent application rate.
- In low humidity, reactivate chemicals by re-wetting according to manufacturer’s recommendations.

Maintenance and Inspection

- Reapplying the selected soil binder may be needed for proper maintenance. Traffic areas should be inspected routinely.
- After any rainfall event, maintain all slopes to prevent erosion.
BMP 4-08: Dust (Wind Erosion) Control

What
Dust (Wind Erosion) control is a procedural BMP that consists of applying water or other dust suppressant to prevent or alleviate dust nuisance generated by construction and operations and maintenance activities.

When
- Dust control must be used whenever wind speed picks up dust and creates visual dust emissions. Dust control should be used at least initially on any project when exposed soil is subject to vehicle traffic and soil disturbance activities (e.g., dirt construction site, dirt access road traffic, grading, excavating, and soil stockpile generation, or soil removal from soil stockpiles).
- Dust control must be implemented in accordance with local air quality requirements.

Where
All construction and operations and maintenance activity sites where exposed soil is susceptible to wind erosion.

How
Use the following measures as applicable:
- Appropriate methods of applying dust control (water, chemical dust suppressant, or soil covers and the means to apply it) should be available for construction or operation and maintenance activity sites with the potential to create dust.
- Water applied for dust control should be applied evenly and in a manner that does not generate runoff.
- Dust control methods should be approved by the project Field Environmental Representative. A construction permit or an agency rule may require specific control procedures.
- Obtain prior approval to use any chemical dust suppressant from the project Field Environmental Representative. Dust suppressant chemicals must be on SDG&E’s approved product list.
- Non-potable water should not be conveyed in tanks or drainpipes that will be used to convey potable water, and there should be no connection between potable and non-potable supplies. Non-potable tanks, pipes and other conveyances should be marked “NON-POTABLE WATER – DO NOT DRINK.” Approval for use of all non-potable sources of water must be obtained from the project Field Environmental Representative.
- If reclaimed wastewater is used for dust control, the sources and discharge must meet California Department of Health Services water reclamation criteria and RWQCB requirements. Approval for use of reclaimed wastewater must be obtained from the project Field Environmental Representative.

Maintenance and Inspection
- Check areas protected to ensure coverage.
- Reapply water, chemical dust suppressants, or maintain soil covers as necessary to maintain their effectiveness.
Photos

Water being applied for dust control.