
Energy Resource Modeling Section, Energy Division
California Public Utilities Commission
February 20, 2018
Contents

1. **Introduction** .. 5
 1.1 Background and Roadmap .. 6
 1.1.1 Acronyms .. 7

2. **Production Cost Modeling – Inputs, Assumptions, and Methods** .. 8
 2.1 Scope .. 8
 2.2 Review of SERVM Software .. 9
 2.3 Primary Data Sources and Assumptions 9
 2.3.1 Interagency Coordination and Data Sources 9
 2.3.2 Summary of Model Updates .. 11
 2.3.3 Key Definitions and Reliability Metrics 11
 2.3.4 General Order of Studies in ELCC Modeling 12
 2.4 Weather Data and Regions .. 14
 2.4.1 Region Designations ... 14
 2.5 Weather Normalization Process: Development of Hourly Synthetic Load Profiles 17
 2.5.1 Data Collection and Scrubbing ... 18
 2.5.2 Weather Normalization Model .. 21
 2.6 Forecasts of Total Electricity Peak and Total Energy throughout Study Years 23
 2.6.1 Use of IEPR Forecasts and Hourly Shapes 25
 2.6.2 Reconstituting forecasts of peak and total consumption 27
 2.6.3 Linear Stretching of Consumption Shapes to Forecast Years 28
 2.6.4 Economic and Demographic Forecasting Uncertainty 29
 2.6.5 Hourly Shapes for BTM PV, AAEE, EV, TOU Rate Impacts 30
 2.7 Existing and New Resource Portfolios 31
 2.7.1 Baseline Units and IRP Reference System Plan Units Tables 31
 2.7.2 Aligning the modeled generation fleets in RESOLVE and SERVM 35
 2.8 Resource Inputs and Use Limitations 36
 2.8.1 Generic Resource Information ... 36
 2.8.2 Thermal Resources – Types T, F, and N 39
 2.8.3 Energy Storage Resources - Type P 46
 2.8.4 Renewable Resources – Type R 48
 2.8.5 Demand Response – Type C .. 56

- 2 -
2.8.6 Hydropower Resources – Type H ... 62
2.9 Transmission Inputs .. 66
2.10 System Inputs .. 66
 2.10.1 System Periods .. 66
 2.10.2 Operating Reserves, Ancillary Services, and Frequency Response .. 67
2.11 Other Production Cost Models .. 68
2.12 Next Steps .. 69

3 Network Reliability Modeling – Transmission Busbar Allocations ... 69
3.1 Load and Load Modifiers ... 69
3.2 Supply-side Resources .. 70
 3.2.1 Planned Energy Storage .. 70
 3.2.2 Planned Demand Response ... 72
 3.2.3 IRP 50% RPS Default and 42 MMT Core Cases for New Resources ... 73
List of Tables

Table 1: Assignment of WECC regions to modeled SERVM zones .. 15
Table 2: Load type definitions - consumption, sales, system and net load 18
Table 3: IEPR Forms and Workbooks and Uses ... 27
Table 4: Economic/Demographic Forecast Error Probabilities .. 30
Table 5: Baseline Non-Renewables in RESOLVE (MW) ... 32
Table 6: Baseline Renewables in RESOLVE (MW) ... 33
Table 7: New Build in RESOLVE for 50% RPS Default Core Case .. 34
Table 8: New Build in RESOLVE for 42 MMT Core Case ... 35
Table 9: Resource types modeled in SERVM ... 36
Table 10: Generic data inputs common to most resource types (T, F, N, R, C, P, and H) 37
Table 11: Generation of Inputs for Child Units from Aggregate Units ... 38
Table 12: Inputs related to forced and planned outage hours and statistics for SERVM 40
Table 13: Resource Characteristics of Perfect Capacity ... 43
Table 14: Variable Operations and Maintenance Costs ... 45
Table 15: Input parameters for storage in the SERVM model ... 46
Table 16: Solar PV Facility Performance Inputs .. 51
Table 17: Demand Response Supply-side Modeling Assumptions Summary 57
Table 18: Demand Response parameters available in SERVM .. 59
Table 19: Data Sources for Hydropower Inputs .. 62
Table 20: System Periods ... 66
Table 21: Operating Reserves and Ancillary Service Requirements and Targets 67
Table 22: Total Energy Storage Procurement To-Date (IOU Data November 2017) 71
Table 23: Residual Energy Storage Procurement to Meet D.13-10-040 Targets (MW) 71
1 Introduction

The Unified RA/IRP I&A serves three primary functions:

1. Describe the production cost modeling methodology, inputs, and assumptions that are being used to inform the CPUC’s Resource Adequacy (RA) proceeding in 2018 (R.17-09-020), specifically Effective Load Carrying Capability (ELCC) calculations.
2. Describe the production cost modeling methodology, inputs, and assumptions that will be used to inform the CPUC’s Integrated Resource Plan (IRP) proceeding in 2018 (R.16-02-007), specifically Loss-of-Load Expectation (LOLE) studies and reserve margin calculations.
3. Describe the inputs and assumptions for use in the network reliability (“power flow”) studies typical of the CAISO’s 2018-19 Transmission Planning Process (TPP), including the allocation of load and resource inputs and assumptions to CAISO transmission substations (busbars).

The Unified RA/IRP I&A is “unified” in the sense that it consolidates modeling guidance for the three primary functions above in a single document and associated sets of data. The production cost modeling methods and data to support RA and IRP modeling are consolidated in one document because the two proceedings share a common production cost modeling platform with similar data requirements. The Unified RA/IRP I&A is also “unified” in the sense of providing for a common and consistent set of modeling conventions and input data to facilitate comparison and relating of study results across different planning processes at the CPUC and across different agencies.

The Unified RA/IRP I&A is intended to be used with and be consistent with the “California Energy Demand 2018-2030” (CED 2017) load forecast that will be adopted with the CEC’s 2017 Integrated Energy Policy Report (IEPR), expected in early 2018. The Unified RA/IRP I&A is also derived from the CPUC’s IRP Reference System Plan, adopted by the Commission on February 8, 2018. However, the CAISO’s TPP schedule requires that the Unified RA/IRP I&A be provided to the CAISO’s Study Plan development process by mid-February, a deadline ahead of the likely adoption date of the CEC’s 2017 IEPR. The very recent adoption of the IRP Reference System Plan also means the work to translate that information into the detailed modeling inputs intended for inclusion in this document is in progress.

In order to provide the required input to the CAISO’s TPP and minimize any impact on its schedule, CPUC staff provides this Draft 2018 Unified RA/IRP I&A document and associated data for use in the CAISO’s TPP Study Plan development process. Because the Draft 2018 Unified RA/IRP I&A references load data expected to be final when the 2017 IEPR demand forecast is adopted, it can reasonably provide the necessary input to the CAISO’s TPP within its required schedule. A Final 2018 Unified RA/IRP I&A will be
provided when staff work to translate both the adopted 2017 IEPR demand forecast and the adopted IRP Reference System Plan into detailed modeling inputs is complete. The Final version will include any necessary reconciliation with information provided in the Draft version.

1.1 Background and Roadmap

In previous years, the “Assumptions and Scenarios” document\(^1\) was issued annually as a ruling in the CPUC’s Long-Term Procurement Plan (LTPP) proceedings\(^2\) to provide for a common set of data to guide electric system modeling activities in the LTPP proceeding and the CAISO’s Transmission Planning Process in that calendar year. The 2016 Order Instituting Rulemaking to Develop an Electricity Integrated Resource Planning Framework and to Coordinate and Refine Long-Term Procurement Planning Requirements (R.16-02-007) superseded the LTPP proceedings and is now commonly referred to as the IRP proceeding. As such, the historical “Assumptions and Scenarios” document is superseded by this document, the Unified RA/IRP I&A, which is designed for the new IRP process. The detailed data described by the Unified RA/IRP I&A flows from the IRP Reference System Plan. The Unified RA/IRP I&A will be updated annually and issued at the beginning of a calendar year. The update planned for the beginning of 2019 will flow from the IRP Preferred System Plan.

The historical “Assumptions and Scenarios” document was also accompanied by two key Excel workbook deliverables, the RPS Calculator & Portfolios\(^3\) and the Scenario Tool.\(^4\) These workbooks are superseded by new deliverables designed to support the new IRP process. The new deliverables are the RESOLVE model and a set of workbooks capturing the inputs to the Strategic Energy Risk Valuation Model (SERVM)\(^5\) production cost model being used by CPUC Energy Division staff. The RESOLVE model was used to develop the IRP Reference System Plan and has been available on the CPUC’s IRP website\(^6\) and the workbooks containing SERVM inputs will be provided with the final version of this document and will be posted on the CPUC Energy Division’s Energy Resource Modeling website.\(^7\) The historical “Assumptions and Scenarios” document was also accompanied by supplemental data and guidance from the CEC and the three large Investor Owned Utilities to allocate load and resource inputs and assumptions to CAISO transmission substations. This information will continue to be pointed to or provided with the new Unified RA/IRP I&A document.

The remainder of this document is comprised of two major sections. First, it describes modeling conventions and input development for the SERVM model being used to conduct the various types of production cost modeling studies that are called for in the RA proceeding and the IRP proceeding. This section of the Unified RA/IRP I&A is sourced from an earlier Energy Division staff document describing

\(^1\) The February 2017 version: http://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M176/K948/176948479.PDF This document has also been referred to as the Standard Planning Assumptions, or SPA.

\(^2\) The previous LTPP proceeding is R.13-12-010.

\(^3\) See RPS Calculator v6.2 here: http://www.cpuc.ca.gov/RPS_Calculator/

\(^6\) See RESOLVE model here: http://cpuc.ca.gov/irp/proposedrsp/

the inputs to, and the application of the SERVM model for calculating ELCC values to inform the RA proceeding in 2017. It is adapted here to inform modeling activities in both the RA proceeding and IRP proceeding in 2018. The last section of the document describes additional guidance and data required for the network reliability studies typical of the CAISO’s TPP.

1.1.1 Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-in-10</td>
<td>1-in-10 year weather peak demand forecast</td>
</tr>
<tr>
<td>1-in-2</td>
<td>1-in-2 year weather peak demand forecast</td>
</tr>
<tr>
<td>AAEE</td>
<td>Additional Achievable Energy Efficiency</td>
</tr>
<tr>
<td>AAPV</td>
<td>Additional Achievable Photovoltaics (behind-the-meter solar PV)</td>
</tr>
<tr>
<td>BTM</td>
<td>Behind-the-meter</td>
</tr>
<tr>
<td>CAISO</td>
<td>California Independent System Operator</td>
</tr>
<tr>
<td>CARB</td>
<td>California Air Resources Board</td>
</tr>
<tr>
<td>CEC</td>
<td>California Energy Commission</td>
</tr>
<tr>
<td>CED</td>
<td>California Energy Demand Forecast</td>
</tr>
<tr>
<td>CHP</td>
<td>Combined Heat and Power</td>
</tr>
<tr>
<td>CPUC</td>
<td>California Public Utilities Commission or “Commission”</td>
</tr>
<tr>
<td>DCPP</td>
<td>Diablo Canyon Power Plant</td>
</tr>
<tr>
<td>DR</td>
<td>Demand Response</td>
</tr>
<tr>
<td>ELCC</td>
<td>Effective Load Carrying Capability</td>
</tr>
<tr>
<td>EV</td>
<td>Electric Vehicle</td>
</tr>
<tr>
<td>IEPR</td>
<td>Integrated Energy Policy Report</td>
</tr>
<tr>
<td>IOU</td>
<td>Investor Owned Utility</td>
</tr>
<tr>
<td>LCR</td>
<td>Local Capacity Requirement</td>
</tr>
<tr>
<td>LOLE</td>
<td>Loss of Load Expectation</td>
</tr>
<tr>
<td>LSE</td>
<td>Load Serving Entity</td>
</tr>
<tr>
<td>LTPP</td>
<td>Long Term Procurement Plan</td>
</tr>
<tr>
<td>NQC</td>
<td>Net Qualifying Capacity</td>
</tr>
<tr>
<td>OTC</td>
<td>Once-through-cooling</td>
</tr>
<tr>
<td>PG&E</td>
<td>Pacific Gas & Electric</td>
</tr>
<tr>
<td>POU</td>
<td>Publicly Owned Utility</td>
</tr>
<tr>
<td>PV</td>
<td>Photovoltaic</td>
</tr>
<tr>
<td>RPS</td>
<td>Renewables Portfolio Standard</td>
</tr>
<tr>
<td>SCE</td>
<td>Southern California Edison</td>
</tr>
<tr>
<td>SDG&E</td>
<td>San Diego Gas & Electric</td>
</tr>
<tr>
<td>SERVM</td>
<td>Strategic Energy Risk Valuation Model</td>
</tr>
<tr>
<td>TEPPC</td>
<td>Transmission Expansion Planning Policy Committee</td>
</tr>
<tr>
<td>TPP</td>
<td>Transmission Planning Process</td>
</tr>
</tbody>
</table>
2 Production Cost Modeling – Inputs, Assumptions, and Methods

2.1 Scope
This section describes the major assumptions and input sources that the Energy Resource Modeling (ERM) section in the CPUC’s Energy Division will use when completing Production Cost Modeling (PCM) to support the Resource Adequacy (RA) proceeding and the Integrated Resource Planning (IRP) proceeding through 2018. This document contains a description of the PCM software the ERM team is using, the modeling methods, and the inputs and sources. The RA proceeding and the IRP proceeding will each define the higher-level modeling activities that should be done to support each respective proceeding. This document only describes the detailed mechanics and data required to conduct the range of modeling activities that could be requested by the RA and IRP proceedings. The high-level modeling activities planned for the IRP proceeding in 2018 are described in Attachment B of the IRP Decision D.18-02-018.

This section includes the following key components:

- Review of SERVM, software which is being used by Energy Division Staff to conduct LOLE and ELCC analysis
- Primary data sources and assumptions
- Interagency coordination
- Key modeling processes and order of studies to be undertaken, primarily to perform monthly LOLE and monthly ELCC studies
- Foundational definitions and assumptions for RA and IRP modeling
- Key updates and additions since ELCC modeling in early 2017 for the RA proceeding
- Gathering and use of weather data for development of synthetic load shapes using weather normalization and regression analysis
- Sources of and use of weather data and weather region definitions to create hourly profiles for wind and solar production
- Data related to conventional (fossil fuel) generators
- Burner-tip natural gas price forecasts
- Development of data inputs and hourly profiles for hydro generators
- Data for demand response and storage resources

Study results will be separately documented and driven by the respective needs of the RA and IRP proceedings.

8 The previous RA proceeding is R.14-10-010. The current RA proceeding is R.17-09-020. The current IRP proceeding is R.16-02-007.
2.2 Review of SERVM Software

Energy Division staff use SERVM to calculate numerous reliability and cost metrics for a given study year in light of expected weather, overall economic growth, and unit performance. For each of these factors, variability and forecasting uncertainties are also taken into account.

As with all probabilistic models, SERVM attempts to simulate the study year many thousands of times over, with each simulation reflecting a slightly different set of weather, economic, and unit performance conditions. Iteration conditions are selected probabilistically, based on how likely they are to occur. In SERVM, a given future study year is modeled by simulating the operation of a fleet of power plants in that future year to meet hourly electric demand that reflects a wide variety of actual historical weather patterns. For each of thirty-five possible weather years, six to eight points of load forecast error can be simulated, creating roughly 210 to 280 scenarios. Each of these scenarios is in turn run with a hundred or more unit outage draws, creating thousands of iterations for the simulation. Results are expressed as the probability weighted expected average metrics across the whole range of variability studied. The results provide a comprehensive distribution of reliability costs, expected unserved energy, and other reliability metrics. Expected values and confidence intervals can then be calculated based on these distributions.

2.3 Primary Data Sources and Assumptions

2.3.1 Interagency Coordination and Data Sources

Foundational to the task of coordinating the RA and IRP modeling efforts is coordination between the key California agencies that cooperatively plan for the future of electric service, including the CEC, CAISO, and CPUC. Without close integration and coordination, the complicated work described in this document would be impaired. Chief among the modeling data utilized by Energy Division are the CEC IEPR that provides electric demand and fuel price forecasts, the CAISO’s datasets which lay out the generating facilities and transmission topology that operate to provide electricity to customers, and the CPUC’s IRP and Distribution Resource Plan (DRP) datasets which lay out plans for new investment in generation and demand side alternatives.

California annual peak and energy demand forecasts including projections of demand-side resources such as energy efficiency and rooftop solar are sourced from the most recently adopted CEC IEPR California Energy Demand (CED) forecast. According to agreement between the CAISO, CEC, and the CPUC, planning processes at each agency will use the Single Forecast Set specified by the most recent IEPR CED forecast.

Energy Division staff sourced existing CAISO generating unit information from the CAISO MasterFile. In order to participate in the CAISO energy market and ensure cost effective dispatch of their plants, generator owners maintain a wide array of information in the MasterFile database. The MasterFile is used by the CAISO in order to optimize dispatch in light of an array of unit-specific characteristics such as start-up costs and start-up time, ramp rate, heat rate, and forbidden operating ranges. A number of the data fields in the MasterFile are confidential, and are accessible to Energy Division staff via an annual
subpoena. Definitions of all the fields in the MasterFile are public and are posted on the CAISO website.\(^{10}\)

In addition to the CAISO, the Western Electric Coordinating Council (WECC) also compiles a base case dataset for the WECC and its members to use as a common basis for their modeling. Each Balancing Authority may have unique access to accurate and confidential data for generators and other market participants within its footprint, but since the WECC is so interconnected, it is difficult to accurately model reliability and economic conditions in one Balancing Authority without attention to generators and loads in the surrounding Balancing Authorities. To facilitate consistent modeling by all Balancing Authorities in WECC, every two years WECC produces a Common Case dataset containing generic information for all load and supply data across WECC.\(^{11}\) Produced by a subcommittee of WECC members called the Transmission Expansion Planning Policy Committee (TEPPC), this dataset is generated for both the immediate next year and for a year ten years into the future. For modeling activities during 2018, Energy Division staff imported the TEPPC 2026 Common Case v2.0 into the SERVM dataset in order to model generating units outside of the CAISO, as well as units in most of the rest of the Western Interconnect. The peak and energy demand forecasts for regions outside of California are also sourced from the TEPPC 2026 Common Case.

The TEPPC 2026 Common Case represents the final Common Case dataset that will be produced by TEPPC. WECC is transitioning to a new organizational model and a new group called the Reliability Assurance Committee will produce a new dataset called the Anchor Data Set (ADS). We anticipate that the ADS will take the place of the Common Case and will additionally incorporate modeling inputs for power flow modeling. Energy Division will transition to ADS data for the next IRP cycle.

The CAISO MasterFile and the WECC TEPPC Common Case dataset each have their advantages and disadvantages. For generators that supply information to the CAISO MasterFile, there is a larger range of information available to Energy Division for modeling purposes but some of it is confidential and/or not directly applicable to production cost modeling.

The WECC TEPPC Common Case dataset, being public data, is often generic and aggregated by class average. The 2026 TEPPC Common Case has created unit specific heat rate curves and minimum operating levels based on public data available from the Continuous Emission Monitoring System database, and this represents a significant improvement in data quality, but there are other areas where there are challenges to being as precise as possible. For this reason, it is common for particular Balancing Authorities within the WECC to substitute their own confidential, internal data for the TEPPC Common Case inputs related to their own specific balancing authority. Energy Division staff will use the TEPPC 2026 Common Case for regions external to the CAISO balancing area. For regions internal to the

\(^{10}\) MasterFile field definitions can be downloaded from http://www.caiso.com/Documents/GRDTandIRDTDefinitions.xls. CAISO MasterFile data are confidential, and not able to be posted; however, it may be possible to aggregate portions of these data for stakeholder review.

\(^{11}\) WECC TEPPC 2026 Common Case v2.0 datasets are available for download here: https://www.wecc.biz/Reliability/Forms/AllItems.aspx
CAISO area, staff will use the generator-specific information obtained via subpoena from the CAISO MasterFile.

Assumptions for new resources projected to come online by a future study year are sourced from the IRP proceeding’s Reference System Plan adopted in February 2018 and developed by the RESOLVE capacity expansion model, or the aggregation of individual LSE Plans to be filed in the IRP proceeding later in 2018.

All cost data (including generator O&M, startup costs, and fuel handling costs) were adjusted to 2016 dollars using a deflator series developed by the CEC in the IEPR process and which equals approximately 2% inflation, year over year. This is consistent with the convention in the RESOLVE model to report all costs in 2016 dollars.

Other datasets used by Energy Division staff include the Generator Availability Data System (for generator forced and scheduled outage statistics), the National Oceanic and Atmospheric Administration (NOAA) for weather data to generate solar and wind production profiles, the National Renewable Energy Laboratory (NREL), and data specifically gathered from the utilities. These data and their use in SERVM will be described in further detail in the sections that follow.

2.3.2 Summary of Model Updates

The SERVM dataset has undergone several important data updates since March 2016. Staff migrated to the latest version of the 2026 TEPPC Common Case (V2). Staff disaggregated the areas external to California from 10 areas grouped by state down to 16 areas, grouped by utility service area. For example, Utah, Colorado, and Wyoming are now WACM, PSCO, and PACE. Staff authorized Astrape Consulting to restudy and redevelop all solar, wind, and hydro shapes to add actual historical data from 2013 and 2014 to the existing 33 weather years, resulting in two new weather years available for modeling. Staff also mapped the weather and load shapes to the new utility service areas, and corrected the mapping of hydroelectric facilities within California. In addition, recent drought conditions have resulted in lower predicted hydroelectric generation for recent weather years. Hydro, load, wind, and solar shapes now include 35 years, from 1980 through 2014. There was not sufficient data available yet to create 2015 shapes.

2.3.3 Key Definitions and Reliability Metrics

Before the development of today’s advanced computing, planners calculated probability of loss-of-load for the peak hour of each day, and only on weekdays, equating to about 260 data points for a study year. Today’s computers perform simulations, not simple calculations, and perform simulations of each hour of the year thousands of times with multiple stochastic variables. Thus a LOLE value of 0.1, which is a direct translation of the decades old industry “one day in ten years” standard, may warrant reconsideration in light of the sophisticated hourly models and advanced computing available now.

LOLE and ELCC studies, particularly those done to meet the needs of the IRP and RA proceedings, require a number of foundational assumptions and modeling conventions in order for the studies to proceed. Staff made assumptions about what probabilistic reliability standard at which to calibrate the
CAISO system for both monthly and annual studies, and the definition of a loss-of-load event. Staff also performed a convergence analysis to evaluate the optimal number of iterations to run for each case.

In LOLE and ELCC studies for the RA and IRP proceedings, staff will use the following foundational conventions:

- The LOLE reliability target range for calibrating the CAISO system in annual studies will be 0.095 to 0.105 LOLE.
- The LOLE reliability target range for calibrating the CAISO system in monthly studies will be 0.02 to 0.03 LOLE for each month.\(^{12}\)
- Multiple loss-of-load events occurring within one day shall count as one event for purposes of counting events towards a reliability target. The loss-of-load event occurs when the frequency response constraint\(^ {13}\) is fully relaxed and when regulation up (1.5% of hourly forecast load) and spinning reserves (3.0% of hourly forecast load) cannot be maintained, i.e. firm load is assumed to be curtailed when available capacity is less than 104.5% of load.

2.3.4 General Order of Studies in ELCC Modeling

The scope and sequence of ELCC studies to be done to support the IRP proceeding are defined within Attachment B of the IRP Decision D.18-02-018.\(^ {14}\) The scope and sequence of ELCC studies to support the RA proceeding are defined in this section. The RA proceeding uses ELCC methods to assign capacity value to particular resources or sets of resources within a larger electric system. The calibration and sequence of these studies is critical. The process is illustrated in the following chart:

\(^{12}\) Specifically, the monthly LOLE target was created by first taking the industry standard 0.1 LOLE annual target and assuming that most of those events map to the four peak months of June through September, or one third of the year. Assuming a similar target reliability for the rest of the year would mean that total LOLE over the entire year should have a target of 0.1x3=0.3. Thus, monthly LOLE studies would have a monthly target LOLE of 0.3/12=0.025, i.e. a target range of 0.02 to 0.03.

\(^{13}\) Ancillary services and frequency response requirements are described later in this document in the System Inputs section 2.10.

ELCC studies rely first on LOLE studies, and monthly ELCC studies require monthly LOLE studies. A Level 1 study is to calibrate the LOLE level of the overall electric system to the desired reliability level. Staff will add or remove electric capacity on a monthly basis in a predetermined order in order to result in a LOLE that is levelized and within the desired range, i.e. between 0.02 and 0.03.

Once LOLE level is calibrated on a month specific basis, staff will move on to Level 2. Staff will remove all wind and solar generators from the fleet of generators, in all months, then on a month specific basis, reinsert Perfect Capacity in increments until LOLE again is between 0.02 and 0.03 in each month.

Level 2 analysis in effect sets a control total meant to represent the total ELCC of the generators in question. Since there are often interaction and diversity effects between wind and solar generation in the way they contribute to reliability, this Portfolio ELCC study determines their total ELCC value.

In Level 3 analysts, staff performs individual technology specific ELCC studies, which are studies of a subset of the Portfolio ELCC studied in Level 2. All wind or all solar generators are removed from the fleet and Perfect Capacity is added back until LOLE is gain between 0.02 and 0.03 on a month specific basis. When the ELCC of wind and solar individually are determined, they are totaled and compared to the Portfolio ELCC results from Level 2. Technology specific ELCC values are adjusted either up or down so that their total is equal to the Portfolio ELCC value.

When each technology specific ELCC is determined, they become control totals for subsequent Level 4 ELCC analysis. For example, all tracking solar would then be removed, and Perfect Capacity would be added to return the system to LOLE in the desired range. Then the same with fixed tilt solar, and the
resulting ELCC values of fixed and tracking solar would be totaled and compared to the solar technology ELCC values from Level 3 to see if they would be adjusted upwards or downwards to arrive at their individual ELCC values.

ELCC values are either expressed as MW equivalent of perfect capacity to a MW total of other generation, or as a percentage. The percentage ELCC represents the ratio of MWs of Perfect Capacity to MWs of generation removed. The ELCC percentage factor is applied to the nameplate MW of a particular generation type to derate its value and demonstrate the amount of “effective capacity” it provides.

The order of studies above references the steps of removing or adding units to calibrate a system to a target reliability level. Staff used the following conventions for those steps:

- Removal of generation to surface LOLE events in overbuilt systems shall be according to the following order: Conventional thermal generators that have announced their retirement will be removed first. If LOLE remains below the target level, additional conventional thermal generation will be removed from CAISO areas ranked by age of the facility. The oldest one will be removed first, continuing in order of age. No hydro generation or renewable generation will be removed.
- Addition of generation to reduce LOLE events in underbuilt systems shall use perfect capacity as additions. Perfect capacity is a modeling proxy for generation with no operating constraints, e.g. always available, starts instantly, infinite ramp rate, no minimum operating level.
- Although the calibration step alters the system under study, this is a typical way of performing ELCC calculations and is not expected to significantly affect the ELCC measurement.

2.4 Weather Data and Regions

Weather is an integral input into probabilistic reliability modeling. It is used both in the development of synthetic load shapes, which are highly correlated to temperature and humidity, and in the development of generation profiles for weather-sensitive resources such as wind and solar. In order to balance the need to model the wide range of weather across the state at any given time and the need to keep modeling times feasible, a set of representative weather stations are selected and grouped to create regions that are modeled as homogeneous areas. This section details the weather data utilized, the sources for this data, the regions modeled, and the process by which these regions were created.

2.4.1 Region Designations

Load, wind, and solar shapes are developed to correspond to regions modeled in SERVM. Staff has currently organized inputs in SERVM into eight distinct regions within California and sixteen outside of California based on utility service areas. While most utility service areas are modeled individually, some are aggregated, as specified in the table below. These regions are utilized throughout SERVM to associate groups of generation facilities with common weather, load, weather-related generation

15 Note that the order specified here is simply a modeling convention picking one systematic way to remove capacity for the sole purpose of calibrating a system to a target reliability level in order to perform ELCC calculations. The choice and order of removing units does not imply the units are likely to retire or should retire.
profiles, transmission constraints, and utility service territories. The regions (zones) modeled are listed in Table 1, below. The regions below do not correspond to transmission-constrained Local Areas, and are not granular enough for transmission planning. In the future, higher geographic granularity could be achieved by splitting the regions into smaller areas. However, it is unlikely a production cost model will ever approach the fidelity required for network reliability (power flow) studies. Such studies are not in scope for Energy Division staff at this time.

Table 1: Assignment of WECC regions to modeled SERVM zones

<table>
<thead>
<tr>
<th>California Regions</th>
<th>Regions external to California</th>
</tr>
</thead>
<tbody>
<tr>
<td>IID (Imperial Irrigation District) Balancing Authority Area (BAA)</td>
<td>AZPS including HGMA, GRMA, and DEAA</td>
</tr>
<tr>
<td>LADWP BAA (includes Burbank and Glendale)</td>
<td>BCHA and AESO</td>
</tr>
<tr>
<td>PG&E TAC16 Area, Bay17</td>
<td>BPA including several smaller utilities</td>
</tr>
<tr>
<td>PG&E TAC Area, Valley18</td>
<td>CFE</td>
</tr>
<tr>
<td>SCE TAC Area (includes VEA)</td>
<td>IPCO</td>
</tr>
<tr>
<td>SDG&E TAC Area</td>
<td>NEVP and SPPC</td>
</tr>
<tr>
<td>Balancing Authority of Northern California (labeled SMUD in the SERVM model)</td>
<td>NWMT with GWA and WAUW</td>
</tr>
<tr>
<td>TID (Turlock Irrigation District) BAA</td>
<td>PACE</td>
</tr>
</tbody>
</table>

Figure 2 below is an illustrative map of Western Interconnection Balancing Authorities and is generally consistent with the region definitions used in SERVM.

16 A transmission access charge (TAC) area is a portion of the CAISO-controlled grid where transmission revenue requirements are recovered through an access charge.

17 Includes these lines from IEPR demand forecast Form 1.5a: CCSF, NCPA-Greater Bay Area, Other NP15 LSEs-Bay Area, PG&E Service Area-Greater Bay Area, Silicon Valley Power, CDWR-N, CDWR-ZP26

18 Includes these lines from IEPR demand forecast Form 1.5a: NCPA-Non Bay Area, Other NP15 LSEs-Non Bay Area, PG&E Service Area-Non Bay Area, WAPA, PG&E Service Area-ZP26
Figure 2: Balancing Authorities in WECC

Source: WECC website, downloaded January 30, 2018
https://www.wecc.biz/Administrative/Balancing Authorities JAN17.pdf
2.5 Weather Normalization Process: Development of Hourly Synthetic Load Profiles

The objective of weather normalization is to create synthetic load profiles that accurately represent the relationship of hourly customer electricity demand to historical weather patterns, over as wide a range of historic weather patterns as possible. Of particular importance is the accurate preservation of both spatial and temporal correlations occurring between historical load and weather patterns. There is also the need to establish the relationship of recent weather patterns to recent electricity demand. In other words, relationships between weather and electricity demand are changing as customers use more efficient lighting and cooling equipment, and as the weather changes due to climate change, so the relationship between load and weather should be established for a set of recent, representative years.

Our weather normalization is informed by 35 years of historical hourly weather data across the years 1980 through 2014, and is used to develop 35 years of hourly synthetic load shapes for 24 geographical regions across the western United States. Hourly historical load profiles across the same geographical regions for the last 5 years of the time series (2010 through 2014) are used to train the model. The model we use is described in more detail below.

The relationship between weather and electricity demand should focus on the relationship of weather on a granular locational level to customer electricity consumption, where consumption refers to actual demand, independent of any self generation. See Table 2 for definitions of the various load types referred to in this document.

Whereas meter data is available that captures actual energy delivered, or sales, to the customer by the utility, consumption data is typically not measured directly. However, attempting to model the relationship between weather and sales, defined as consumption less any self generation, does not capture a meaningful physical relationship. This is because sales depends, for example, on the number of solar panels installed on a customer’s roof, which has no relationship to the weather effects experienced by the electricity customer.

In the absence of customer self generation, consumption and sales are identical, but with increasing levels of customer self generation, consumption becomes counterfactual. Therefore customer electricity consumption must be reconstituted from the utility sales values by simulating behind the meter generation values, based on installed photovoltaic capacity and hourly insolation profiles.
Table 2: Load type definitions - consumption, sales, system and net load

Note that in SERVM we are modeling behavior at the system level, and do not explicitly model both sales and system load. Said another way, we gross up sales to the system level, accounting for losses.

<table>
<thead>
<tr>
<th>Load Type</th>
<th>Relation to Other Terms</th>
<th>Rationale</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption</td>
<td>Sum of electrical energy used to operate end-use devices excluding charge/discharge of storage</td>
<td>Consumption is the term used in CEC forms to capture onsite energy usage.</td>
<td>With increased self generation, and when relying on net energy metering to apply cost responsibility to end-users, consumption becomes counterfactual.</td>
</tr>
<tr>
<td>Sales</td>
<td>Consumption less BTM onsite generation including storage charge/discharge</td>
<td>Sales is the energy term to indicate the net energy delivered through the meter to the end-use customer</td>
<td>Metered by the utility on a short interval basis if the utility has deployed interval metering systems for end-users; otherwise could be estimated using load research practices</td>
</tr>
<tr>
<td>System</td>
<td>Sales load plus T&D losses plus theft and unaccounted for</td>
<td>Standard electricity industry term. CEC defines “hourly system load” in its data collection regulations</td>
<td>Generally measured by power plant output and import flows, e.g. a top down measurement inferring loads rather than a bottom up summation of individual customer loads</td>
</tr>
<tr>
<td>Net Load</td>
<td>System load less system intermittent renewable generation</td>
<td>This is the same definition as being used by CAISO</td>
<td>BAA estimation of system load less measured output of wind and solar supply-side renewables</td>
</tr>
</tbody>
</table>

2.5.1 Data Collection and Scrubbing
Data used in this process includes hourly historical weather data (35 years), and hourly historical load data (5 years of sales data) along with any hourly self generation or demand response needed to calculate consumption from sales values. This section describes the data collection and data scrubbing process required to perform the regression analysis used in the weather normalization process.
2.5.1.1 Weather Data
Hourly historical weather data is obtained from the National Climate Data Center (NCDC) for years 1979 through 2014.\(^{19,20}\) Hourly temperature and dew point data are downloaded for nearly 60 weather stations across the western United States corresponding to the western electrical grid footprint, including contiguous parts of Canada and Mexico. For California, where we would like our spatial resolution to be highest, we use over 20 weather stations to inform our model. In several cases, weather station data needs to be stitched together from geographically adjacent weather stations when a given station lacks a contiguous history across the full range of years. Note that all hourly weather station data from the NCDC ISD-Lite dataset are provided in a manner that is corrected for daylight savings, that is, all hours correspond to standard time in the local time zone.

SERVM uses 24 geographic zones, 8 of which are located in California. Weighted temperature and dew point values are determined for each of the 24 SERVM zones using the 60 NCDC weather stations. A set of normalized weighting factors mapping the NCDC weather station data to SERVM zones is developed for each zone by season. The weighting factors are determined by season from the best fit of a logarithm of consumption load versus linear temperature model.

The raw hourly weather data profiles as obtained from the NCDC contain missing data segments. We analyzed the distribution of missing data and found the mode length for missing temperature data is about 10 days, coincidentally roughly the length of time of a typical employee vacation. It may be that weather station data is captured by a single employee, so that when they are on vacation, missing data segments occur. Likewise, dew point data also has missing data segments. We fill in missing observations in both temperature and dew point data using linear interpolation to ensure complete hourly coverage across the full 35 year time span.

Additionally, hourly solar insolation, wind speed, and cloud cover data was obtained from the NCDC dataset and developed for use in calculating self generation and system renewable energy production for use by the SERVM model.

2.5.1.2 Load Data
Developing hourly consumption data requires collecting metered sales data and reconstituting consumption by adding back the hourly effects of BTM generation or demand response that was not metered separately. While some hourly BTM self generation and demand response data\(^{21}\) can be obtained for some geographic regions within California and used to develop hourly consumption profiles

\(^{19}\) National Climate Data Center (NCDC): \url{https://www1.ncdc.noaa.gov/pub/data/noaa/isd-lite/}

\(^{20}\) While the weather normalization spans 1980 through 2014, 1979 is used to remove boundary issues that arise when calculating lagged temperature and dew point values at the beginning of the time series, as discussed below.

\(^{21}\) The hourly impacts of demand response are difficult to recreate; for areas internal to CAISO, Energy Division staff issued a data request for the actual hourly impacts from the three IOUs that manage the demand response programs from the 2010 to 2016 program years. We collected data for the years 2011 through 2016 to ensure that the trends were reasonable past 2014, but only hourly data for 2011 through 2014 was used for reconstituting consumption.
from sales,22 it is difficult to obtain this information for all types of BTM effects and for all regions inside or outside of California. For regions outside California where BTM self generation and demand response profiles are not available, we simply use hourly sales profiles in lieu of hourly consumption profiles. While this introduces some error into our weather normalization process, we believe the impacts are minimal because (a) where BTM self generation and demand response is not available outside of California over the time frame we are modeling, we expect those quantities to be minimal, and (b) we are most concerned with the behavior of the electric grid within California, so small discrepancies between consumption and sales outside California should have minimal impact on our results. As BTM self generation and demand response profiles outside California become available, we will incorporate them into our analysis.

Hourly sales data for years 2010 through 2014 is obtained from multiple sources. For California regions within the CAISO footprint, we use hourly CAISO Energy Management System (EMS) sales data.23 For the remainder of the WECC footprint, we obtain hourly sales data from FERC Form 714.24 Hourly sales data for Pacificorp East and West regions needs to be obtained independently, since it is provided as a single region in Form 714, whereas staff has elected to model them as two separate zones.25 Sales data for Canadian regions are also obtained independently.26 Loads for all these regions are mapped into the zones used in SERVM.

All load data used in the weather normalization analysis is corrected for daylight savings time shifts, resulting in a consistent dataset in standard time in the local time zone. This is an important step that is required in order to accurately align hourly load profiles with hourly weather profiles. In many cases, FERC Form 714 data is not corrected for daylight savings. However FERC Form 714 is provided in a 25 hour format that enables the user to unambiguously correct for daylight savings.27 In contrast, CAISO EMS data does not appear to consistently and clearly indicate if and when daylight savings is in effect. Therefore CPUC staff performed a separate daylight savings correction to the CAISO EMS data in order to consistently align it with the CPUC weather normalization process.

\subsection{2.5.1.3 Behind-the-Meter Photovoltaic (BTM PV) Data
Since BTM PV generation is not individually metered or consistently accessible to CPUC staff, hourly historical BTM PV generation is simulated. This requires a tabulation of cumulative BTM PV installed

22 Actual hourly demand response impacts (taken from utility reports of historical demand response events) are added back into historical load figures to represent historical loads as if the demand response events had not occurred. Thus, when demand response events are modeled for the study year in SERVM, there is no double counting of demand response impacts (triggering modeled events on top of or in addition to historical events).

23 CAISO EMS data is proprietary, and is obtained via subpoena

24 Federal Energy Regulatory Commission (FERC) Form 714: \url{https://www.ferc.gov/docs-filing/forms/form-714/overview.asp}

25 Pacificorp data was obtained via subpoena

26 British Columbia (BC) hydro data: \url{http://www.bchydro.com/energy-in-bc/our_system/transmission/transmission-system/balancing-authority-load-data/historical-transmission-data.html}

27 FERC Form 714 instructions for participating Load Serving Entities instruct that a zero load should be placed in the March skip ahead day to indicate when daylight savings goes into effect, and a 25th hour load should be provided in the November fall back day when reverting back to standard time. This unambiguously allows for adjustment to standard time in the local time zone.
capacity by month and SERVM region, and the hourly production profile of PV generators by SERVM region, from January 1, 2010 to December 31, 2014. The source of BTM PV installed MW per month for areas within the CAISO area is CaliforniaDGStats.ca.gov. The source of BTM PV MW for Balancing Authorities (BAA) and utilities outside of CAISO is Energy Information Administration (EIA) form 861 Net Metering data. We obtained EIA data for 2011-2016 and using the “Utility Level-States” tab, we filtered it to retain the BAAs within the WECC. We extracted data for the years 2011 through 2016 just to ensure that the trends were reasonable past 2014, but only hourly data for 2011 through 2014 was used for the weather normalization work. 2010 data was not available from EIA information, so we had to assume that the effect could be ignored. As mentioned above, California information was available from a different source, which had data for the full 2010 to 2014 timeframe so modeling of California areas should be more accurate.

To detect anomalies in the data, we created filled line charts showing total installed BTM PV MW by BAA and utility, by year and month for the 6 year period. The EIA Form 861 data consists of total installed BTM PV MW, so the curves are expected to increase and include some flat sections when BTM PV installations slow. The charts we created with EIA Form 861 data revealed some dips and steep increases, indicating incomplete data. For months in which the dips or steep increases were more than 4 MW, we calculated reasonableness adjustments. We made adjustments to less than 1% of the data lines, for nine utilities in five states outside of California. Using the installed MW values by month and SERVM region with the hourly production profiles for solar generation, we simulated hourly BTM PV effects which were added back to hourly sales data to reconstitute consumption.

2.5.2 Weather Normalization Model

The weather normalization approach we take is based on the Monash Electricity Forecasting Model, and is consistent with the approach taken by the California Energy Commission’s weather normalization process. In this approach, each hour of the day is modeled separately, and reconstituted at the end of the process. This allows us to develop different regression relationships between hourly load and the driver variables (e.g. temperature and dew point) for different hours of the day. For example, during peak load hours, the relationship between the weather driver variables and consumption is more tightly constrained than during off peak hours, so we expect a better fit to the regression relationship for these model hours. Furthermore, the model also separates out the impacts of the average annual load, a scalar quantity defined by year, from the corresponding normalized hourly load profile shape. This feature of our approach essentially separates the scalar magnitude from a normalized load shape.

In the production cost modeling (PCM) analyses performed by the CPUC, we rely on the CEC IEPR forecasts as the basis for the magnitude of the average annual and peak load characterizing load profiles in the target year. Both average annual and peak load are scalar quantities defined for each target year.

28 These data are available for download at https://www.californiadgstats.ca.gov/
29 These data are available for download at https://www.eia.gov/electricity/data/eia861/
30 Monash Electricity Forecasting Model, see: https://robjhyndman.com/papers/MEFMR1.pdf
in the CEC’s 10 year IEPR forecast. We linearly scale the normalized load profiles generated by our regression analysis in a manner that preserves the average annual and peak load for each target year modeled in our PCM (see Section 2.6.3 for more information on the load stretching algorithm). Because the approach we take separates impacts of the magnitude of the average annual and peak load from the corresponding normalized load profile, and because we rely directly on the CEC IEPR forecast to determine average annual and peak load, the weather normalization process we use here is only concerned with developing a regression relationship between weather and normalized hourly load profiles, for each geographic region in question.

In our model, \(p \) denotes the model hour, where \(p \) ranges from 1 to 24. If \(t \) denotes the hour in our time series data corresponding to the most recent 5 years over which the regression relationship is derived, then \(t \) ranges from 1 to approximately \(t_{m} \sim 24 \times 365.25 \times 5 \), where the approximation depends on where the leap year falls. Given our hourly model, we can write \(p \) as \(p = [(t - 1)\bar{m} + 24] + 1 \).

As mentioned above, the model used to create a relationship between hourly load and the driver variables separates average annual load from a normalized peak load profile, and for each region can be written as:

\[
\mathbf{y}_{t} \sim \mathbf{y}_{t}^{*} + \mathbf{y}_{t}^{i} \quad (1)
\]

Where:

- \(\mathbf{y}_{t} \) is the hourly load for model \(p \) and hour \(t \)
- \(\mathbf{y}_{t}^{*} \) is the normalized load profile
- \(\mathbf{y}_{t}^{i} \) is the average annual load corresponding to year \(i \)

We can then use the Monash approach to model the normalized peak load profile as:

\[
\mathbf{y}_{t}^{*} = f_{p}(W_{t}) + g_{p}(L_{t}) + h_{p}(t) + R + R_{t} + \varepsilon_{t} \quad (2)
\]

Where:

- \(f_{p}(W_{t}) \) models the effects of the weighted temperature \(W_{t} \)
- \(g_{p}(L_{t}) \) models the effects of the weighted dew points \(L_{t} \)
- \(h_{p}(t) \) models all calendar effects, including dummy variables for month, day of week, and holidays
- \(R_{t} \) models the effects of the residential retail rate, which serves to balance energy consumption across the model regions, in which a relatively higher retail rate should lead to lower consumption

\(^{32} \) Recall \(\log(ab) = \log(a) + \log(b) \)
\(\varepsilon_t \) is an error term which is serially correlated, reflecting the fact that there are other environmental conditions not captured by this model.

Apart from the logarithm of the normalized load term, the regression model we use is essentially linear. However both the temperature and the dew point terms are able to capture the nonlinearity embedded within these physical parameters. The nonlinearity in the load-temperature relationship can most easily be understood by realizing that the load versus temperature relationship tends to have a ‘U’ shape, with the minimum of the ‘U’ at about 70° F, the temperature at which most people do not require heating or cooling. Below this temperature, load increases due to heating loads, and above this temperature, loads increase due to cooling loads. We can see this relationship in Figure 3 corresponding to Hour 20 (8pm) for the Pacific Gas and Electric service region in the bay area. The relationship in this figure is for temperature (\(T_0 \), where the 0 represent 0 lag, see below). Similar nonlinear relationships exist for dew point, as well as for all lagged variables, which we discuss below. The nonlinear relationship is most easily observed during peak hours, which is when the relationship between load and temperature, or dew point and temperature, is most well defined.

Figure 3: Example of the nonlinear relationship between normalized load and temperature for a particular region used in the CPUC PCM model. Historical normalized load (red points) versus temperature for PGE_Bay (corresponding to Pacific Gas and Electric, bay area) for the 5 year model training period. Only data for the model with hour ending 20 are shown. Temperatures are in Fahrenheit.

Temperature effects are modeled in such a way as to incorporate previous day effects, and additional lagged terms, which correspond to the same hour of the model (i.e. same value of \(p \)), as well as cross
model terms (i.e. different values of p). An identical approach is taken to modeling dew point effects, so the equation below for temperature effects can be used for dew point effects also. We can represent the temperature effects term as:

$$f_p(W_t) = \sum_{k=0}^{6} F_{kp}(W_{t-k}) + \sum_{j=1}^{6} G_{jp}(W_{t-2j}) + H_p^{\alpha}(x_t^{\alpha}) + H_p^{m}(x_t^{m})$$

(3)

Where the functions below represents the nonlinear relationship between load and temperature:

- $F_{kp}(W_{t-k})$ for the primary term ($k = 0$, corresponding to no lag) as well as cross model terms ($k = 1$ to 6) corresponding to different hourly models
- $G_{jp}(W_{t-2j})$ for the within model lagged terms ($j = 1$ to 6) corresponding to the same hourly model, but lagged from one to six days prior
- $H_p^{\alpha}(x_t^{\alpha})$ representing additional cross model terms for, respectively, the average values across the past 7 days, the minimum value across the past 24 hours, and the maximum value across the past 24 hours

Nonlinear relationships for temperature and dew point are fit using cubic splines. We have empirically found that nonlinear cubic splines with 2 degrees of freedom, corresponding to a single knot, best fit our historical data for temperature and dew point, and for all lag, average, minima and maxima terms. This is consistent with our understanding of the ‘U’ shape relationship, since a single knot positioned at or near the minima of the ‘U’ will allow for a reasonable fit to the nonlinear relationship. All cubic spline terms, including the location of the knot, are determined from least squares fits.

This quasi log-linear relationship is then used to determine linear coefficients for each term in the model, including dummy variables. As discussed previously, the most recent 5 years, for which both load and weather data is available, is used to train the model. The results of the training is the complete determination of this quasi nonlinear relationship between load and weather variables, which is then used create a set of 35 yearly load profiles from the 35 years of weather data at our disposal. The final result of this analysis is 35 synthetic yearly normalized load (consumption) profiles for each geographic region in our model.

Goodness of fit for our model is determined by examining how well the synthetic load profiles fit the historical load profiles during the 5 year period comprising the training data. We calculate R^2 for each hour of the model, for each geographic zone in our model, shown in Figure 4. Most values for R^2 lie around 0.9, a reasonable value. For some regions, like Pacific Gas and Electric, bay area, for which there is relatively small load, the regression is not well defined, and values of R^2 are significantly less than one. Also, we can systematically see that values for R^2 tend to be closer to

33 R^2: See https://en.wikipedia.org/wiki/Coefficient_of_determination
34 Recall a value of R^2 equal to one corresponds to a perfect fit.
one for daylight hours, when loads are significantly greater than during night time. We have also examined potential bias in our model, by examining the distribution of residuals by geographic region, as well as by month and time of day (day or night), and found no significant systematic bias in our results.

Figure 4: R squared versus hour from weather normalization regression analysis for all geographical zones used in the CPUC production cost model. A dashed line at 0.9 is drawn for clarity.

2.6 Forecasts of Total Electricity Peak and Total Energy throughout Study Years

2.6.1 Use of IEPR Forecasts and Hourly Shapes
As stated in the 2017 IEPR proposed final report expected to be adopted by the CEC in February 2018, the managed Single Forecast Set specifies that the California Energy Demand (CED) 2017 adopted baseline “mid demand” case with 1 in 2 weather conditions shall be used for system-wide studies along with the mid-mid Additional Achievable Energy Efficiency (AAEE) and Additional Achievable Photo-Voltaics (AAPV) forecast scenarios. CPUC staff will use this managed Single Forecast Set along with

The corresponding supplemental data provided by the CEC that supplies the necessary temporal and geographic granularity required for the modeling of load and demand-side resources in SERVM.

The 2017 IEPR CED forecast for the first time also includes hourly forecasts for both load and demand-side resources.36 This is a major improvement in the fidelity of the IEPR forecast. CPUC staff will use the IEPR forecast’s hourly shapes for the demand-side resources that SERVM represents as non-dispatchable and non-weather-dependent resources.

In summary, the IEPR forecast is used to:

- Linearly scale up the 35 weather years of system level synthetic hourly load shapes described in the previous section to match the annual peak demand and energy of the IEPR forecast baseline with baseline (committed) BTM PV reductions backed out. (The IEPR baseline is already without AAEE and AAPV.)
- Create non-dispatchable resources in SERVM to represent each of the following: sum of baseline (committed) BTM PV and AAPV, AAEE, electric vehicles (EV) load, and Time-Of-Use (TOU) rate impacts.

The following table itemizes key forms and workbooks that CPUC analytical work relies on.

36 For each forecast year, hourly data were developed for load and demand-side resources for the three large IOU TAC areas, i.e. the CAISO control area. Hourly data were not developed for areas outside the CAISO control area.
Table 3: IEPR Forms and Workbooks and Uses

<table>
<thead>
<tr>
<th>IEPR Form or Workbook</th>
<th>Geography</th>
<th>Data component</th>
<th>How used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form 1.1c: Electricity Deliveries to End Users by Agency (Retail Sales)</td>
<td>LSE</td>
<td>Sales load by LSE</td>
<td>IRP load and emissions accounting</td>
</tr>
<tr>
<td>Form 1.5a: Total Energy to Serve Load by Agency and BA (Sales plus Line Losses)</td>
<td>Agency/BA</td>
<td>System load without AAEE & AAPV (committed BTM PV must be removed)</td>
<td>Scale energy of synthetic shapes</td>
</tr>
<tr>
<td>Form 1.5b: 1 in 2 Net Electricity Peak Demand by Agency and BA</td>
<td>Agency/BA</td>
<td>System peak without AAEE & AAPV (committed BTM PV must be removed)</td>
<td>Scale peak of synthetic shapes</td>
</tr>
<tr>
<td>Form 1.2: Total Energy to Serve Load (equals sales plus line losses)</td>
<td>Planning Areas</td>
<td>Individual load and load modifier components</td>
<td>Cross-checking totals</td>
</tr>
<tr>
<td>Form 1.4: Net Peak Demand (equals total end use load plus losses minus self-generation)</td>
<td>Planning Areas</td>
<td>Individual load, load modifier components, and peak shift factor</td>
<td>Remove committed BTM PV reductions and peak shift from system load</td>
</tr>
<tr>
<td>CAISO Hourly Loads and Modifiers</td>
<td>IOU TAC areas</td>
<td>Individual load and load modifier components hourly and annually</td>
<td>Build EV, TOU, and AAEE hourly shapes</td>
</tr>
<tr>
<td>All AAEE Savings by Utility and Sector End Use</td>
<td>Large IOUs & POU's</td>
<td>AAEE including SB350 savings by IOU and POU</td>
<td>Use AAEE totals by area to scale AAEE hourly shapes</td>
</tr>
<tr>
<td>All Committed PV and AAPV by Agency and BA</td>
<td>Agency/BA</td>
<td>Installed capacity, energy, and peak impacts</td>
<td>Remove committed BTM PV reductions from system load; Build total BTM PV hourly shapes</td>
</tr>
<tr>
<td>CAISO Load and Modifiers Mid Baseline-Mid AAEE-Mid AAPV</td>
<td>IOU TAC areas</td>
<td>Individual load and load modifier components and underlying assumptions (T&D factors, coincidence factors, EV and other electrification)</td>
<td>Remove EV additions from system load and cross-checking totals</td>
</tr>
</tbody>
</table>

2.6.2 Reconstituting forecasts of peak and total consumption

The system level synthetic hourly load shapes were developed based on historical consumption load, specifically, metered sales load but with load reductions from historical BTM PV self generation and demand response events removed, including accounting for T&D losses since all SERVM modeling is at
As such, we must use the same type of annual peak demand and energy value from the IEPR CED forecast in order to correctly scale up the synthetic load shapes. Specifically, we use the IEPR Form 1.5b “1 in 2 net peak demand (non-coincident) no AAEE AAPV” and Form 1.5a “net energy for load no AAEE AAPV” but add back the respective peak and energy reduction from BTM PV self generation including avoided losses for both sets of data. We can “back out” the BTM PV load reduction using raw self-generation forecast data (includes installed capacity, energy, and peak impact, by agency/BA and year) provided by CEC Demand Analysis staff. We must also back out future impacts from Electric Vehicles and TOU rates from the IEPR CED forecast since we model those effects as separate shapes from the load shapes in SERVM. In the case of peak demand data, care must be taken to back out the IEPR’s peak shift adjustment for IOU planning areas since what we need is essentially the consumption peak. After this adjustment we will have the proper IEPR peak and energy values with which to scale up the synthetic load shapes to produce a final system level consumption shape for a future study year.

2.6.3 Linear Stretching of Consumption Shapes to Forecast Years

The mathematical process for scaling the 35 normalized synthetic hourly load shapes to match a target IEPR study year forecast peak and energy is explained in this subsection. Peak loads in each synthetic load shape varied based on the relevant historical weather patterns. The peak loads can range from around 7% higher than normal peak in hot years to around 10% below normal peak in mild years. A single scaling factor was calculated by dividing the target peak for the study year by the average of the peak loads from the raw synthetic load shapes. The synthetic load shapes must also be scaled such that total energy matches the study year forecast total energy, by SERVM zone, using an algorithm that maintains the peak values.

The algorithm takes the normalized hourly load forecast shape for a given year, X_t, (developed in the weather normalization process described in section 2.5.2), and creates a linear transformation $aX_t + b = Y_t$ such that $\max_t Y_t = q$ and $\mean_t Y_t = p$. That is, we can transform all 35 shapes such that the average peak and total energy of the load shapes matches the annual average (mean) and peak load (max) corresponding to the target year forecast.

The justification for this linear transformation is as follows: If you take the peak for the original load forecast to be $\max_t X_t = s$ and the energy to be $\mean_t X_t = r$, then

$$a = \frac{q - p}{s - r} \quad \text{and} \quad b = \frac{r - q}{s - r}$$

This comes from some basic substitution:

37 Note that historical non-PV self generation was left embedded during the development of synthetic load shapes. Staff felt that this simplifying convention was fine since non-PV self generation generally has a flat profile and is not weather-dependent.

38 http://energy.ca.gov/2017_energypolicy/documents/#02212018

39 Note that we are backing out the “committed PV self generation” impacts only and leaving non-PV self generation impacts embedded in the baseline. The AAPV is already removed from the load forecast by virtue of using the IEPR Form 1.5 version with "NO AAEE AAPV."
max \ y_t = q \Rightarrow max_t(aX_t + b) = q \Rightarrow a = \frac{q - b}{\max_t X_t} = \frac{q - b}{s}

And

mean_t y_t = p \Rightarrow mean_t(aX_t + b) = p \Rightarrow b = p - a(mean_t X_t) \Rightarrow b = p - a

Substituting for \(a \) in the second equation gives the result for \(b \):

\[
b = p - \left(\frac{q - b}{s}\right)r \Rightarrow b - \frac{b}{s} = b\left(1 - \frac{r}{s}\right) = b\left(\frac{s - r}{s}\right) = p - \frac{q}{s} \Rightarrow b = \frac{p - q}{s}\left(\frac{s}{s - r}\right) = \frac{p - q}{s - r}
\]

Substituting for \(b \) in the first equation gives the result for \(a \):

\[
a = \frac{q - p - q}{s - r} = \frac{\frac{q - q - p + q}{s - r}}{s} = \frac{q - p}{s(s - r)} = \frac{q - p}{s - r}
\]

This approach is the basis for a linear transformation that takes the original load shape, characterized by a mean and peak energy, to a transformed load shape, characterized by the mean and peak energy of the target year. Adjusted scaled load shapes will be posted to the CPUC website.

2.6.4 Economic and Demographic Forecasting Uncertainty

Load uncertainty is driven not only by year-to-year volatility in weather patterns, but also by long-term uncertainty in economic and demographic growth forecasts. Unanticipated economic growth or downturns can result in peak loads that are substantially higher or lower than forecast.

SERVM accounts for this potential error by incorporating a “load forecast multiplier” into each model run. A range of load multipliers can be entered into the model, along with the probability of selecting each value. Collectively, they intend to represent the distribution of load forecasting error due to non-weather causes (economics, demographics, etc.). At the beginning of each case, a particular weather year and its corresponding load shapes are selected. A load forecast multiplier is selected independently, and all hourly load values are adjusted upwards or downwards by that same value. For example, if a load forecast multiplier of 0.95 is selected (simulating an unexpected economic downturn), then a region with a peak load of 1000 MW in the given weather year would be adjusted to have a peak load of 950 MW. A new weather year and a new load forecast multiplier would be selected for the next case. Number of weather years multiplied by number of load forecast multipliers equals the number of total cases that are run as part of a study.

The load forecast multipliers used in Energy Division modeling are based on analysis of near term forecasting that was available from the OECD Journal. Staff evaluated projections of 1 year ahead and

40 The load stretching algorithm comes from Ben Kujala of the Northwest Power and Conservation Council (http://www.nwcouncil.org/)
41 http://www.cpuc.ca.gov/General.aspx?id=6442451973
2 year ahead GDP growth, noting the magnitudes of GDP uncertainty and their probabilities. These figures were entered as a basis for the load forecast uncertainty variables in SERVM. The values are summarized in the table below.

Table 4: Economic/Demographic Forecast Error Probabilities

<table>
<thead>
<tr>
<th>Magnitude of forecast error (percentage)</th>
<th>Probability of error occurring (percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5% error</td>
<td>6.68% probability</td>
</tr>
<tr>
<td>1.5% error</td>
<td>24.17% probability</td>
</tr>
<tr>
<td>0% error</td>
<td>38.29% probability</td>
</tr>
<tr>
<td>-1.5% error</td>
<td>24.17% probability</td>
</tr>
<tr>
<td>-2.5% error</td>
<td>6.68% probability</td>
</tr>
</tbody>
</table>

2.6.5 Hourly Shapes for BTM PV, AAEE, EV, TOU Rate Impacts

The sum of baseline (committed) BTM PV and AAPV, AAEE, electric vehicles (EV) load, and Time-Of-Use (TOU) rate impacts are each modeled as non-dispatchable resources in SERVM. As explained above, their effects are removed from the load forecasts used to develop the hourly load shapes used by SERVM. The installed capacity and annual energy of total BTM PV, by year and agency/BA, is sourced from the 2017 IEPR CED forecast, mid “committed PV self generation” plus mid “AAPV” scenarios. The explanation of how this data is used to create solar generation profiles is provided later in this document under the section describing how renewable resource units are modeled in SERVM (i.e. type R resources in SERVM nomenclature).

The 2017 IEPR CED forecast includes annual hourly shapes for AAEE, EV load, and TOU rate impacts. The hourly data are sourced directly from the CEC Demand Analysis staff. The hourly data by large IOU TAC area and by forecast year, is matched to the corresponding SERVM zone and target study year. The AAEE and TOU shapes are directly used to build non-dispatchable resources in the SERVM model. For EV shapes, two options are available: IEPR-provided EV hourly shapes vs. month-hour normalized EV shapes in the RESOLVE model. Staff will select a preferred method in the final version of this document. Each of the final annual shapes for AAEE, TOU, and EV load will not vary based on which of the 35 weather years is being used as the basis for the load shape in a given SERVM model study year. In other words we assume AAEE, TOU, and EV charging patterns are generally weather independent.

2.7 Existing and New Resource Portfolios

As described earlier in this document, Energy Division staff sourced data on the existing fleet of generating units dispatched within the CAISO control area from the CAISO MasterFile. For existing non-CAISO generating units (includes most of the rest of the Western Interconnect), staff sourced data from the TEPPC 2026 Common Case v2.0.

To support the RA and IRP proceedings, SERVM will be used to study the years 2019, 2022, 2026, and 2030. Studying these years requires a projection of the mix of generating units that will come online or retire by the target study year. The projected generation mix coming online or retiring can be broadly categorized as follows:

- **Planned Additions:** Projects not yet online that have an ownership or contractual relationship with a utility and have or are undergoing regulatory approval (e.g. projects in the CPUC’s RPS database and projects undergoing approval in a CPUC Application)
- **Planned Retirements:** Units that have announced retirement (e.g. Diablo Canyon Power Plant and units subject to Once Through Cooling (OTC) phase-out policy43)
- **New Additions:** New (generic) resources selected or assumed by an exogenous analysis, usually a capacity expansion model (e.g. the RPS Calculator or the RESOLVE model)
- **New Retirements:** Retirements of existing units assumed by an exogenous analysis, usually a capacity expansion model (e.g. the RPS Calculator or the RESOLVE model)

SERVM unit-level inputs for planned additions and retirements are drawn directly from the sources described above. Assumptions for new additions and retirements are drawn from the RESOLVE capacity expansion model used in the IRP proceeding to develop the Reference System Plan that was adopted in February 2018. During the latter half of 2018, the assumptions for new additions and retirements will be updated to reflect the aggregation of individual LSE Plans expected to be filed in the IRP proceeding in the middle of 2018.

2.7.1 Baseline Units and IRP Reference System Plan Units Tables

The aggregated by class baseline and new resources for the CAISO balancing area as represented by the RESOLVE model are shown in the tables below. The complete workbooks translating aggregate capacities in the RESOLVE model to available unit level data will be posted to the Data section of CPUC Energy Division’s Energy Resource Modeling landing page.44 This identifies units and locations for baseline (i.e. existing and planned) resources assumed in the 50% RPS Default Core Case and the 42 MMT Core Case that are part of the IRP Reference System Plan.

44 http://www.cpuc.ca.gov/energy_modeling/
One important amendment to the planned units assumed by the RESOLVE model is that the Puente Power Project\(^45\) should no longer be included. SERVM modeling will not include this power plant and Table 5 reflects that amendment.

Table 5: Baseline Non-Renewables in RESOLVE (MW)

<table>
<thead>
<tr>
<th>Plant Type</th>
<th>2018</th>
<th>2022</th>
<th>2026</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAISO_CHP</td>
<td>1,685</td>
<td>1,685</td>
<td>1,685</td>
<td>1,685</td>
</tr>
<tr>
<td>CAISO_Nuclear</td>
<td>2,922</td>
<td>2,922</td>
<td>622</td>
<td>622</td>
</tr>
<tr>
<td>CAISO_CCGT1</td>
<td>12,419</td>
<td>13,703</td>
<td>13,703</td>
<td>13,703</td>
</tr>
<tr>
<td>CAISO_CCGT2</td>
<td>2,974</td>
<td>2,974</td>
<td>2,974</td>
<td>2,974</td>
</tr>
<tr>
<td>CAISO_Peaker1</td>
<td>5,195</td>
<td>5,293</td>
<td>5,293</td>
<td>5,293</td>
</tr>
<tr>
<td>CAISO_Peaker2</td>
<td>2,859</td>
<td>2,729</td>
<td>2,729</td>
<td>2,729</td>
</tr>
<tr>
<td>CAISO_Reciprocating_Engine</td>
<td>263</td>
<td>263</td>
<td>263</td>
<td>263</td>
</tr>
<tr>
<td>CAISO_ST</td>
<td>6,416</td>
<td>652</td>
<td>652</td>
<td>652</td>
</tr>
<tr>
<td>CAISO_Hydro</td>
<td>7,064</td>
<td>7,064</td>
<td>7,064</td>
<td>7,064</td>
</tr>
<tr>
<td>CAISO_PS</td>
<td>1,833</td>
<td>1,833</td>
<td>1,833</td>
<td>1,833</td>
</tr>
<tr>
<td>CAISO_Storage_Mandate</td>
<td>690</td>
<td>1,113</td>
<td>1,325</td>
<td>1,325</td>
</tr>
<tr>
<td>CAISO_Shed_DR_Existing</td>
<td>1,752</td>
<td>1,752</td>
<td>1,752</td>
<td>1,752</td>
</tr>
</tbody>
</table>

\(^{45}\) http://www.energy.ca.gov/sitingcases/puente/
Table 6: Baseline Renewables in RESOLVE (MW)

<table>
<thead>
<tr>
<th>Zone</th>
<th>Contract</th>
<th>Technology</th>
<th>2018</th>
<th>2022</th>
<th>2026</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANC</td>
<td>CAISO</td>
<td>Small_Hydro</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>CAISO</td>
<td>CAISO</td>
<td>Biomass</td>
<td>1,046</td>
<td>1,046</td>
<td>1,046</td>
<td>1,046</td>
</tr>
<tr>
<td>CAISO</td>
<td>CAISO</td>
<td>Geothermal</td>
<td>1,182</td>
<td>1,232</td>
<td>1,232</td>
<td>1,232</td>
</tr>
<tr>
<td>CAISO</td>
<td>CAISO</td>
<td>Small_Hydro</td>
<td>1,040</td>
<td>1,039</td>
<td>1,039</td>
<td>1,039</td>
</tr>
<tr>
<td>CAISO</td>
<td>CAISO</td>
<td>Solar</td>
<td>10,927</td>
<td>13,318</td>
<td>13,318</td>
<td>13,318</td>
</tr>
<tr>
<td>CAISO</td>
<td>CAISO</td>
<td>Wind</td>
<td>6,082</td>
<td>6,215</td>
<td>6,215</td>
<td>6,215</td>
</tr>
<tr>
<td>IID</td>
<td>CAISO</td>
<td>Geothermal</td>
<td>455</td>
<td>271</td>
<td>235</td>
<td>235</td>
</tr>
<tr>
<td>IID</td>
<td>CAISO</td>
<td>Solar</td>
<td>20</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>LDWP</td>
<td>CAISO</td>
<td>Wind</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>NW</td>
<td>CAISO</td>
<td>Biomass</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>NW</td>
<td>CAISO</td>
<td>Geothermal</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>NW</td>
<td>CAISO</td>
<td>Small_Hydro</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>NW</td>
<td>CAISO</td>
<td>Wind</td>
<td>1,646</td>
<td>1,646</td>
<td>1,646</td>
<td>1,646</td>
</tr>
<tr>
<td>SW</td>
<td>CAISO</td>
<td>Solar</td>
<td>127</td>
<td>127</td>
<td>127</td>
<td>127</td>
</tr>
<tr>
<td>SW</td>
<td>CAISO</td>
<td>Wind</td>
<td>622</td>
<td>622</td>
<td>622</td>
<td>622</td>
</tr>
<tr>
<td>Other</td>
<td>CAISO</td>
<td>Wind</td>
<td>849</td>
<td>849</td>
<td>849</td>
<td>849</td>
</tr>
</tbody>
</table>
Table 7: New Build in RESOLVE for 50% RPS Default Core Case

<table>
<thead>
<tr>
<th>Renewable Resource Build by Location (MW)</th>
<th>2018</th>
<th>2022</th>
<th>2026</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESOLVE Resource</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tehachapi_Solar</td>
<td></td>
<td>1,013</td>
<td>1,013</td>
<td>1,013</td>
</tr>
<tr>
<td>Kramer_Inyokern_Solar</td>
<td></td>
<td>978</td>
<td>978</td>
<td>978</td>
</tr>
<tr>
<td>Mountain_Pass_El_Dorado_Solar</td>
<td></td>
<td>62</td>
<td>62</td>
<td>62</td>
</tr>
<tr>
<td>Southern_Nevada_Solar</td>
<td></td>
<td>1,024</td>
<td>1,024</td>
<td>1,024</td>
</tr>
<tr>
<td>Central_Valley_North_Los_Banos_Wind</td>
<td></td>
<td>146</td>
<td>146</td>
<td>146</td>
</tr>
<tr>
<td>Tehachapi_Wind</td>
<td></td>
<td>153</td>
<td>153</td>
<td>153</td>
</tr>
<tr>
<td>In-State</td>
<td></td>
<td>299</td>
<td>2,353</td>
<td>2,353</td>
</tr>
<tr>
<td>Out-Of-State</td>
<td></td>
<td></td>
<td>1,024</td>
<td>1,024</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>New Energy Storage</th>
<th>2018</th>
<th>2022</th>
<th>2026</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li_Battery</td>
<td></td>
<td></td>
<td></td>
<td>807</td>
</tr>
<tr>
<td>Li_Battery</td>
<td>MW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li_Battery</td>
<td></td>
<td></td>
<td></td>
<td>807</td>
</tr>
<tr>
<td>Li_Battery Duration</td>
<td>hr</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Li_Battery</td>
<td>MWh</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 8: New Build in RESOLVE for 42 MMT Core Case

<table>
<thead>
<tr>
<th>Renewable Resource Build by Location (MW)</th>
<th>Tx Zone</th>
<th>2018</th>
<th>2022</th>
<th>2026</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tehachapi_Solar</td>
<td>Tehachapi</td>
<td>-</td>
<td>1,013</td>
<td>1,013</td>
<td>1,013</td>
</tr>
<tr>
<td>Kramer_Inyokern_Solar</td>
<td>Kramer_Inyokern</td>
<td>-</td>
<td>978</td>
<td>978</td>
<td>978</td>
</tr>
<tr>
<td>Riverside_East_Palm_Springs_Solar</td>
<td>Riverside_East_Palm_Springs</td>
<td>-</td>
<td>3,831</td>
<td>3,831</td>
<td>3,831</td>
</tr>
<tr>
<td>Southern_Nevada_Solar</td>
<td>Mountain_Pass_El_Dorado</td>
<td>-</td>
<td>3,006</td>
<td>3,006</td>
<td>3,006</td>
</tr>
<tr>
<td>Solano_Wind</td>
<td>Solano</td>
<td>643</td>
<td>643</td>
<td>643</td>
<td>643</td>
</tr>
<tr>
<td>Central_Valley_North_Los_Banos_Wind</td>
<td>Central_Valley_North_Los_Banos</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
</tr>
<tr>
<td>Greater_Carrizo_Wind</td>
<td>Greater_Carrizo</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>Tehachapi_Wind</td>
<td>Tehachapi</td>
<td>153</td>
<td>153</td>
<td>153</td>
<td>153</td>
</tr>
<tr>
<td>Riverside_East_Palm_Springs_Wind</td>
<td>Riverside_East_Palm_Springs</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>Northern_California_Geothermal</td>
<td>Northern_California</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>202</td>
</tr>
<tr>
<td>In-State</td>
<td></td>
<td>1,145</td>
<td>6,967</td>
<td>6,967</td>
<td>7,169</td>
</tr>
<tr>
<td>Out-Of-State</td>
<td></td>
<td>-</td>
<td>3,006</td>
<td>3,006</td>
<td>3,006</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>New Energy Storage</th>
<th>Unit</th>
<th>2018</th>
<th>2022</th>
<th>2026</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li_Battery</td>
<td>MW</td>
<td>-</td>
<td>-</td>
<td>162</td>
<td>1,992</td>
</tr>
<tr>
<td>Li_Battery</td>
<td>MWh</td>
<td>-</td>
<td>-</td>
<td>162</td>
<td>2,243</td>
</tr>
<tr>
<td>Li_Battery Duration</td>
<td>hr</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

2.7.2 Aligning the modeled generation fleets in RESOLVE and SERVM

Both SERVM and RESOLVE model the commitment and dispatch of resources to balance load and generation across most of the Western Interconnect. As such, certain outputs from the two models can be compared, e.g. emissions, operating cost, and capacity factors by unit class. To make the comparison valid, it is important to align the inputs of both models as much as possible. However, SERVM models at the unit-level with finer representation of the transmission system (24 zones), while RESOLVE models with aggregated unit classes and coarse representation of the transmission system (6 zones). These differences plus a number of other differences in modeling conventions and design make it challenging...
Energy Division staff attempted to reconcile and align the generation mix of existing units, planned additions, and planned retirements from both models. For new additions and new retirements, the assumptions from RESOLVE were directly translated into the SERVM model, so the differences primarily lie within the assumed baseline of each model. When the comparison is complete, staff will present it within the IRP Modeling Advisory Group process and update this document with summary tables.

2.8 Resource Inputs and Use Limitations

2.8.1 Generic Resource Information

There are a number of inputs that are common to all supply side resources (including demand response, intermittent renewables, thermal facilities, and storage) in order to identify and characterize their capabilities for the model. For example, the model requires each resource to be identified with a unique ID number, a region in which the resource is located, and the first and last year of expected service. Additionally, there are numerous input fields that are specific to particular unit types. The following table summarizes the resource categories in the SERVM database.

Table 9: Resource types modeled in SERVM

<table>
<thead>
<tr>
<th>Resource Type</th>
<th>Description of Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T)hermal</td>
<td>Combustion turbine</td>
</tr>
<tr>
<td>(F)oossil</td>
<td>Fossil steam generators</td>
</tr>
<tr>
<td>(N)uclear</td>
<td>Nuclear generators</td>
</tr>
<tr>
<td>(R)enewable</td>
<td>Renewable generators whose output is dependent on weather patterns – non-dispatchable and not economically triggered</td>
</tr>
<tr>
<td>(C)urtailable</td>
<td>Demand response with constraints such as hours per day or month</td>
</tr>
</tbody>
</table>
(P)umped Storage (used to model all storage facilities)

Storage resources that can either consume or generate electricity; available energy and round-trip efficiency are essential modeling inputs for this resource type.

(H)ydropower

Hydropower facilities that are not pumped storage; they are modeled as one of three subtypes – emergency, scheduled, or run of river.

Proposed data sources for generic facility inputs are summarized in Table 10, below. The table does not list specific variable names in SERVM, but instead gives a less specialized narrative name. These data fields are common to all types of resources. For some data fields, it is easy to process existing data into SERVM data formats, but data reconciliation is difficult. For example, some plants with more than one unit are modeled as a single combined unit in one source dataset, but as two separate units in another dataset. Combined cycle plant configurations are often challenging, and judgment calls are needed. Energy Division staff will evaluate all judgment calls with other parties to ensure the accuracy and reasonableness of decisions. It is also important to note that these values can vary by month and by year – meaning a generator can have a heat rate, ramp rate, maximum capacity, or any other variable that changes across different months and different years in the model.

Table 10: Generic data inputs common to most resource types (T, F, N, R, C, P, and H)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Applicable Gen Types</th>
<th>Sources/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource name</td>
<td>All</td>
<td>CAISO MasterFile for resources located in CAISO; TEPPC 2026 Common Case dataset for resources outside of CAISO (including resources in LADWP or SMUD territories)</td>
</tr>
<tr>
<td>In service and retirement dates</td>
<td>All</td>
<td>CAISO MasterFile for resources located in CAISO; TEPPC 2026 Common Case dataset for resources outside of CAISO (including resources in LADWP or SMUD territories)</td>
</tr>
<tr>
<td>Region location</td>
<td>All</td>
<td>CAISO MasterFile for resources located in CAISO; TEPPC 2026 Common Case dataset for resources outside of CAISO (including resources in LADWP or SMUD territories)</td>
</tr>
</tbody>
</table>
Minimum and maximum MW production level (P_{min} and P_{max})

<table>
<thead>
<tr>
<th>Fuel type (i.e., natural gas, biogas, nuclear, etc.)</th>
<th>T, F, N, R</th>
</tr>
</thead>
</table>

CAISO MasterFile for resources located in CAISO; TEPPC 2026 Common Case dataset for resources outside of CAISO (including resources in LADWP or SMUD territories). Values can be month-specific.

Each type of resource has some inputs that are unique to it. The following sections give more detail regarding specific resource types in SERVM and staff’s data sources to populate the database for modeling.

2.8.1.1 Disaggregating Aggregate Units Into Child Units

Staff generated unit inputs from ISO MasterFile data and the TEPPC 2026 Common Case as specified earlier in this paper. Staff did some amount of disaggregation on the two data sources, however, when it was apparent that between databases a combination of units were listed as one aggregated unit. Staff believed that in the case of peakers and combustion turbines, the model would produce more accurate results when aggregated units were modeled individually. This presented the challenge of generating unit inputs for individual units broken off of aggregates. Table 11 summarizes how individual unit inputs were generated.

Table 11: Generation of Inputs for Child Units from Aggregate Units

<table>
<thead>
<tr>
<th>Input Field</th>
<th>Disaggregation Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inservice date</td>
<td>List same inservice date for each child unit as the aggregate unit – in effect all child units came online at same time and will retire at same time</td>
</tr>
<tr>
<td>capmax</td>
<td>Assume capmax of aggregate unit is total of all child units and divide capmax equally among child units unless there is a reason to do otherwise</td>
</tr>
</tbody>
</table>
2.8.2 Thermal Resources – Types T, F, and N

The following discussion covers several types of information that are specific to thermal resources and are not common across other types of generators. They include heat rate, ramp rate, and forced and planned outage information. Because Energy Division staff intends to conduct its reliability modeling utilizing a blend of both aggregate heat rate and ramp rate data from the TEPPC Common Case (consistent with CAISO and SCE analysis) and unit-specific heat rate and ramp rate values generated based on the CAISO MasterFile, there are some inputs that can be posted publicly and some that cannot. The difference in analytical results, and whether the differences are significant, will inform the amount of effort to put into further unit-specific analysis.

2.8.2.1 Heat Rates

SERVM can model the heat rate of a given generator over its operating range in one of two ways. It can either:

- Calculate an average heat rate curve based on a quadratic equation. To create this curve, Energy Division takes data on the unit’s operation at different levels of MW output (known as “segments”), and fits a quadratic curve to these segments. This quadratic curve is defined by three coefficients, which are then input into SERVM.

- Use a constant average heat rate (i.e. a single value across the generator’s entire operating range).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>capmin</td>
<td>Assume capmin is the capmin of one child unit and use that value for all child units, assuming each child unit has the same capmin</td>
</tr>
<tr>
<td>Minimum on time and minimum down time</td>
<td>Assume value is equal for all child units</td>
</tr>
<tr>
<td>Fuel type</td>
<td>Assume all child units consume same fuel as aggregate – use same value for all child units</td>
</tr>
<tr>
<td>Ramp rate</td>
<td>Assume ramp rate is total of all ramp rates of all child units, and divide equally among child units</td>
</tr>
<tr>
<td>Start up time</td>
<td>Assume start up time is the same for all child units, and use the value for the aggregate unit as the value for all child units</td>
</tr>
<tr>
<td>Start up costs</td>
<td>Assume value is equal for all child units</td>
</tr>
</tbody>
</table>
There are tradeoffs between these two approaches. Although the first method is more precise, the segment data required to implement it is not always available. In addition, segment data is confidential and cannot be available to the public. The second is simple and transparent, and avoids the confidentiality concerns associated with using plant-specific heat rate segment information. However, this approach does not fully reflect the nuances of economic dispatch. Thus, it would be impossible to accurately project the actual dispatch of the facility in a real economic dispatch scenario (where the heat rate of an individual unit is essential for determining its position in the supply stack). As a result, the generator might be dispatched unrealistically throughout its operating range.

Because of the crucial importance of accuracy in calculating heat rates, Energy Division decided to use the first method as much as possible. Energy Division used CAISO segment data (for units in the CAISO) and TEPPC 2026 segment data (for units outside the CAISO) to calculate quadratic average heat rate curves, where this data was available. Where this data was not available, ED assumed constant average heat rates.

2.8.2.2 Ramp Rates
SERVM allows for the entry of a set of ramp rate segments for each facility, both in the upwards and downwards direction. Similar to its approach on heat rates, Energy Division used the following “loading order” logic to assign each generating unit a ramp rate (or multiple ramp rates, where data on multiple segments across the plant’s operating range was available):

- If the unit had segment data from the CAISO, use that data as-is, as it is the most precise.
- If that dataset was not available for the unit, use ramp rates from the 2026 TEPPC Common Case.
- If neither of the above datasets were available, use class average ramp rates from the 2022 TEPPC (the class average ramp rates have not been updated since 2022).

2.8.2.3 Generator Forced Outage, Planned Maintenance, and Startup Information Inputs
To model generators properly, some data regarding the chances of outages on those generators are needed. SERVM makes use of outage data by modeling generators with a distribution of time to fail, time to repair, and partial outage states. Table 12 lists the variables in SERVM that relate to forced or maintenance outages on generating units. The table does not list specific variable names in SERVM, but instead gives a less specialized narrative name.

Table 12: Inputs related to forced and planned outage hours and statistics for SERVM

<table>
<thead>
<tr>
<th>Variable description</th>
<th>Comments</th>
<th>Sources/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>Percentage factor (1- percent of time unit is unavailable)</td>
<td>At this time, Energy Division staff will...</td>
</tr>
</tbody>
</table>
Time to fail
User can specify a distribution of hourly values for how long a resource will run before it fails. SERVM draws a value from this distribution to draw outages on resources - user can specify either high values (making generators more reliable) or low values (making generators less reliable).

Time to repair
Given in hours, this variable is how long a resource is out when it is on outage. Users can specify a number of hours for planned and forced outages separately.

Partial outage derate
User can specify partial outage states

Maintenance periods
Unit specific variable users can use to specify more than one maintenance period for each year

Start up probability
Users can specify what the probability is for resources to fail upon startup

Source all of these inputs from GADS data, using class averages.

Since 2010, generator owners operating in North America have been required to electronically submit outage data that describes each event that occurs at their generator to the North American Electric Reliability Council (NERC) in a standard format. Before that, the data submission was voluntary and non-electronic. Generator Availability Data Systems or (GADS) data is commonly used for purposes of modeling generator outages in production cost models. This data is available to CPUC staff via license from NERC. GADS data is reported to NERC by individual generators. Thus unit specific data is available, although unit specific data would be confidential. For the RA and IRP modeling, Energy Division staff has generated class averages for these variables, using the following categories to differentiate generators:

- Steam Turbines in California
- All Steam Turbines including those in California
- Combustion turbines within California
- All Combustion Turbines including those in California
Combined Cycle plants within California

All Combined Cycle plants including those in California

All cogeneration facilities including those in California (there were insufficient facilities to generate averages solely for California plants)

Our use of GADS data is in contrast with the modeling that the CAISO completed in support of the Commission’s Long Term Procurement Plan (LTPP) during 2012; for that modeling, the CAISO generated outage statistics based on its internal outage logging system. The CAISO uses data it gathers from generators via the Scheduling and Logging Interface for California (SLIC) database to generate class average summary statistics. The SLIC system however is due to be retired in December 2014, and the new Outage Management System (OMS) will replace it. While having the advantage of being public, class average values fail to meaningfully differentiate between generators that in reality perform quite differently.

As the CPUC works to replace the San Onofre Nuclear Generating Station (SONGS) and other units that use OTC technology, Energy Division staff believes there is a particularly significant need to accurately differentiate between individual generators (some of which are scheduled to come into compliance with OTC requirements) in order to measure how reliability will be affected by forthcoming retirements and retrofits. Moreover, as the generating fleet moves from fossil-based resources that largely operate in baseload orientation to fewer fossil generators seeking to balance an ever increasing ratio of energy generated by intermittent resources, differentiating between generators with regards outage rates is important to gauge the reliability effects of this transition. This level of granularity is needed to accurately assess how much reliability and flexibility is served by those generators that retire (even differentiating between individual OTC generators) and how the new generators recently brought online and those in planning provide more, less, or equivalent reliability and flexibility.

2.8.2.3.1 Startup Information

SERVM requires that the user specify each generator’s startup time, startup cost, and startup fuel, for three types of starts: hot, warm, and cold. Staff used segment data from the CAISO Masterfile to calculate this startup information for generators in the CAISO. For generators outside of the CAISO, staff used the TEPPC 2026 Common Case dataset, although this data only had cost, and not startup time or fuel information. To fill in data gaps such as these, staff derived class averages from the CAISO data and used this to fill in the missing data for both inside and outside CAISO.

46 The CAISO OMS project page is linked here: http://www.caiso.com/informed/Pages/StakeholderProcesses/OutageManagementSystemProject.aspx
2.8.2.4 ELCC compared to “Perfect Capacity”
ELCC is calculated by measuring the reliability of the system (staff chooses to use the LOLE metric to measure reliability), and achieving the desired LOLE. Then, the target generator is removed, a substitute is added in, and LOLE is recalculated. We calibrate the LOLE results so that we add in the right amount of substitute capacity to achieve the same LOLE as the system with the target generator included, then calculate a ratio of target generator MW to substitute generator MW. This ratio (in percent) is referred to as the ELCC of the target generator.

It is important to specify exactly what the substitute capacity is in terms of performance, outage rate, and other characteristics. It is feasible to compare the target generator (in our case, wind or solar facilities) against a generic peaker plant. One could choose an existing plant to compare against, or one could compare against “perfect capacity”. A perfect generator is one with operational and performance characteristics that ensure optimal ability of that generator to contribute to reliability. In essence, a “perfect” generator contributes reliability to the system equivalent to the size of the generator – there is no derate for performance. It is an impossible standard of course, since no generator operates perfectly, without any equipment failures or with no time to start up. No generators are “perfect” and it is just a theoretical modeling convention, but comparison against “perfect capacity” allows all generators to be rated against each other. Even new peaker plants will not have an ELCC of 100%.

ED staff entered generic “peaker” generators into the database and added the generators in proportion to the reliability contribution of the wind or solar facilities removed. Table 13 lists the characteristics of the perfect capacity.

Table 13: Resource Characteristics of Perfect Capacity

<table>
<thead>
<tr>
<th>Variable description</th>
<th>Description</th>
<th>Value of Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capmax</td>
<td>Maximum generation level</td>
<td>200 or 100 MW</td>
</tr>
<tr>
<td>CapMin</td>
<td>Minimum capacity level (PMin)</td>
<td>1 MW</td>
</tr>
<tr>
<td>Availability</td>
<td>Percentage factor (1- percent of time unit is unavailable)</td>
<td>1 (indicating perfect availability)</td>
</tr>
</tbody>
</table>
Time to Fail

User can specify a distribution hourly values for how long a resource will run before it fails. SERVM draws a value from this distribution to draw outages on resources - user can specify either high values (making generators more reliable) or low values (making generators less reliable).

| Time to fail | 90000 (never fail) |

Time to Repair

Given in hours, this variable is how long a resource is out when it is on outage. Users can specify a number of hours for planned and forced outages separately.

| Time to repair | 0 (Repairs instantly) |

Startminutes

How long in minutes for the plant to start up

| Startminutes | 2 minutes |

Maintenance periods

Unit specific variable users can use to specify more than one maintenance period for each year

| Maintenance periods | None |

Start up probability

Users can specify what the probability is for resources to fail upon startup

| Start up probability | 1 (Never fails on startup) |

2.8.2.5 Natural Gas Price Forecasts

The natural gas price forecasts utilized by SERVM were developed by the CEC, consistent with the 2017 Integrated Energy Policy Report (IEPR). CEC staff ran the NAMGas model to produce a forecast of burner tip prices composed of prices at the natural gas hub and transportation prices to delivery point. Prices were provided for the period 2014 through 2017, and forecasted from 2018 through 2035, in nominal dollars. Energy Division deflated the prices back to reflect 2016 dollars using a series of deflators also produced by the CEC as part of the NAMGas model. NAMGas results are also provided to WECC for use in the TEPPC Common Case.

Energy Division staff used the CEC NAMGas data to create both annual fuel price projections for each hub, but also fuel handling inputs (the “csthnd” variable in SERVM). Each individual generating unit was linked to a particular fuel price curve as well as given a fuel handling variable. These values are in addition to other economic variables that SERVM uses to simulate economic operation of a particular unit. In addition to fuel price and fuel handling charge, a unit would also have cost variables for startup cost and variable operations and maintenance (“strtup” and “cstvar” variables in SERVM respectively) as well as a specification of fuel used during startup.
2.8.2.6 Variable Operating and Maintenance Cost

Fuel prices and variable operating and maintenance costs make up the cost to a particular generator of generating electricity. Variable operating and maintenance costs are expressed in $/MWh and factor into dispatch costs. SERVM uses the Variable O&M as a means of dispatching facilities in economic order, and creating overall production costs. Facilities with higher or lower Variable O&M are less likely to be dispatched all else being equal than those with lower costs.

The actual variable O&M costs of each facility are both confidential and difficult to arrive at. Analysis of each individual contract would determine the cost values for each particular facility, and this value is likely impossible to publish. It is important to note that this value, though generally reflective of technical specifications of generating equipment, is also influenced by subjective contracting realities, such as labor costs. Staff located a suitable proxy in the CAISO MasterFile, with the costs used by the CAISO to developed default energy bids. Staff elected to use values from the CAISO GRDT data template for resource modeling, posted to the CAISO website. The data values are included in Table 14 below.

Table 14: Variable Operations and Maintenance Costs

<table>
<thead>
<tr>
<th>Type of fuel</th>
<th>Variable O&M ($/MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar or Pumping Storage Hydro</td>
<td>$0</td>
</tr>
<tr>
<td>Nuclear</td>
<td>$1.00</td>
</tr>
<tr>
<td>Coal or Wind</td>
<td>$2.00</td>
</tr>
<tr>
<td>Other hydro</td>
<td>$2.50</td>
</tr>
<tr>
<td>Combined Cycle or Steam Turbines</td>
<td>$2.80</td>
</tr>
<tr>
<td>Geothermal</td>
<td>$3.00</td>
</tr>
<tr>
<td>Biogas</td>
<td>$4.00</td>
</tr>
<tr>
<td>Gas Turbines or Reciprocating Engines</td>
<td>$4.80</td>
</tr>
<tr>
<td>Biomass or Waste</td>
<td>$5.00</td>
</tr>
</tbody>
</table>

Source: CAISO Resource Modeling website link:
2.8.2.7 Imports and Direct Sales

The WECC interconnect is a very complicated region, with power flowing over numerous transmission interfaces. Several large plants provide energy to multiple regions, and provide valuable reliability service across WECC. Some regions are more dependent on direct sales from outside the region than others, and it is very important to link regions with the generating plants that supply them with power. For example, Southern California Edison relies on imported power from among other facilities, the Palo Verde Nuclear Station in Arizona and Hoover Dam in Nevada. Via the “direct-sale” variable, SERVM allows users to identify a unit and the region to which it directly sells the power.

A drawback with the “direct_sale” variable however is that the imported generator is dispatched as a must run facility, without economic dispatch considerations. Thus there is the possibility of unrealistic dispatch patterns. For those external facilities that are imported into a region but are dispatched economically, those facilities were listed as being within the regions they are imported into. This preserved the economic dispatch function. For generators that re dispatched as must run, however, such as nuclear facilities or intermittent renewable facilities, the “direct_sale” variable did not produce unrealistic dispatch.

The CEC provides capacity supply forms for all LSEs within California, listing for all LSEs (including SMUD and LADWP) the unit specific sources of capacity that the LSE is relying on to meet energy needs. These Utility Capacity Supply Forms are updated annually, public, and posted to the CEC website.47

Staff used these forms to ensure that facilities across WECC are properly providing capacity to all LSEs in California.

2.8.3 Energy Storage Resources - Type P

While there are numerous different energy storage technologies, most can be described according to several key variables such as available energy, maximum output, maximum draw, and efficiency. This section describes these modeling inputs. However, because very little energy storage has been deployed to date, the testing protocols and sources that would normally determine how storage operations should be modeled will need to be developed over time. The table below shows the available inputs to model a storage device in the SERVM model. Below, we further identify specific numerical assumptions for planned and new energy storage the SERVM model will use to align with assumptions used in the IRP Reference System Plan.

Table 15: Input parameters for storage in the SERVM model

<table>
<thead>
<tr>
<th>Input</th>
<th>Units</th>
<th>Source</th>
</tr>
</thead>
</table>

47 These forms are posted to the CEC website here: http://energyalmanac.ca.gov/electricity/s-1_supply_forms_2013/
<table>
<thead>
<tr>
<th>Maximum rated discharge</th>
<th>MW</th>
<th>CAISO MasterFile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total usable storage volume (given allowable depth of discharge)</td>
<td>MWh</td>
<td>Calculated based on testing: Maximum rated discharge * (discharge test duration)</td>
</tr>
<tr>
<td>Maximum rated charge</td>
<td>MW</td>
<td>CAISO MasterFile</td>
</tr>
<tr>
<td>Round trip efficiency</td>
<td>% efficiency</td>
<td>Calculated based on testing submitted to the CAISO: (discharge MWduration) ÷ (charge MWduration)</td>
</tr>
<tr>
<td>Capable of supplying non-spinning reserves</td>
<td>Y/N</td>
<td>Start time testing submitted to the CAISO demonstrating < 10 minute startup</td>
</tr>
<tr>
<td>Facility in-service dates</td>
<td>mm/dd/yyyy – mm/dd/yyyy</td>
<td>CAISO MasterFile, unless utilities have more current information</td>
</tr>
<tr>
<td>Scheduled maintenance and maintenance outage periods</td>
<td>% of month/year, date range, and/or hours to repair</td>
<td>Historical data from the CAISO, to be collected over time for new facilities</td>
</tr>
<tr>
<td>Able to provide regulation</td>
<td>Y/N</td>
<td>Ability to provide regulation, from CAISO MF</td>
</tr>
</tbody>
</table>

2.8.3.1 Numerical Assumptions for Planned and New Energy Storage

SERVM will be used to model future study years and must therefore make assumptions about the future amounts and operational attributes of storage despite the lack of current operational history.

CPUC Decision (D).13-10-040 established a 2020 procurement target\(^{48}\) of 1,325 MW of newly installed energy storage capacity within the CAISO planning area. Of that amount, 700 MW needs to be

\(^{48}\) The Decision specifies that resources must be online by 2024 so in the planning assumptions, target amounts are reached in 2024.
transmission-connected, 425 MW needs to be distribution-connected, and 200 MW needs to be customer-side-connected. D.13-10-040 allocated a portion of the 1,325 MW energy storage procurement target to each of the three major IOUs.49 Energy storage resources that are procured to satisfy a local capacity requirement are assumed to count towards satisfying the 1,325 MW energy storage target.

Unless otherwise noted via the IOUs’ energy storage Applications, CPUC staff will assume that the full 1,325 MW is online by 2024 and has an average duration of 4 hours, meaning the full 1,325 MW counts towards RA obligations, is dispatchable, and can be used to provide ancillary services, regardless of interconnection domain (transmission-connected, distribution-connected, BTM). This is consistent with the assumptions used in the RESOLVE model and the IRP Reference System Plan. Staff will also use the same round-trip efficiency assumptions as used in the RESOLVE model, 85% for lithium-ion battery storage and 81% for pumped hydro storage, in the absence of historical operational data.

For new storage beyond the 1,325 MW target, SERVM will use the assumptions specified by the RESOLVE model and the IRP Reference System Plan. Refer to section 2.7.1 and the referenced workbooks for the amounts of new storage. Refer to section 3.2.1 for guidance on locating new storage to transmission busbars.

For modeling how storage contributes towards RA obligations, staff will use the RESOLVE model convention: “To align with resource adequacy accounting protocols, RESOLVE assumes a resource with four hours of duration may count its full capacity towards the planning reserve margin. For resources with durations under four hours, the capacity contribution is derated in proportion to the duration relative to a four-hour storage device (e.g. a 2-hour energy storage resource receives half the capacity credit of a 4-hour resource). This logic is applied to all committed and candidate storage resources.”50

2.8.4 Renewable Resources – Type R
The major distinction in SERVM between Type R resources and other types (such as F, T, or N) is in how resources are dispatched. Type R facilities (whether renewable or not) are modeled with production that is dependent on weather, and not dependent on economic dispatch logic. Type R facilities (loosely here called renewable) include wind and solar photovoltaic (PV) facilities. Other renewable resources, such as geothermal, biomass, and biogas generation facilities, are more accurately modeled economically via production cost dispatch; thus, the term “renewable” is really shorthand for weather-dependent intermittent must-take resources. Thus facilities that are going to be modeled with prices and startup costs, including solar thermal facilities, will be modeled as Type F or T units.

This section details the inputs and assumptions utilized in modeling type R resources, including the methodology for creating weather-based wind and solar photovoltaic generation profiles.

49 The CPUC also established an additional procurement target of 1% of load for ESPs and CCAs. The storage assumptions included herein do not include ESPs’ or CCAs’ storage resources.
50 See section 6.1.5 of Attachment B to the Proposed Reference System Plan Ruling, September 2017, RESOLVE Documentation: CPUC 2017 IRP Inputs and Assumptions, found here: http://cpuc.ca.gov/irp/proposedrsp/
For work to support the IRP proceeding SERVM will use the renewables portfolios specified by the IRP Reference System Plan and the RESOLVE model. Refer to section 2.7.1 and the referenced workbooks for the amounts of new renewables. Refer to section 3.2.3 for guidance on locating new renewables to transmission busbars.

2.8.4.1 Wind and Solar Generation Profiles

Wind and solar facilities have significant dependence on ambient weather conditions, which must be taken into account to correctly predict their output. Their output is a function not just of wind speed and solar irradiance, respectively, but also of other weather parameters such as cloud cover and temperature. Complicating this correlation is the fact that publicly available weather data is restricted to standardized locations (generally airports), and is not specific to the exact location (including altitude/height and orientation) of individual renewable energy facilities.

Additionally, renewable energy projects employ a multitude of different technologies, each of which may have a different response to the same weather conditions. For example, tracking and non-tracking PV will generate different amounts of electricity under the same weather conditions. Panel orientation also contributes to significant differences between non-tracking facilities. Solar thermal technology has an even more divergent weather response, relative to solar photovoltaic technologies.

To accurately reflect the variability in wind and solar production profiles, modeling of solar and wind facilities requires mapping of the power output of existing and new facilities utilizing various technology types to the 35 years of historical weather that are modeled in SERVM. This mapping results in hourly performance profiles for each year of weather data, representing the overall variability of wind and solar production related to weather.

There are multiple possible approaches to developing such hourly performance profiles. One approach is to utilize generation profiles created by key stakeholders who are already conducting similar facility performance modeling. For example, developers need to forecast the generation profiles of their facilities in order to predict potential energy revenues and inform bids into RFOs or energy markets. Thus they could be helpful in developing similar production profiles for use in SERVM. Utilities also have an interest in predicting potential generation for resources that they are considering for contracting, operation, or management. Both developers and utilities may be able to create annual synthetic production profiles based on the same publicly available NOAA weather data utilized in SERVM synthetic load profile generation. Thus, there are several potential sources of wind and solar generation profiles that could be used.

However, there could be drawbacks to utilizing manufacturer, developer, or utility-supplied data for reliability modeling. It might be difficult to match potential production to load profiles or weather profiles, as the manufacturer curves or utility information may predict performance based on other factors, or may be based on single-year weather projections that cannot be extrapolated to the entire 33 years of weather history required for consistency with other weather-based SERVM inputs and algorithms. Data for performance of wind and solar facilities external to California may also be much
more difficult to access, complicated by different utility service areas, regulatory jurisdictions, and information access guidelines.

Staff has pursued an alternative approach for the 2018 RA compliance year, mapping standard, publicly available weather information to the power output of wind and solar facilities using either normalized profiles based on output from the NREL PVWatts51 calculator (for PV facilities) or off-the-shelf neural network modeling software (for wind facilities). Neural network modeling software can be used to determine relationships between weather/facility input variables and wind facility production, and produce a predictor file. With this predictor file, Energy Division staff, together with Astrape Consulting, constructed synthetic wind production profiles for existing and new facilities that correspond to the 35 years of weather history and associated synthetic load shapes utilized by SERVM. The large sample of weather years will enable SERVM to capture realistic variability in generation from wind and solar facilities. However, creating these wind and solar facility profiles required extensive performance, technology, and weather data.

It is expected that the synthetic production profiles (and the predictor file, for wind facilities) will be reconstructed at least every two years to reflect the evolving relationships between weather and production (considering such issues as technology improvement and locational clustering of installed capacity). The section below describes:

1. the sources for performance data,
2. the weather data and regions modeled,
3. the development of technology categories to group similar responses to weather inputs,
4. neural network modeling or PVWatts-based calculation to be utilized to create weather response predictions for each technology category, and
5. how these predictions are input into and used by the SERVM software.
6. staff expects variability in production of wind and solar facilities to be one of the more important drivers of reliability risk in the future, as wind and solar resources continue to account for an increasing share of the California generation mix. Thus, while this area of data development has required significant effort, the current generation profiles and any future refinements will also pay off in greater modeling accuracy.

\textbf{2.8.4.2 Performance Data Sources and Assumptions}

Energy Division staff receives hourly settlement data (in hour-ending or “HE” format, representing average output over the hour) from all facilities represented by scheduling resource IDs on the CAISO Master Generating Capability Data List. These data have been supplied for facilities since 2008 for use in Qualifying Capacity calculations, and were used to validate the synthetic shapes that were developed.

51 http://pvwatts.nrel.gov/
For the construction of synthetic wind profiles for facilities both inside and outside of the CAISO service territory, 2004-2006 hourly wind speed and generation profiles were taken from the NREL Western Wind Resources Dataset.\(^5\) The dataset includes over 30,000 potential wind sites nationwide, with generation profiles for each site assuming a 100-meter hub height and 100-meter rotor diameter. In modeling facility performance, wind facilities within each SERVM region were assumed to have the same geographic distribution as RPS-certified wind facilities in that region, as reported by the CEC.\(^3\)

Solar PV profiles were calculated based on several performance assumptions, as shown in Table 16, below.

Table 16: Solar PV Facility Performance Inputs

<table>
<thead>
<tr>
<th>Performance Input</th>
<th>Assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Efficiency</td>
<td>14.94%</td>
</tr>
<tr>
<td>Nominal Operating Cell Temperature (NOCT)</td>
<td>45°C</td>
</tr>
<tr>
<td>Temperature Coefficient</td>
<td>0.0045</td>
</tr>
<tr>
<td>Short Circuit Coefficient</td>
<td>0.000545</td>
</tr>
<tr>
<td>Solar Radiation Coefficient</td>
<td>0.12</td>
</tr>
<tr>
<td>Reference Temperature</td>
<td>25°C</td>
</tr>
<tr>
<td>Inverter Efficiency</td>
<td>97%</td>
</tr>
</tbody>
</table>

2.8.4.3 Technology and Locational Granularity

All solar PV weather data are sourced from the NREL National Solar Radiation Database (NSRDB).\(^4\) Solar data is a combination of three data streams, the 1980-1991 information for 237 sites in the United States, the 1991-1997 information from 1,454 sites in the United States, and the 1998 to 2014 information from rom 1980-1990 come from 58 unique sites, while 1991-2010 data come from 225

\(^3\) http://www.energy.ca.gov/portfolio/documents/List_RPS_CERT.xls

unique sites. These are referred to as the TMY2 and TMY3 datasets. These data are comprised of the following inputs:

- Local solar time (calculated based on latitude, longitude, day of year, and other variables)
- Direct radiation
- Diffuse radiation
- Air temperature
- Wind speed

Because NSRDB data extends only to 2010, previous years’ weather is used to determine the 2011 and 2012 generation profiles. The modeled solar profile for 2011 is identical to the pattern seen in 2008 and the modeled solar profile for 2012 is identical to the pattern seen in 2009 for all regions. A more rigorous approach to developing solar profiles for 2011 and 2012 may be used in the future.

Wind weather inputs are sourced from 33 years of NOAA data. Specific weather inputs are: hour of day, wind speed, temperature, dew point, and cloud cover.

Because weather data are available at limited locations, and because modeling time increases dramatically as granularity increases, one weather profile was compiled per wind or solar technology for each modeling region, for each historical weather year being modeled. To create each region’s weather profile, staff calculates a weighted average hourly weather profile based on one to three weather stations that are selected as indicative of a given renewable technology’s generation capacity in the region. In other words, if capacity of a particular technology type is primarily located in the northern part of a region, the weather modeled for that region in SERVM will be more heavily weighted towards the northern weather station(s) selected for that region. The location of each facility is sourced from it’s the CEC RPS Certification Report. Alternative approaches to weather station weightings may be considered if SERVM is utilized for longer-term modeling in the future; sensitivity to weather station selection will also be tested.

An important exception to the above methodology is the treatment of wind in the SCE TAC Area modeling region. Because most wind resources are in either the San Gorgonio or the Tehachapi areas, and because these areas have very distinct weather, wind in the SCE TAC Area is modeled with two separate weather profiles, one for each of these two sub-regions. Individual wind facilities in the SCE region are also separated into San Gorgonio and Tehachapi sub-regions, with facilities located in the Big Creek/Ventura Local Area assumed to be in Tehachapi and all others assumed to be in San Gorgonio. Wind and solar resources outside of the United States are treated differently, due to data limitations. Neural network modeling and PVWatts calculations are not being conducted for Canadian and Mexican wind and solar resources. Rather, the results from similar US regions – the Pacific Northwest and the average of IID and New Mexico, respectively – are applied to the Canadian and Mexican weather shapes.

http://www.energy.ca.gov/portfolio/documents/List_RPS_CERT.xls
in order to develop weather-based wind and solar production profiles for these regions. In addition, Wyoming wind was ascribed weather from Colorado, as there were no production profiles developed for Wyoming.

In developing wind technology and weather response relationships in the neural network software, the representative regional weather was input. In the future, the model performance will be tested using more local weather for individual facility locations, where available; however, neural networks generally yield better predictive capability when developed with a more limited set of parameters. Too many variables involved in the creation of the predictor file can create muddied correlations that lead to bad predictions of weather and generation relationships.

2.8.4.4 Technology Categories
Solar resources are differentiated by fixed or tracking categories, inverter loading ratio, and utility-scale vs. BTM. All wind facilities are considered equivalent technologies. Solar facilities are assigned to one of three categories: utility-scale fixed tilt PV, utility-scale tracking (single axis) PV, or BTM PV. The inverter loading ratio is assumed to be 1.3 for utility-scale solar and 1.1 for BTM PV. This is consistent with assumptions used in the RESOLVE model and the IRP Reference System Plan. Although better modeling methods will be developed for solar thermal facilities in the next phase of the modeling project, for the time being they are included in the category of tracking solar facilities. Additional possible categories that could be explored in the future include PV with storage, wind with storage, or south facing versus west facing PV.

Each technology category and region (or sub-region, in the case of wind in the SCE region) is evaluated separately to develop weather response predictions within that region, and across that category type. SERVM models each facility’s generation based on both its technology category (indicative of response to weather) and weather region (the relevant weather input).

However, data are limited. The CAISO Generating Capability Data List places units in Local Areas, which are translatable to regions in the SERVM database, while for facilities outside of the CAISO area, the WECC TEPPC database provides the primary reference for location, generation type (solar, wind, tracking, fixed, etc.), and date of commercial operation.56

Regardless, direct category assignment (rather than imputing technology category based on vintage) will be possible for facilities in California either from the monthly RPS Project Development Status Reports (PDSRs) or via data gathered from the CEC Wind Performance Reporting System. Information for facilities outside of California will continue to be derived from TEPPC 2026 Common Case information.

Existing and planned utility-scale solar facilities were assigned to either fixed or tracking PV generation profiles. For facilities with CAISO settlement data, this was determined by analyzing late-afternoon generation on a sunny day and assessing whether generation levels (normalized for facility capacity) were indicative of fixed PV (lower generation in the late afternoon) or tracking PV (higher generation in the late afternoon). To ensure accuracy, facilities with known technology types (as submitted by the

56 More information on TEPPC, see https://www.wecc.biz/committees/BOD/TEPPC/Pages/TEPPC_Home.aspx
CPUC-jurisdictional IOUs) were analyzed to develop an appropriate cut-off point in assigning those facilities with unknown technology to one of the two possible categories. For facilities outside of the CAISO service territory, the TEPPC 2026 common case specified which of the two categories is more appropriate for modeling individual PV facilities.

For new solar units selected as part of the IRP Reference System Plan, staff will use the same assumption as used in the RESOLVE model, 25% fixed tilt and 75% single axis tracking.

2.8.4.5 PV Production Profile Development

Energy Division calculated hourly generating profiles for each of the 24 regions in the model, for three generation categories – utility-scale fixed tilt, utility-scale single axis tracking, and BTM PV types. These profiles were generated from weather data spanning 1980 through 2014. PV production profiles were developed by inputting the weather and facility data discussed above into the NREL PVWatts\(^57\) calculator. The calculator output a facility-specific hourly generation factor ranging from 0 to 1, which are then multiplied by the total facility’s capacity (sized in MW) in each study year. Different sites were available for 1980 - 1990 and 1991 - 2014, so some calibration of the datasets was required to ensure continuity. To ensure consistency, the range in output duration curves of the 1980 - 1990 was shaped to match the range in duration curves seen in 1991 - 2014 data. This entailed calibrating the number of hours at max output, moderate output, low output and every point in between.

The result of the above exercise is 35 years of regional generation profiles for the three solar PV technology types. With 24 regions modeled in SERVM, this yields 2520 hourly generation profiles for solar PV facilities.

2.8.4.6 Wind Production Profile Development

2.8.4.6.1 Neural Network Modeling

Staff has updated the wind generation profiles since previous studies were performed in 2015. Data is now available through 2014, and Energy Division used the recent data to revise all profiles generated from 1980 now through 2014. Generation depends on many aspects of weather. The fact that SERVM weather region inputs are not specific to the precise resource location further obscures the relationship between weather and generation output. To create a reasonably accurate prediction of generation output in response to weather, a neural network can be used to map weather to output and create a relationship file that can be used for new facilities and weather years. This process is similar to the use of a neural network to create synthetic load shapes, which are used elsewhere in the SERVM model.

First, the regional weather data are placed into a spreadsheet for a given technology category.\(^58\) One variable is chosen as the primary predictor of generation output, and is placed in the left-hand column. In the case of wind technologies this is the region’s wind speed (from NOAA). The other key weather inputs (from NOAA, as discussed previously) are included as additional columns. These data are paired

\(^{58}\) As previously mentioned, wind resources in the SCE TAC Area region are modeled separately, by San Gorgonio/Tehachapi sub-region.
with actual facility and potential generation data from facilities of the given technology type, sourced from the Western Wind Resources Dataset, as previously discussed. The hourly generation data from the Western Wind Resources Dataset (WWRD) were first scaled by a ratio of each facility’s nameplate capacity in MW to the facilities modeled in the WWRD, and then summed to create a single aggregate generation profile for a given region and year. It was this aggregate profile that was utilized in neural network modeling.

This neural network model trained itself to see the underlying relationships between the hourly generation data and the other columns of input data (much like a dynamic iterative regression model). It developed predictive relationships between the columns of data (the variables mentioned previously such as temperature and humidity), and produced an algorithm that was able to predict relationships between regional wind speed, secondary weather variables, and generation facility output. Once that was completed, the algorithm predictor model could then produce a generation forecast from any set of NOAA weather data, for any facility that falls under the given technology category (including new facilities).

However, because of significant volatility and randomness in wind data, neural network models tend to predict average values more frequently than they actually occur. For this reason, there was some adjustment to the distribution of wind predictions after the initial neural network modeling. Staff performed validation on the resulting performance shapes to ensure accuracy, by comparing the resulting shapes for the CAISO regions to actual historical generation patterns and normalizing to ensure that the predictor files output similar generation magnitudes and duration curves, compared to historical generation. Staff also checked that the capacity factors output by the predictor files were reasonable. Once the predictor files and additional processing were finalized, regional production profiles were created for all wind facilities in each weather year, using hourly NOAA weather data from 1980 to 2014.

After the wind profiles were created and validated to history, they were sent to Energy Division for input into the model. Unlike previous work performed by Energy Division, at this time no distinction was made based on hub height. All wind facilities were given one production profile only distinguished by location.

2.8.4.6.2 Category Normalization

In order to compare across wind facilities of varying sizes, output was normalized relative to sum of all the capacity in a particular category currently installed in the region prior to neural net “training”. Additionally, because the neural network develops aggregate production profiles for a given technology category in a given region, differences in installed capacity over the training years must also be accounted for and normalized. One option is to assume that the smaller capacity installed in earlier years is representative on average of the larger total capacity in future years regardless of facility location or technology installed. However, this may be imprecise due to differences in the generation

59 The algorithm was trained until the distribution of peaks and valleys was adequate. Further calibration was performed in a later step.
profile shape and volatility as more capacity is installed in new locations. To mitigate this problem, new facilities are instead assigned an hourly production profile from one representative existing facility determined to be “similar” in location and technology, and scaled to the MW size of the facility being modeled.

2.8.5 Demand Response – Type C

2.8.5.1 Overall Demand Response Modeling Guidelines

Due to the wide range of demand response (DR) program types and the significant changes to program structure and administration occurring within the DR proceeding (R.13-09-011), DR requires more specific guidelines on how they should be represented in modeling exercises beyond SERVM, with the goal being consistent assumptions across modeling activities informing California electricity planning processes. This subsection covers those details while subsection 2.8.5.2 covers SERVM-specific details. Section 3.2.2 will discuss DR modeling that is specific to local reliability studies only, including the source of busbar allocation data.

DR inputs and assumptions are primarily based on program filings/tariffs, Load Impact Reports (LIRs)\(^60\) filed with the CPUC on April 3, 2017,\(^61\) and other supply-side DR procurement\(^62\) incremental to what is assumed in the Load Impact Reports. Transmission and distribution loss-avoidance effects shall be accounted for when considering the load impacts that supply-side DR has on the system.\(^63\) Year 2027 is the last reported year in the 2017 LIRs filings, hence Table 17 below describes total 2027 supply-side DR capacity assumptions.

For work to support the IRP proceeding, SERVM will use the total DR amounts specified by the IRP Reference System Plan and the RESOLVE model. RESOLVE’s baseline shed DR capacity in 2027 is 1617 MW (1752 MW after accounting for losses) and carries forward this assumed capacity through 2030. The IRP Reference System Plan does not include any DR beyond this baseline amount. SERVM modeling will align with RESOLVE’s overall capacity assumption and use the details in Table 17 as supplemental guidelines.

\(^{60}\) The Load Impact Protocols followed in developing Load Impact Reports were specified by Decision 08-04-050, and modified by Decision 10-04-006.

\(^{62}\) Referring to procurement authorized by D.14-03-004, DRAM, D.16-06-029, and IOU DR applications filed in accordance with D.16-09-056 in January, 2017.

\(^{63}\) “Supply-side” DR are generally those DR programs not counted within the IEPR CED forecast. Supply-side DR is assumed to be dispatchable, bid into the CAISO market, and can receive resource adequacy credit. “Load-modifying” DR is counted by virtue of being embedded within the IEPR CED forecast.
<table>
<thead>
<tr>
<th>Supply-side DR (MW):</th>
<th>PG&E</th>
<th>SCE</th>
<th>SDG&E</th>
<th>All IOUs</th>
<th>Assumed Market</th>
<th>Assumed responsive to local capacity needs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load Impact Report, 1-in-2 weather year condition portfolio-adjusted August 2027 ex-ante DR impacts at CAISO peak</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIP</td>
<td>300</td>
<td>610^{64}</td>
<td>6.74</td>
<td>917</td>
<td>RDRR</td>
<td>Yes</td>
</tr>
<tr>
<td>AP-I</td>
<td>5065</td>
<td>0.0</td>
<td>50</td>
<td>RDRR</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>AC Cycling Res66</td>
<td>61</td>
<td>56</td>
<td>7.18</td>
<td>124</td>
<td>PDR</td>
<td>Yes</td>
</tr>
<tr>
<td>AC Cycling Non-Res</td>
<td>0</td>
<td>2067</td>
<td>1.79</td>
<td>22</td>
<td>PDR</td>
<td>Yes</td>
</tr>
<tr>
<td>CBP</td>
<td>10368</td>
<td>14369</td>
<td>8.44</td>
<td>254</td>
<td>PDR</td>
<td>No</td>
</tr>
<tr>
<td>Other procurement program DR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCE LCR RFO70, post 2018</td>
<td>5.0</td>
<td>5</td>
<td>RDRR</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRAM71</td>
<td>2017</td>
<td>56.4</td>
<td>56.2</td>
<td>12</td>
<td>125</td>
<td>PDR72</td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td>79.5</td>
<td>88.5</td>
<td>13.9</td>
<td>182</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td>90.1</td>
<td>99.2</td>
<td>15.7</td>
<td>205</td>
<td></td>
</tr>
</tbody>
</table>

64 D.16-06-029 authorizes SCE to use existing BIP funds to gain 5 MW of incremental load impact for the program.
65 D.16-06-029 authorizes SCE to use existing AP-I funds to gain 4 MW of incremental load impact for the program.
66 AC Cycling programs include Smart AC (PG&E), SDP (SCE), and Summer Saver (SDG&E).

68 D.16-06-029 approved PG&E’s request to terminate its AMP program. It is assumed that 82 MW from PG&E’s AMP program will migrate to PG&E’s CBP program.
69 D.16-06-029 approved SCE’s request for an extension of its AMP program through 2017. However, it is assumed that 93 MW from SCE’s AMP program will migrate to its CBP program by 2026.
70 SCE LCR RFO refers to procurement authorized in D.14-03-004 with contract approved in D.15-11-041. This RFO also includes “storage-DR” type resources. Those resources are counted under the storage assumptions of this document.
71 Demand Response Auction Mechanism (DRAM) is a 4-year pilot program with contract lengths set at a maximum of one year.
72 Although the 2017 DRAM solicitation could include a mix of Reliability Demand Response Resource (RDRR) and Proxy Demand Resource (PDR), for modeling we will assume it is all PDR absent more definitive information.
Note that the pilot DRAM program is structured for contracts with lengths of up to one year, so long term planning assumptions can make no reasonable statement about expected long-term DRAM capacity. Therefore, CPUC staff continues to assume that the bulk of DR capacity expected to be present in the long term is best approximated by the DR projections in the Load Impact Reports. In the long term it may be possible that the capacity from existing DR programs described in the Load Impact Reports will be “retired” and “replaced” by significant growth in DRAM capacity.

For analyses with monthly and IOU territory granularity, DR capacity shall be counted using the portfolio-adjusted 1-in-2 weather year condition ex-ante forecast of monthly load impact at individual IOU peaks. This is consistent with the current DR capacity value calculation practice used in the CPUC’s Resource Adequacy program. For annualized analyses of the CAISO area as a whole, DR capacity shall be counted using the portfolio-adjusted 1-in-2 weather year condition ex-ante forecast of August load impact at CAISO peak.

For analyses with hourly granularity, the aggregate DR capacity for a given hour is assumed to be the sum of the capacity of all DR programs that operate during that hour. The capacity of a DR program outside its operating hours is assumed zero. For DR programs described in the Load Impact Reports, CPUC staff assumes the average capacity during operating hours specified in Resource Adequacy accounting rules (1pm to 6pm) is representative of DR capacity for all of a given program’s operating hours (which may include hours outside of 1pm to 6pm). For a DR program described by other procurement processes (e.g. SCE LCR RFO and DRAM), the capacity procured is the hourly capacity to be modeled during that program’s operating hours.

For production cost modeling simulating hourly commitment and dispatch, DR is assumed to be available at times of system stress, subject to program operating constraints but not limited to the operating hours specified in the Resource Adequacy accounting rules. Production cost modeling should model DR operating constraints based on either the Proxy Demand Resource (PDR) or Reliability Demand Response Resource (RDRR) CAISO market constructs.73 In the interest of ensuring comparability between studies conducted by different parties, CPUC staff recommends that modeling the expected dispatch of DR participating as PDR or RDRR use the following conventions:

- DR assumed to participate as RDRR74
 - shall trigger when market prices are $950/MWh
 - shall be dispatched for no more than 15 events and/or 48 hours total for June through September
 - shall be dispatched for no more than 15 events and/or 48 hours total for January through May and October through December
 - shall be consistent with other operating attributes specified by the RDRR construct, e.g. minimum load curtailment and run times
- DR assumed to participate as PDR75

73 See http://www.caiso.com/participate/Pages/Load/Default.aspx
shall trigger when market prices are $100/MWh
shall be dispatched for no more than 30 events and/or 120 hours total for the whole year
shall be consistent with other operating attributes specified by the PDR construct, e.g. minimum load curtailment and run times

2.8.5.2 Demand Response Parameters in SERVM

Key inputs available in the SERVM model are listed in Table 18, below. We will adapt the SERVM representation of DR to be consistent with the guidelines in subsection 2.8.5.1 to the extent possible.

Table 18: Demand Response parameters available in SERVM

<table>
<thead>
<tr>
<th>Input (as applicable to the program)</th>
<th>Units</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum capacity</td>
<td>MW</td>
<td>LIR portfolio-adjusted load impacts, 1 in 2 weather</td>
</tr>
<tr>
<td>Maximum dispatch days per week</td>
<td>days</td>
<td>Program tariff</td>
</tr>
<tr>
<td>Maximum consecutive dispatch days</td>
<td>days</td>
<td>Program tariff</td>
</tr>
<tr>
<td>Maximum dispatch hours per day</td>
<td>hours</td>
<td>Program tariff</td>
</tr>
<tr>
<td>Minimum minutes per dispatch</td>
<td>minutes</td>
<td>Program tariff</td>
</tr>
<tr>
<td>Maximum number of dispatches per day</td>
<td>dispatches</td>
<td>Program tariff</td>
</tr>
<tr>
<td>Maximum dispatch hours per month</td>
<td>hours</td>
<td>Program tariff</td>
</tr>
</tbody>
</table>

It is difficult to know in advance if these specific modeling conventions for RDRR and PDR will result in models that produce realistic dispatches of DR. Modelers may use some discretion in adjusting trigger price and event or hour caps in order to achieve realistic dispatches of DR. Any adjustments must be transparently documented and shared with all parties.

Different DR programs have different design constraints; as a result, different inputs will apply to different programs. If a program lacks a certain constraint (for example, no maximum number of dispatches per week), then the associated input will not be included in the specification of that program in SERVM.
<table>
<thead>
<tr>
<th>Maximum number of dispatches per month</th>
<th>dispatches</th>
<th>Program tariff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum dispatch hours per year</td>
<td>hours</td>
<td>Program tariff</td>
</tr>
<tr>
<td>Maximum number of dispatches per year</td>
<td>dispatches</td>
<td>Program tariff</td>
</tr>
<tr>
<td>Minimum number of dispatches per year</td>
<td>dispatches</td>
<td>Program tariff</td>
</tr>
<tr>
<td>Look-Ahead</td>
<td>hours</td>
<td>Not implemented</td>
</tr>
<tr>
<td>Notification period</td>
<td>Hours/minutes</td>
<td>Either DA (10am), HA,</td>
</tr>
<tr>
<td>First month available each year</td>
<td>month</td>
<td>Program tariff</td>
</tr>
<tr>
<td>Last month available each year</td>
<td>month</td>
<td>Program tariff</td>
</tr>
<tr>
<td>Period Availability (i.e., weekdays from 2-6 pm)</td>
<td>days and hours</td>
<td>Program tariff</td>
</tr>
<tr>
<td>Curtail (Dispatch) price</td>
<td>$/MWh</td>
<td>CAISO Plexos assumptions or program tariff(^\text{77})</td>
</tr>
<tr>
<td>Emergency-only dispatch</td>
<td>Yes/No</td>
<td>Program tariff</td>
</tr>
<tr>
<td>Region(^\text{78})</td>
<td>Region name</td>
<td>Program tariff</td>
</tr>
<tr>
<td>Program in-service dates</td>
<td>mm/dd/yyyy – mm/dd/yyyy</td>
<td>Program tariff</td>
</tr>
</tbody>
</table>

\(^{77}\) Most DR programs do not have a set price trigger. The assumptions adopted by the CAISO for its Plexos modeling are an approximation of a price trigger that corresponds to the actual dispatch criteria.

\(^{78}\) These regions are used throughout the SERVM model, and are described further in the Weather Data and Regions section of this document.
2.8.5.2.1 Resource Capacity

Currently, the maximum capacity for a given DR resource is set to its Load Impact Report (LIR) portfolio-adjusted monthly system peak values for 1-in-2 weather conditions. However, under more extreme weather conditions, performance for weather-dependent resources may exceed the 1-in-2 value, potentially reaching the LIR 1-in-10 capacity values. Apart from weather impacts, a DR resource may underperform or overperform relative to expectations due to variation in customer load and response.

To address the possibility of DR resources performing beyond the 1-in-2 value, staff plans to ultimately incorporate 1-in-10 values into the model as well. This can be accomplished by creating a “technology response curve” that maps regional temperature to changes in DR capacity. For 90th percentile temperatures (the conditions under which the 1-in-10 LIR is calculated) and above, the LIR portfolio-adjusted monthly system peak values for 1-in-10 weather conditions can be used. For 50th percentile temperatures (the conditions under which the 1-in-2 LIR is calculated) and below, the 1-in-2 LIR capacity values can be used. Linear interpolation can be used to approximate DR response between these two temperature bounds.

To address the possibility of over- or underperformance relative to expectations, three years of program history could be used to create a likely distribution of responses. The difference relative to expectation for a given dispatch can be defined as the percentage difference between the ex-post load impact found in the LIR and the daily forecast capacity predicted day-ahead. Each historical dispatch can be weighted according to the magnitude of the daily forecast capacity, so that larger dispatches are more heavily weighted. When a DR program is dispatched by SERVM, its response magnitude would then be adjusted upwards or downwards by selecting one of the historical performance data points. The performance point selected would be random, but weighted as previously discussed. While the necessary data for such adjustments have not yet been input into the model, the modeling functionality is in place, and staff plans to incorporate this performance uncertainty in the future. This could be accomplished with a variable that allows for randomly drawn output. For instance, if a DR resource has three performance levels of 90%, 100%, and 110%, and each is entered into the database, then one third of the time when it is dispatched it will operate at 90% of maximum, one third at 100% of maximum, and one third at 110% of maximum capacity.

2.8.5.2.2 Dispatch Notice and Response Time

DR programs have different dispatch notice requirements (day-ahead, 30-minute-ahead, etc.), which are described in their tariffs. Once dispatched, they also have varying response times. These requirements, whether a time-of-day cut-off or a minimum advance notice period, could be incorporated into the
model in the future. Details on which specific programs and capacities are assumed to satisfy response time requirements to meet local reliability needs are described in section 3.2.2.

2.8.5.2.3 Triggers
Most existing DR programs do not have a set price trigger. The model uses approximate price triggers that generally correspond to actual dispatch criteria. A number of DR programs are triggered via heat rate or emergency stage triggers, which are difficult to translate to price points; Energy Division staff continues to explore alternative approaches to fit the current portfolio of DR programs into the economic dispatch model in SERVM. The trigger price assumptions that will be used in SERVM shall follow the guidelines described above, i.e. trigger prices and use restrictions based on whether a DR program is assumed to be participating in the CAISO market as an RDRR or PDR resource.

2.8.5.2.4 Customer Fatigue
The SERVM simulations did not currently consider the impacts of customer fatigue on long-duration or consecutive dispatches. With appropriate data, such impacts could be incorporated in the future.

2.8.5.2.5 Look-Ahead
For DR programs with dispatch limitations, demand response providers may occasionally refrain from dispatching if they believe that the resource could be better dispatched at a later time. For example, if a week is expected to have steadily increasing temperatures, a DR resource may not be dispatched earlier in the week, even if the price trigger has been reached, in order to preserve the possibility of operating later in the week. This “look-ahead” dispatch decision is not incorporated into the SERVM model, but could be in the future.

2.8.6 Hydropower Resources – Type H
All hydropower (hydro) resources that are not pumped storage are modeled as Type H units. SERVM classifies these hydropower resources according to three subtypes: run of river (ROR), scheduled, and emergency hydro. Each of these resources can have capacity and energy levels that vary by month and year, in order to reflect the seasonal variability of this resource type.

Run of river hydro represents the minimum output that is expected to occur regardless of electricity system needs or economic dispatch. Scheduled hydro represents the portion of the hydropower fleet that can be economically dispatched, in light of monthly resource availability. Emergency hydro represents the capacity and energy that can be “borrowed” from scheduled hydro to address occasional, short-term electricity system emergencies. Table 19 lists sources for particular data inputs.

Table 19: Data Sources for Hydropower Inputs

<table>
<thead>
<tr>
<th>Data</th>
<th>Source</th>
</tr>
</thead>
</table>

79 Pumped storage is modeled as Type P, as discussed in the energy storage section of this document, above.
Facility generation per month (MWh/month), 1980-2012

Form EIA-923: Power Plant Operations Report\(^{80}\)

Facility locations (model region)

TEPPC 2026 Common Case, Form EIA-923, CEC Energy Almanac, \(^{81}\) and miscellaneous other sources such as the US Bureau of Reclamation \(^{82}\)

Regional maximum capacity (MW)

TEPPC 2026 Common Case

Monthly hydro dispatch

EIA form 923

Hourly hydro flows within California

CEC historical monitoring data

Hydro resources are modeled in aggregate, by subtype and modeling region, although granularity may be improved in future RA compliance years. For example, all ROR hydro facilities in SCE service territory are modeled as one “unit” in SERVM. Before these “units” can be input, the aggregated energy and capacity for each region must be calculated, and then allocated across the three subtypes. An intuitive visualization of the resulting allocation can be seen in the randomized sample hydro generation shape below. The methodology used will be described in more detail in the following sections.

\(^{80}\) These data are available for download at http://www.eia.gov/electricity/data/eia923/.

\(^{81}\) Data can be downloaded from http://energyalmanac.ca.gov/renewables/hydro/hydro.xls and http://energyalmanac.ca.gov/powerplants/Statewide_PP_8.5X11_hydro.pdf.

For facilities in Canada and Mexico, hydropower generation shapes are based on the closest neighboring US region (the Pacific Northwest and Arizona, respectively), and simply scaled to the region’s maximum capacity.

2.8.6.1 Regional Aggregation of Energy

Monthly hydro generation (MWh/month) for all existing hydro resources in WECC is listed in Form EIA-923 for the years 1980-2012. This actual historic generation by month is used to determine the energy available from ROR, scheduled, and emergency-only hydro profiles generated for each region. However, because it is reported to EIA on a facility-specific basis, each facility must first be assigned to its region in SERVM based on the particular facility’s location in the TEPPC Common case. The generation from all facilities within a given region is then summed to yield the total energy generated in that region, in each historical month and year.
2.8.6.2 Run of River (ROR) Hydro Resources
The energy generation and capacity for ROR resources within a region are unique to each month, but uniform across all weather years. This is because the ROR unit represents a minimum output that is always present, regardless of weather variability and dispatch choices, and because there have been very few new hydro facilities developed in WECC over the last 33 years. The available energy is set to be the fifth percentile of MWh generated by all hydro resources for a given month and region. In other words, the value is set such that in 19 out of 20 years, hydro facilities in that region in that month produce more than that number of MWh.

The capacity of ROR units is calculated as the available energy value in MWh divided by the total number of hours in that month. ROR units are assumed to operate at this calculated capacity for all hours of the month, meaning there is no hourly or daily variation in output within a given month. In other words, ROR production is flat across all hours of a given month, across all years modeled.

2.8.6.3 Scheduled Hydro Resources
Once ROR energy and capacity have been subtracted from the total energy and capacity available to a region, the remainder must be allocated across the two dispatchable hydro subtypes: scheduled and emergency hydro.

The energy allocated to the scheduled block is equal to the total regional monthly generation less the ROR generation. A portion of the scheduled energy is allocated to a minimum daily schedule. This minimum schedule or generation (flow) per day is a variable that is unique to each month and year. This value is set to the tenth percentile of daily MWh generation in that month and year, and is sourced from CEC historical generation data. Regions outside of California for which data is lacking are modeled data generated for the most similar region for which we have sufficient data. In some months, the minimum generation per day may be very close to zero; if selecting the tenth percentile results in more generation being dispatched than is available, SERVM will flag the issue and the value will be reduced. The minimum daily schedule for each scheduled hydro profile is spread across a specified number of hours each day in equal amounts.

The remainder of the energy in the scheduled block is used to shave the peaks off net loads; in other words, higher output is scheduled in hours with higher net load. The capacity used to shave the peaks is related to the monthly generation. Available hydro capacity is allocated between emergency, scheduled, and run or river hydro based on higher or lower levels of hydro available generation and typical historical usage in each month. Scheduled, run of river and emergency hydro capacity always sums to total month specific capmax of the hydro fleet.

All scheduled hydro is dispatched one week in advance. The minimum generation quantity is scheduled to be centered on the anticipated peak load hour of each day. The number of hours over which that minimum generation is spread is set with a monthly variable. This variable is determined by observing CAISO settlement data and estimating the typical number of hours over which hydro facilities are scheduled in a given region and time of year. Non-CAISO regions use values based on the nearest CAISO
region. Scheduled hydro above the minimum is economically dispatched, up to the maximum capacity calculated for that month.

2.8.6.4 Emergency Hydro Resources
Because emergency hydro resources are not intended for regular dispatch, they are triggered only by high market prices (currently set to $2,500) or load-shedding contingencies. These units allow a region’s fleet to reach full nameplate capacity for approximately twenty hours. When emergency hydro is dispatched, the energy must be replaced by lowering scheduled hydro in some future hour. In this way the total energy for the month never violates the input energy. If no energy is available to borrow from future schedules, the emergency hydro capacity is unavailable. The sum of total capacity of emergency, scheduled, and run of river hydro is equal to the total capacity of the hydro fleet in each area.

The full nameplate capacity is sourced from the TEPPC 2026 Common Case. The available energy comes from the scheduled hydro unit in the region, to which the emergency unit is linked. The emergency unit is given the ability to borrow a MWh amount equivalent to a specified number of hours of full operation from the scheduled hydro unit.

2.9 Transmission Inputs
SERVM uses a transportation representation of the transmission system instead of an AC or DC representation. For a given region and a given connected region, the capacity limits in and out of the region (with respect to the connected region) are specified. These limits can vary by study year, by month, and by percent of peak load. Energy Division staff sourced transmission limit values from Maximum Available Import Capability in the Import Allocation Process. The Maximum Available Import Capability levels are updated annually and available at the CAISO website. For areas not represented in the CAISO Import Allocation process, TEPPC Common Case 2026 v2.0 information was used. The transfer limits by region that will be modeled in SERVM will be posted to the Data section of CPUC Energy Division’s Energy Resource Modeling landing page.

2.10 System Inputs
2.10.1 System Periods
SERVM allows for resources to be available in specific periods of the day or week but not others. DR programs are given specific system periods when they are available. The system periods are defined according to the days of the week and hours of each day that are assigned to each period. Interested parties are invited to comment on these periods and suggest additional or alternative periods.

Table 20: System Periods

<table>
<thead>
<tr>
<th>System Period</th>
<th>Day</th>
<th>Hours (Hour Ending, or HE)</th>
</tr>
</thead>
</table>

83 http://www.caiso.com/Pages/documentsbygroup.aspx?GroupId=3025C28C-1B60-4262-BEF9-66CF403FF107
84 http://www.cpuc.ca.gov/energy_modeling/
2.10.2 Operating Reserves, Ancillary Services, and Frequency Response
Operating reserves and ancillary service requirements and targets are input as a percentage of hourly forecast load, and are assumed to be consistent across all regions, months of the year, and hours of the day. Interested parties are invited to suggest alternative or more differentiated reserve requirements, along with documentation. Current staff assumptions are shown in Table 21, below.

Table 21: Operating Reserves and Ancillary Service Requirements and Targets

<table>
<thead>
<tr>
<th>Operating Reserve Type</th>
<th>Requirement or Target</th>
<th>Value (Percent of Load)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulation Up</td>
<td>Requirement</td>
<td>1.5%</td>
</tr>
<tr>
<td>Regulation Down</td>
<td>Requirement</td>
<td>1.5%</td>
</tr>
<tr>
<td>Spinning Reserves</td>
<td>Requirement</td>
<td>3.0%</td>
</tr>
<tr>
<td>Non-Spinning Reserves</td>
<td>Target</td>
<td>3.0%</td>
</tr>
<tr>
<td>Load Following Up</td>
<td>Target</td>
<td>2.5%</td>
</tr>
<tr>
<td>Load Following Down</td>
<td>Target</td>
<td>1.5%</td>
</tr>
</tbody>
</table>
2.10.2.1 Frequency Response Requirements
A frequency response constraint refers to a model constraint to have committed headroom from certain types of generation within the CAISO balancing area at all times to ensure the CAISO can meet its obligations under the NERC BAL-003-1 standard. The RESOLVE model used for the IRP proceeding assumed a total constraint of 770 MW, that is, 770 MW of certain resources types (those operated through governor response) must have committed headroom at all times. Staff will implement the frequency response constraint as follows:

- 50% of the headroom requirement (385 MW) is assumed to be met by hydro resources (excluding pumped hydro storage) and is not explicitly modeled. This is based on CAISO’s operational experience that hydro can respond to under-frequency at any time without imposing explicit constraints on hydro operations.
- 50% of the headroom requirement (the remaining 385 MW) is assumed to be met by storage (excluding pumped hydro storage) and/or online combined cycle resources.
 - Storage units can satisfy the headroom requirement on a MW-for-MW basis, up to available storage headroom.
 - Combined cycle units can provide 0.08 MW toward the headroom requirement for each MW of online capacity, up to available combined cycle unit head room.
- The headroom requirement applies for all 8760 hours of the typical one-year production cost simulation model.

Staff will collaborate with CAISO staff to update this constraint as needed to be consistent with CAISO’s projected frequency response obligations. Staff also intends to seek stakeholder feedback via the IRP’s Modeling Advisory Group process on appropriate ways to project and model the ability of other resource types to provide frequency response.

2.10.2.2 Operating Reserve Demand Curves (Scarcity Pricing)
Regulation up, regulation down, spin, and non-spin scarcity prices are input into SERVM, specified according to the applicable remaining hourly reserve margin percentage. While values can vary by region, month, and hour, staff is not currently utilizing this feature. Data for reserve demand curves are in development.

2.11 Other Production Cost Models
Other entities may wish to use other production cost models to conduct studies for comparison to CPUC studies or other related analyses. Here, we document known major differences between SERVM and the PLEXOS model used by the CAISO and the CEC.

The PLEXOS model as generally used by the CAISO and the CEC is used as a deterministic model, that is the model simulates commitment and dispatch of a single study year with a deterministic set of inputs. This is in contrast to the SERVM model which simulates hundreds of years of a target study year based on stochastic variation of key inputs such as weather and unit outages.

The CAISO’s PLEXOS model uses 2009 historical shapes for load, solar, wind and hydro, scaled up to match the annualized forecast values of a target study year. 2009 was selected to be consistent with
the TEPPC 2026 Common Case. For modeling intended for comparison with SERVM, the CPUC expects the PLEXOS 2009-based shapes to match with the corresponding 2009 weather-year-based shapes in SERVM.

2.12 Next Steps
Energy Division staff will continue to refine this document, post additional data sets, and work to update the datasets used for production cost modeling. Parties are encouraged to contact Energy Division staff with suggestions of better data sources, help in developing and formatting data, or checking for errors in datasets.

3 Network Reliability Modeling – Transmission Busbar Allocations
The previous section of this document described the detailed inputs and assumptions to be used in production cost modeling with the SERVM model. This section describes the additional inputs and assumptions necessary for use in the network reliability ("powerflow") studies typical of the CAISO’s 2018-19 Transmission Planning Process (TPP). This information is primarily the allocation of load and resource inputs and assumptions to CAISO transmission substations (busbars).

3.1 Load and Load Modifiers
As stated in the 2017 IEPR report expected to be adopted by the CEC in February 2018,85 the managed Single Forecast Set specifies that the California Energy Demand (CED) 2017 adopted baseline “mid demand” case paired with the mid-mid Additional Achievable Energy Efficiency (AAEE) and Additional Achievable Photo-Voltaics (AAPV)86 forecast scenarios shall be used for bulk system studies, while the mid-low AAEE and AAPV scenarios shall be paired with the baseline mid demand case for local reliability studies.

The aggregate load and load modifier assumptions from the IEPR CED forecast must be assigned to CAISO transmission busbars in order for the CAISO to conduct its network reliability studies.

- For load (including committed energy efficiency, committed BTM PV, load-modifying demand response (e.g. non-event based or price responsive), and other non-PV self-generation) there exists a mature process for the CAISO to work with Participating Transmission Owners (PTOs) to allocate IEPR CED forecast load to busbars.
- For the incremental load modifier AAEE, the CEC provides busbar allocations of the mid-low AAEE forecast scenario directly to the CAISO. The allocation is generally based on the mix of load by economic sector currently at each busbar, matched with the energy efficiency programs targeting those sectors.

85https://efiling.energy.ca.gov/getdocument.aspx?tn=222377
86Incremental BTM PV adoption to reflect 2019 Title 24 residential building standards update in support of Zero Net Energy goals for new residential homes, starting in 2020.
For the incremental load modifier AAPV, the CAISO is working with staff at the CEC and CPUC to leverage analysis developed by the CPUC’s consultant, DNV-GL,\(^8^7\) and with the three large IOUs in their capacity as CAISO PTOs, to allocate the forecast AAPV amounts to busbars.

3.2 Supply-side Resources

The list of resources to be included in CAISO network reliability studies for a target study year shall be based on the existing and new resources described in section 2.7 of this document. To supplement that information, this section provides guidance on allocating to busbar all the new resources assumed in the IRP proceeding’s “50% RPS default core case” and the “42 MMT core case,” such that the CAISO can model those portfolios in its 2018-19 TPP. This section also provides guidance on allocating planned demand response and planned energy storage to busbars.

In addition, section 3.2.2 provides guidance on the modeling of demand response in the context of local reliability studies.

3.2.1 Planned Energy Storage

Staff requested and received data from the IOUs’ between November 2017 and January 2018 establishing what types of storage have already been procured and at what locations. The tables below show total capacities that have been procured and remaining capacities that should be procured by 2020. The totals exceed the 1,325 target because the IOUs’ have procured customer-connected storage to separately satisfy local capacity procurement obligations and the amounts procured exceed the 200 MW customer-connected share of the 1,325 target.

Table 22: Total Energy Storage Procurement To-Date (IOU Data November 2017)

<table>
<thead>
<tr>
<th>Domain</th>
<th>Transmission-connected</th>
<th>Distribution-connected</th>
<th>Customer-connected</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDG&E</td>
<td>40</td>
<td>44</td>
<td>31</td>
</tr>
<tr>
<td>SCE</td>
<td>55</td>
<td>195</td>
<td>251</td>
</tr>
<tr>
<td>PG&E</td>
<td>30</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>125</td>
<td>256</td>
<td>282</td>
</tr>
</tbody>
</table>

Table 23: Residual Energy Storage Procurement to Meet D.13-10-040 Targets (MW)

<table>
<thead>
<tr>
<th>Domain</th>
<th>Transmission-connected</th>
<th>Distribution-connected</th>
<th>Customer-connected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Capacity</td>
<td>575</td>
<td>169</td>
<td>0</td>
</tr>
</tbody>
</table>

As stated in section 2.8.3.1 above, the full 1,325 MW target is assumed to contribute towards RA obligations.

Tables providing locational information are itemized in a companion workbook\(^{88}\) posted with this document on the CPUC Energy Division’s Energy Resource Modeling landing page.\(^{89}\) This information may be used by the CAISO’s TPP Base local area reliability studies to locate storage projects in PG&E’s,\(^{90}\) SCE’s and SDG&E’s service territories.

To estimate the location of residual energy storage that is yet to be procured to satisfy the 1,325 MW target, it is reasonable to assume that cost-effectiveness requirements applicable to new storage capacity will lead to it being sited at the most optimal locations in order to allow these resources to help satisfy local area reliability. Thus the residual storage amounts in Table 23 should be distributed among the transmission busbars which most optimally mitigate transmission constraints within local reliability areas. As such, the identified transmission bus locations are potential development sites for storage and

\(^{88}\) Add link

\(^{89}\) http://www.cpuc.ca.gov/energy_modeling/

\(^{90}\) PG&E explained the following in regards to the energy storage locations it provided: “The majority of the projects listed did not have completed interconnection studies nor were they included in the CAISO Full Network Model at the time of offer submittal. The list has also not been confirmed with the CAISO. Therefore the list is PG&E’s current estimate of the nearest Transmission Point of Delivery / Receipt, nearest Resource ID, and nearest Bus ID, and should not be assumed to exactly denote the final bus-bar location.”
should help inform the procurement of storage resources necessary to meet the storage procurement target.

3.2.2 Planned Demand Response

This subsection provides guidance on modeling treatment of demand response in local reliability studies including the projected amounts of DR capacity that can meet local reliability needs and allocating those amounts to busbars.

Local Capacity Reliability Area planning studies must make certain assumptions about available DR capacity under the grid conditions being studied. The CAISO conducts two types of planning studies related to Local Capacity Reliability Areas: Long-term Local Capacity Requirement (LCR) studies that study 10 years ahead and are conducted within the CAISO’s annual Transmission Planning Process,91 and Local Capacity Technical (LCT) Studies that study 1-5 years ahead and are used to inform the CPUC’s Local Resource Adequacy requirements.92 In these studies, the CAISO considers whether resources physically located within a Local Capacity Reliability Area can respond to a “first contingency”93. The new Resource Adequacy Rulemaking R.17-09-02094 will continue to consider whether to change Local Resource Adequacy rules in order to create a requirement regarding how quickly DR resources that are physically located in Local Capacity Reliability Areas would need to respond in order to count as Local RA capacity and whether there is a way to pre-dispatch slower responding resources so that they could also be counted. The CPUC’s Resource Adequacy accounting rules currently have no requirement related to “first contingencies” or response times for a resource to count as Local Resource Adequacy capacity. If a new methodology is approved by the CPUC in the June timeframe of 2018 it should be used as the basis for counting resources that meet Local Capacity Requirements in future long-term planning cycles.

Based on the Load Impact Report ex-ante forecasts for current DR programs, CPUC staff estimate that in 2027, throughout the CAISO area, 1,118 MW of DR would be available to meet LCR needs – to the extent that the DR is physically located within Local Capacity Reliability Areas. CPUC staff developed the 1,118 MW estimate by summing the DR programs included in Table 17 that are capable of responding quickly to dispatch instructions according to program tariffs (which amounts to 1,113 MW) with DR specifically procured to meet local reliability needs (5 MW). CPUC staff used the Load Impact Reports’ August 2027 portfolio-adjusted 1-in-2 weather year condition95 ex-ante forecast of load impact coincident with CAISO system peak. DR specifically procured to meet local reliability needs is the 5 MW of DR that was procured pursuant to SCE’s LCR RFO (approved, by D.15-11-041). This 5 MW is assumed to be

91 https://www.caiso.com/Documents/Final2017-2018StudyPlan.pdf
92 http://www.caiso.com/informed/Pages/StakeholderProcesses/LocalCapacityRequirementsProcess.aspx
93 The terms “first contingency” and “second contingency” were described in decision D.14-03-004, and the May 21, 2013 revised scoping ruling found here: http://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M065/K202/65202525.PDF
94 Was not resolved in previous RA Rulemaking R.14-10-010
95 Note that although Local Capacity Requirement assessments study 1-in-10 year weather conditions, we assume DR capacity based on 1-in-2 year weather ex-ante impacts because this is currently the basis of the Qualifying Capacity value given to DR for both system and local Resource Adequacy compliance purposes.
incremental to the 736 MW96 of DR in SCE’s territory assumed responsive to local capacity needs as calculated from Table 17. The estimate of DR available to meet LCR needs provided here is only a modeling assumption. As stated above, the Resource Adequacy proceeding will ultimately determine what types of DR programs can count for local RA and meet local capacity needs.

To guide the allocation of capacity for the various DR programs to busbar, CPUC staff ordered the IOUs to annually produce an allocation for their programs based on the most recently filed Load Impact Reports. The data is confidential so the CPUC expects the CAISO and the IOUs in their capacity as PTOs to exchange the data using their own NDAs. The exchange should happen as part of the CAISO’s annual TPP Study Plan stakeholder process that solicits input on demand response assumptions. The busbar allocations determine which portion of the aggregate DR amount assumed available to meet LCR needs within an IOU planning area is physically located within a Local Capacity Reliability Area.97

3.2.3 IRP 50% RPS Default and 42 MMT Core Cases for New Resources

This section describes the information used to allocate to busbar the new (generic) resources selected by the RESOLVE model to develop the IRP Reference System Plan. Allocations are done for the 50% RPS Default Core Case and the 42 MMT Core Case, the two cases identified in the IRP Reference System Plan February 8, 2018 Decision D.18-02-018 as the recommended portfolios for use in the CAISO’s 2018-19 TPP studies. These portfolios include new renewables and new energy storage (i.e. beyond the amounts to reach the 1,325 MW CPUC procurement target for the 3 large IOUs). As stated above in section 2.7.1, the complete workbook translating aggregate capacities in the RESOLVE model to available unit level data will be posted to the Data section of CPUC Energy Division’s Energy Resource Modeling landing page.98 This identifies units and locations for baseline (i.e. existing and planned) resources assumed in the 50% RPS Default Core Case and the 42 MMT Core Case.

For locating new (generic) renewables selected as part of the 50% RPS Default Core Case and the 42 MMT Core Case, CPUC staff collaborated with CEC siting staff and the CAISO to develop a method of allocating projects selected within the coarse geographic zones in the RESOLVE model to specific busbar locations. The aggregate amounts of new renewables as presented by the RESOLVE model are available in the workbooks referenced above in section 2.7.1, including grouping by full deliverability vs. energy only status. The allocation of those amounts to transmission busbars in the CAISO balancing area are available from the CEC website [\textit{add CEC link to workbooks}]. The allocation method will be publicly reviewed through a CEC and/or CPUC workshop and comment process in 2018 to improve upon the method for the next planning cycle.

For locating new (generic) energy storage selected as part of the 50% RPS Default Core Case and the 42 MMT Core Case, staff recommends the same generalized guidance used to allocate the residual storage

96 736 MW = 610MW of base interruptible + 50 MW agricultural pumping + 56 MW residential ac cycling + 20 MW non-residential ac cycling

97 The CAISO noted that DR eligible for inclusion in the TPP must be allocated to bus-bars and must be a CAISO integrated resource, meaning that resource is mapped to specific PNodes.

98 \url{http://www.cpuc.ca.gov/energy_modeling/}
not yet procured to satisfy the 1,325 MW CPUC procurement target for IOUs. Refer to section 3.2.1 above.

Network reliability studies must also make an assumption about how much capacity storage could provide under the conditions being tested. For guidance on modeling how storage contributes towards RA obligations, based on its discharge capacity and duration, refer to section 2.8.3.1 above.