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Executive Summary 
It has long been recognized that electricity and water infrastructure throughout the United States is 

aging faster than it is being repaired.  It has been estimated that the long-term impact due to this 

underinvestment will be a significant decrease in the US GDP in the coming years.1  In addition to the 

declining state of infrastructure, new external priorities, such as the adoption of renewable energy 

sources, are putting new types of pressure on utilities’ resources.  This confluence of events is 

generating renewed pressure to find new and more robust investment strategies that can keep up with 

these changes.  

Traditional approaches to making capital investment decisions and prioritizing operations and 

maintenance (O&M) projects have relied heavily on methods such as Net Present Value (NPV) and Cost 

Benefit Analysis (CBA).  The veracity of these models is contingent upon assumptions about the future 

returns from the prospective investments.  Increasingly, the rise of uncertainty in utilities operations2 is, 

however, compromising these assumptions and the ability of utilities and regulators to predict with 

confidence what these expected returns will be.  When using the deterministic NPV–like models, a 

consequence of high uncertainty tends to be lower valuation of projects.  As a result, many projects that 

could end up being beneficial to both utilities and ratepayers are not undertaken. 

In this paper we argue that utilities and regulators should consider new types of investment valuation 

strategies for maintenance and upgrade projects in electric and water utilities.  While the NPV methods 

are effective at developing a baseline assessment of a project’s value, they neglect a significant value 

associated with the ability to actively manage the uncertainty in a project.  We discuss one class of 

methods in particular - real options - that attempts to value the managerial flexibility in a project.  This 

approach includes options such as delaying projects, expanding projects, and abandoning projects. 

We further suggest that utilities already, either explicitly or implicitly, exploit the option value in 

projects.  The most obvious managerial option that utilities have is the option to delay a project.  

Waiting to see which systems fail can assure that equipment is used to its maximum useful life and could 

reasonably be argued as a rational way to minimize system costs (“if it’s not broke, don’t fix it”).  This, of 

course, has a direct consequence to the customers who may experience service outages and other 

negative events when equipment does in fact fail.  If utilities operated in a competitive environment, 

they would be discouraged from waiting indefinitely, as competitors could provide better service levels, 

but in the current regulatory environment there is not this external pressure to resolve these 

uncertainties before events happen.  Clearly there are issues here that regulators should heed. 

                                                           
1
 See American Society of Civil Engineers (ASCE) “Failure to Act Report Card: 2013” (available at 

http://www.infrastructurereportcard.org/grades/), which gave the electric infrastructure a rating of D+ to water a 
D. See also, McKinsey Global Institute “Game Changers: Five Opportunities for US Growth and Renewal” (2013), 
which estimates that investment in utility infrastructure needs to rise from 2.6% of GDP to 3.6 % by 2030. 
2
 Increasing uncertainty can come from various sources including from the exposure to the long neglected 

infrastructure, the impact and effectiveness of new technological innovations, the rise of new intermittent energy 
sources in the electricity sector, and the loss of new sources water in the water sector. 

http://www.infrastructurereportcard.org/grades/
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Finally, the increasing availability of advanced technologies to provide additional information about 

utility operations can provide additional input into a utility’s option portfolio.  As a utility collects 

additional and more granular data, the utility can make more informed investment decisions, including 

targeted application of new technologies, maintaining existing technologies, or replacing technologies 

with similar operational characteristics.  This ability is new and may upset traditional approaches to 

investment decisions, as well as regulatory decisions regarding utility investments in a General Rate 

Case. 

The implications for utilities and regulators for using this type of investment strategy are also discussed. 

Some of the key characteristics of this approach are: 

 Development of comprehensive strategic maintenance and upgrade plans that extend beyond 

the current three-year budget cycle. 

 Single project performance would be less of a focus; rather, the performance of a portfolio 

would be more emphasized.  Individual project failures would not be seen as a waste of money, 

but part of the management of a broader portfolio of assets. 

 Information-gathering associated with resolving uncertainties becomes a more precisely valued 

activity and becomes a valuable component in the investment planning process.  Understanding 

how new information can resolve uncertainties will help define funding objectives for new more 

risky projects  

This new approach requires that utilities more actively search for opportunity that may be perceived as 

more risky under the traditional valuation methods.  It also requires regulators to support utility 

flexibility in an investment strategy that includes the potential for failures, recognizing, however, that 

this new paradigm can be seen as reducing the overall risk and costs.  The chicken and egg problem is in 

setting risk tolerance.  The current process has commissions assigning budgets, and utilities interpreting 

and implementing them. 
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Introduction 
The responsibility for maintaining large, diverse and complex electric grids, telecommunications 

networks, natural gas pipelines and distribution systems and water supply networks is a daunting task.  

These expansive networks have been built out and developed over the course of decades and contain 

equipment of varying ages and vintage.  With each new era comes a new set of technical standards and 

maintenance requirements layered on top of the already existing ones.  Utilities are now faced with 

what appears to be an increasing level of stress on the network from weather related events, which 

places an extra risk burden on older assets.  The utilities must manage this mélange of equipment and 

ensure high standards of safety and reliability while balancing a constantly changing set of priorities for 

ongoing maintenance and repair.  Typically, utilities rely on a combination of sensors, measuring 

devices, physical inspections, and other stress tests to assess the performance and the remaining 

productive life of components and sub-systems in their networks.  Unfortunately, none of these 

processes or tests can provide perfect insight into which system will fail and when, although predictive 

analytics and life cycle information technology are getting increasingly accurate and insightful.3  

Furthermore, even if ideal measurement and inspection processes could be achieved, it is simply not 

possible or practicable to measure and inspect every inch of pipeline, distribution line, or switch in a 

network. 

Utilities must also recognize the uncertainties within their networks and develop processes that account 

for and manage the uncertainties.  Utilities rely on the collective knowledge and wisdom of technicians, 

managers, and engineers to rate components and assess the overall state of the network.  Based on 

these evaluations, utilities must balance what is known about the state of the network through physical 

and historical records against what is uncertain or unpredictable and develop priorities, and budgets 

that will assure the safe and reliable operation of their networks. 

Managing these networks in the face of both technical and operational uncertainties requires the 

utilities to make some assessment of the risks associated with both technical and operational 

maintenance of investments.  Inherent in this process is some estimation of the likelihood of certain 

types of events happening (e.g., equipment failure rates) and consequences if they occur.  The concept 

of risk for utility investments is not new; every utility makes their own determination and risk 

assessment is a key consideration in ensuring the continuity of utility service.   

What is new, however, are rapid changes in monitoring and information technology.  This in turn is 

challenging utility managers to effectively make use of these new technologies.  These technologies can 

help consolidate and filter large amounts of data more efficiently.  They can also provide powerful 

analytic methods that allow deeper dives in the data and provide better insight into the 

interconnections, dependencies, and condition of systems. These new technologies clearly disrupt the 

way utilities operate on a regular basis.  For example, powerful probabilistic based predictive models 

can more accurately estimate which systems are about to fail and should be replaced and which ones 

                                                           
3
 IBM and others are commercially deploying highly predictive asset maintenance systems with precision on timing 

and accuracy of future pipeline and electric infrastructure incidents. 
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can continue to operate.  This can impact a common utility practice of “run to failure” that is used for 

some non-critical systems.  In addition to the operational impacts, information can also change how 

utilities and regulators think about and plan capital projects.  New information can improve how utilities 

predict equipment lifetimes, both for installed and new equipment.  This can change the timing and size 

of replacing and upgrading of capital projects.  

When there is little technological innovation, traditional deterministic valuation methods, such as Net 

Present Value (NPV) and Cost Benefit Analysis, may be reasonable investment models, but when new 

technology arises these approaches may not fully value the new opportunity or the risks.  Utilities have 

substantial investments in infrastructure, technology, and supporting services.    New information is now 

allowing utilities and regulators to better identify the real value of these assets.  This new, technology 

driven, information can change the assessments of capital projects as we monitor and learn about the 

real cost of assets- both installed and new.  New investments can provide utilities with more and better 

information about the performance of the grid and can allow a utility to enhance the delivery and 

reliability of the services they provide.  

This paper will address the risk inherent in both paradigms: valuing maintenance investments based on 

the set deterministic value or based on a value driven by the assumption that information can be used 

to raise the value of an investment.  This paper also looks at the role that regulation can play in assuring 

that the maintenance investment strategy of utilities is aligned with customer risk preference, overall 

system performance and the value of the resource being served. 

Background 
In preparing for this paper, the authors interviewed an electric company and a water company to 

understand their investment strategies regarding new technology.  The fundamental question asked of 

both utilities was this: Are utilities fundamentally risk-averse in their asset investment strategy?  In both 

instances, the answer was “it depends.”  This answer frames the bulk of this paper.  It depends because 

utilities provide various levels of basic service.  What that means is electric and water services are basic 

needs for all people; electricity is needed to run the plethora of technology devices in our homes and at 

work, as well as to run water delivery pumps, waste water systems, and such, and water is needed for 

human survival.  Each utility described three types of conditions that determine their risk tolerance for 

asset investment:  

1. Providing for safe and reliable service 

2. Providing for service to new customers 

3. Implementing or meeting policy objectives 

Each utility described these three conditions in a similar manner.  The utilities we spoke with placed the 

provision of safe and reliable service as their primary goal.  In order to meet this goal, the utilities 

expressed the strategy that technology that either enhanced the level of service OR did not degrade the 

level of service would receive primary consideration.  Additional benefits or services that could be 
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provided by a specific piece of technology received less consideration, unless the utility determined such 

information was needed at a location to enhance safety and reliability. 

Next, technology that is useful in hooking up new customers would receive the second level of priority.  

Again, maintaining a level of service was the primary goal of the utility, so only if the utility determined a 

need for advanced technologies would such technology be installed.   

Finally, meeting policy objectives set the third level of consideration regarding the use of advanced 

technologies.  This can be associated with handling the influx of variable electricity resources onto the 

electricity grid, or the need to better monitor water quality or other water efficiency measures.  This 

section provides for the greatest amount of variety for consideration of advanced technologies, and is 

likely where most requests for advanced technologies occur.   

Technologies that could assist with any of the three conditions received consideration and an associated 

risk tolerance.  That does not mean, of course, that the utility automatically invested in emerging 

technology just for the sake of providing safe and reliable service; technology still needed to be proven 

effective, safe, and reliable, and provide positive operational benefits, over the existing models.  

However, what remains unclear is to what extent is information being valued in any of the three 

circumstances?  For example, advanced technologies that can communicate real-time or near real-time 

performance levels of transformers could satisfy the safety and reliability needs of a utility; indeed, the 

recent Metcalf substation incident showed that such information can notify the utility of a 

malfunctioning piece of equipment before it fails and shuts down an entire substation.4  This is where 

information can be used to not only enhance safety and reliability-- but through its monitoring and 

communication capability-- provide a utility with valuable information regarding performance.   

We chose a water and electric company for the foundation of this analysis because each are perceived 

as “behind the times” regarding adoption of advanced technology and have a substantial amount of 

“legacy” assets still in operation.  This perception has been borne out in a recent American Society of 

Civil Engineers (ASCE) report that found “that capital spending has not been keeping pace with the 

needs for water infrastructure.”5  This shortfall is leading to an increasing gap and greater reliance on 

O&M budgets rather than capital projects to assure that a desired level of service is maintained.  This 

report graded utilities across the country and gave an overall “almost” failing grade to infrastructure 

investments made by both water and electric utilities.   

Utility Maintenance, Repair and Upgrade Economics 
In general, the objective of a utility maintenance, repair and upgrade investment plan (MRU) is to 

minimize costs while maintaining service levels.  Utilities do this through a series of investments, both in 

                                                           
4
 The Metcalf substation is located in San Jose and was the location of a security incident that resulted in damage 

to several large transformers at the location.  See http://sanfrancisco.cbslocal.com/2013/04/16/gunshots-cause-
oil-spill-at-san-jose-pge-substation/ (last accessed September 30, 2013).  
5
 ASCE, “Failure to Act: The Impact of Current Investment Trends in Water and Wastewater Treatment 

Infrastructure,” at p. x (2011).     

http://sanfrancisco.cbslocal.com/2013/04/16/gunshots-cause-oil-spill-at-san-jose-pge-substation/
http://sanfrancisco.cbslocal.com/2013/04/16/gunshots-cause-oil-spill-at-san-jose-pge-substation/
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the capital budgets used to install or retrofit key elements of their network and in the operations and 

maintenance budgets that assure that the installed base of equipment continues to operate effectively.  

Making choices and deciding where to invest (e.g., new capital projects, better information technology, 

improved maintenance equipment) requires information.  It requires information about the status of 

the system in general and the performance of individual components in particular.  Information about 

when a component might fail, the type and severity of failure, and the potential impacts of a failure are 

all required to develop an effective MRU strategy.  No utility actually has or can realistically hope to 

have perfect information or foresight to predict precisely when and where a particular device will fail.  

However, there are advancements in predictive mathematical algorithms using real time data from gas 

and electric infrastructure that are moving closer to this type functionality.  Currently, utilities rely on a 

combination of testing regimes, inspections, and expert assessments and past experience with various 

types of equipment to develop an overall estimate the status of the network.  Ultimately, each utility 

must make judgments about the system and determine how to prioritize maintenance activities and 

where to make new replace and upgrade investments across the enterprise.  

Deterministic Valuation 
The maintenance investment problem for utilities is embodied in the process of developing a strategy to 

define enterprise wide priorities, identify specific components and systems to be serviced, and then 

establish a budget to provide the expected services.  These budget decisions determine which projects 

to invest in, which ones to defer, and which ones to abandon.  In the traditional capital budgeting 

exercise, the objective is to maximize the value of an investment, such as in Net Present Value (NPV) 

analysis.  In this paradigm, the total value of the investment is the sum of the future discounted returns 

generated by the investment minus the cost of the initial investment  

 

Equation 1: Generic NPV equation for evaluating a project 

Where  is the discount rate (often the cost of capital for the utility) and  is the cash flow or the return 

from the investment in each future year.  For an MRU project,  is ostensibly the avoided cost that can 

be credited to that project.  An increase in overall net present value to the utility, and ratepayers, occurs 

when the avoided costs exceeds the investment costs.  Some common types of avoided costs that MRU 

projects can capture are: 

 Avoiding Failures 

o Minimizing unscheduled maintenance 

o Maintaining an adequate level of service (SAIDI, SAIFI, MAIFI) 

o Assuring the safety of the users, utility employees and the public 

o Minimize systematic risks and vulnerabilities 

 Equipment Life cycle costs 

o Minimize retiring equipment before the end of its life 

o Maintenance batching  
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o Spares and replacement management 

o Minimize collateral damage during repairs 

 

To make the connection between a specific MRU investments and specific avoided cost savings can be a 

challenge at the utility scale.  At the project level, however, the NPV modeling paradigm can and is often 

used to assess the value of a project.  This of course, as already mentioned, requires an assessment of 

the state of the system: both current and future.  The avoided costs are then estimated as the cost 

difference with and without the investment.  

In the regulatory environment, the starting point for assessing the state of the system, at least in the 

General Rate Case (GRC)6 context of O&M budgeting, is not project specific.  Rather, a portfolio of 

projects is typically considered ostensibly as a single project and historical MRU costs are used as a 

proxy for the state of the network.7  The costs are then adjusted for any expected changes in demand 

and other potential improvements that may be needed and a new MRU budget is updated.  

Additionally, these GRCs are submitted every 3 years which may overvalue short-term gains at the 

expense of a longer-term planning horizon. 

Once the utility budget has been established in the regulatory process, a utility then has the 

responsibility to commit to investing in specific projects.  In this project by project environment, NPV is a 

tool in the utilities decision making toolbox.   Due to the difficulty of estimating avoided costs, it is not 

clear how accurately or consistently these NPV models predict the true avoided costs.  There is evidence 

from non-utility focused studies that managers recognize the potential for inaccuracy in NPV models.  A 

National Bureau of Economic Research study found that managers will not take on projects that are just 

barely net positive.8  Rather, managers often require hurdle rates significantly higher than the nominal 

cost of capital would indicate.   

We suggest that there are three reasons why excessive valuation may be required to actually fund 

projects in utilities.  The first is that the information used to develop the NPV and future cost savings 

models may not be sufficiently robust.  Secondly, managers may perceive that the future cost savings 

estimates are not in fact fixed, as deterministic NPV models imply.  Rather, managers may see that 

future costs can be influenced by their actions, i.e., the NPV models do not estimate the opportunity 

cost of an investment.  Thirdly, decision makers may be more risk averse than is implied by a risk free or 

cost of capital rate.  The first two factors have merit and are difficult, but not impossible to address, the 

                                                           
6
 The General Rate Case establishes the utility cost requirements and the rates that utilities can charge to recover 

these costs.  A General Rate Case is the major regulatory proceeding for California utilities, which provides the 
CPUC an opportunity to perform an exhaustive examination of a utility’s operations and costs.  Typically performed 
every three years, the GRC allows the CPUC to conduct a broad and detailed review of a utility’s revenues, 
expenses, and investments in plant and equipment to establish an approved revenue requirement.  
7
 The CPUC uses a five year historical average to establish a future budget. 

8
 Lawrence Summers, “Investment Incentives and the Discounting of Depreciation Allowances,” The Effects of 

Taxation on Capital Accumulation, M. Feldstein, ed. (National Bureau of Economic Research 1987). 
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third is a cultural issue that may be resolved through changes in regulatory incentives regarding risk 

taking.  

Below we discuss the information and modeling concerns in MRU NPV models and how information may 

be better used by these models.  In the next section we discuss how managers may implicitly value the 

opportunity costs of projects in excess of the NPV value.  In the regulatory section we discuss the risk 

aversion of utility managers. 

Current Practices in Maintenance Decision Making 
The acceptance of the NPV models is largely driven by the strength of evidence of the future cost 

savings or lack thereof.  As has been mentioned, information regarding the state of utility infrastructure 

can be difficult due to its inaccessibility.  This lack of access to the state of the network stems from a) no 

previous operating or policy requirement to invest and b) lack of network sensors and infrastructure to 

collect real time data on assets.  New information technology and data management tools are becoming 

more available and can provide a new opportunity to improve information quality.  However, there are 

still questions in any modeling context.  Some of the questions that arise are:  How confident are we 

that the avoided costs will actually be  in year i?  Are all the avoided costs captured by the model?  Are 

some of the avoided costs double counted?  What are the rewards or penalties that utility managers will 

be given for under or overstating estimates?  The answer to these questions requires that models 

accurately reflect the operational and economic processes, and that the data supporting the models is 

both sufficiently accurate and precise.  To the extent that better information can resolve these 

uncertainties, it can give these models additional weight and provide additional grounds for managers to 

rely on NPV rules.  

Essential to estimating avoided costs within the MRU context is the ability of models to predict how 

systems perform and how they degrade over time.  As mentioned previously, information tracking and 

monitoring devices can help in this regard, but analytic methods can also play an important role.  

An Australian study9 developed a simple probabilistic model to estimate the lifecycle costs of 

transformers: both new and currently installed equipment.  Rather than use a simple point estimate for 

the expected lifetime costs of a transformer, the study developed a probability distribution based on 

transformer survey for each model vintage and then reweighted expected costs based on the age 

distribution of their installed base.  This more robust model gave them the ability to develop a new 

decision rule that could more precisely identify transformers due for replacement.   

Another group is the Virginia Department of Transportation which wanted to know when to retire heavy 

road maintenance vehicles.10  They developed a regression model that was designed to generate a 

comprehensive estimate of the expected total average costs for new equipment and compared that to 

                                                           
9
 G Winsor & S Buncombe, “Repair/ Replace Decision Making Practices,” ICOMS Asset Management Conference 

(2007). 
10

 James Gillespie, “Final Report: The Replace/Repair Decision for Heavy Equipment,” Virginia Transportation 
Research Council, VTRC 05-R8 (November 2004). 
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the expected marginal cost for existing equipment.  They were interested in finding factors and 

equipment characteristics that would be indicative of higher or lower costs.  Developing these cost 

scores allowed them to choose a tipping point for making replacement decisions.  

Several multi-national vendors have developed or are planning to release systems which accurately 

predict gas pipeline leaks, transformer failure, and device level voltage failures for solar PV and other 

distributed assets for example.  In addition to these efforts, utilities are also developing systems for 

monitoring, targeted equipment tests, and sophisticated statistical modeling techniques.  However, 

none of these systems, even the most ambitious, contemplate having perfect information about the 

system.  Physical measurements must be supplemented with expert assessment.  As one interviewee 

mentioned, developing priorities is a bit “art and science.” 

Despite the success of these models, and even recognizing some of their limitations, the NPV approach 

makes some implicit assumptions that are often not valid.  In general, the NPV models assume the 

returns from investments are determined by the model, that is, once the investment is made the model 

assumes that the future costs flow as predicted in the model.  Furthermore, the deterministic NPV 

models implicitly assume that the investment decision is a now or never option.  This, however, is not 

often true - particularly in MRU investments.  Managers have many opportunities to learn about the 

state of their systems and make decisions incrementally as new information becomes available.  

Through R&D, managers can also develop better test methods and technologies that may change or 

resolve uncertainties.  NPV models simply do not capture or value these opportunities. 

Stochastic Valuation 
A key assertion of this paper is that a snapshot NPV approach to valuing MRU projects implicitly 

undervalues potential investments in new technology.  This undervaluation occurs since NPV does not 

account for the implicit, and at times explicit, flexibility of managers to respond to conditions on the 

ground.  This undervaluation, as we will argue, may consequently provide a perverse incentive for 

managers to delay projects as a means of capturing, at least in part, this unaccounted for value.11  As 

was noted in an article by Frayer: 

 Traditional valuation procedures, such as discounted cash flow analysis (DCF) ignore the 
value of managerial flexibility. These models do not capture the value embodied in the 
plant operator’s ability to dynamically react to changing market conditions; the real 
options methodology measures the value inherent in such adaptability. Under a real 
options approach, increased uncertainty … translates into a larger options-based 
value.12 

 
 

                                                           
11

 By delaying projects and gathering better information, managers have an opportunity to exceed performance 
expectations established by NPV models. 
12

 Julia Frayer, “What Is It Worth? Application of Real Options Theory to the Valuation of Generation Assets,” The 
Electricity Journal, Vol. 14, Issue 8 (October 2001). 
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From the manager’s perspective, having the flexibility of waiting and resolving uncertainty before 

committing to an investment is one type of option that may be attractive.  In the real options paradigm, 

a manager has the option, which is the right but not the obligation, to exercise a project.  To illustrate 

the value of options in utility MRU 

decision making context, we adapt a 

simple example from Pindyck and 

Dixit.13  Consider an MRU 

investment opportunity where the 

investment in upgrading a 

potentially leaky pipeline costs 

$1600. If the line has a “big” leak 

there is a $300 per year avoided 

cost of leaking water per year. If there is only a “small” leak there is only a $100 per year savings per 

year (Figure2).  In the NPV paradigm, the value of the leak repair project is estimated as the expected 

savings $200 per year: a 50% chance at $100 and 50% chance at $300.  In this case, the NPV rule (Eq.1) 

indicates that the value of the investment over all future years is positive and worth $600. 

Equation 2 

Yet this does not consider if the managers have the option to wait 1 year at which point they could 

determine if the leak is big or small.  In this case, the company only invests if the leak is found to be 

“big.”  Now the NPV for the investment in this year includes a waiting period of a year and then a 50-50 

chance of investing next year, which in the NPV paradigm is valued at $773.14 

= 773                   Equation 3  

When managers have the option of waiting a year and resolving the uncertainty associated with the size 

of the leak, the NPV value raises to $773.  Another way to write the total value of an investment 

opportunity in year 0 is:  

 

The extent to which utilities have options to alter their MRU investment decision implies that there is 

potential value to be captured above the NPV estimated value - in the case above, the holder of the 

option has an additional $173 in value.   

Options and the Value of information  
A key tool that utilities could employ to manage the MRU investment challenge is to use a real options 

approach.  The real options paradigm is based on methods used widely throughout the financial sector.  

                                                           
13

 Avinish Dixit, R. Pindyck, Investment Under Uncertainty, Princeton University Press (1994). 
14

 Waiting incurs other risks, as explained below. 

Figure 1 Investment in pipeline leak loss prevention 
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In our discussions we found that utilities, at least implicitly, exploit the timing/delay option particularly 

in non-critical assets.  The irreversible nature of many investments, the lack of competition, as well as 

the potentially very long lifetime of utility equipment seems to provide an incentive for MRU managers 

to be highly risk averse and delay investments, if possible, to the very last moment.  

We also found that the utilities do not seem to have a robust strategy to take on new risks in the MRU 

context.  Utilities do, of course, continually consider investing in new technologies that address these 

emerging needs, but typically they use the static NPV-like rules to assess these technologies.  While the 

testing of the devices provides the basis for a benefit analysis, it is not clear that the additional value of 

information and how that information can be used to resolve uncertainty and risk is part of the benefit 

analysis.  Indeed, without such information the electric and water utilities may not be effectively 

utilizing their investment dollars.  The ability to obtain, access, understand and use information 

generated from advanced technologies may allow water companies to better assess the robustness of 

their infrastructure and plan and prioritize based on array of possible future needs rather than on an 

NPV snapshot version of the future. 

Strategic Management of Real Options Portfolios 
As has been mentioned, the current methodology for evaluating MRU investments has been structured 

around an historical review of costs.  We believe, however, that this methodology is becoming 

increasingly ineffective.  The driver behind this change in effectiveness is change itself.  These changes 

and uncertainties include new types of energy and water supply sources, unknown impacts due to a 

chronically aging infrastructure, revolutionary set of utility focused information technology, new market 

structures and needs, and grid reliability threats due to environmental factors.  These uncertainties are 

also compounded by the fact that these uncertainties are often linked.  For example, the risks to 

transmission and distribution infrastructure from a wildfire may be more acute for an aging and less 

resilient infrastructure than a more modern and robust infrastructure.  An historical accounting of needs 

simply cannot adequately develop insights and accurate cost and performance estimates in the face of 

these growing and linked uncertainties.    

This uncertainty (i.e., volatility in financial parlance) also comes with a high price.  Uncertainty in itself 

can lead to higher costs if only because managers increase the contingencies or reserves as a means of 

managing uncertainty.  Another way uncertainty can raise costs is when managers and regulators try to 

“buy out of it” by locking in technical requirements or committing to large scale and high capital cost 

projects.  While this may be effective if the technical solution turns out as advertised, it can also be a 

costly mistake if the technology underperforms.  Additionally, without a clear map of the linked 

uncertainties in large scale projects, unexpected consequences can also become an additional cost. 

Uncertainty can also create yet another incentive to “overbuild” the system, a well understood but very 

expensive mechanism to increase the high reserve margins and distribution hardware that places 

financial pressure on ratepayers.  Another hidden cost is the fact that some technologies that may 

perform well in isolation may not turn out to be valuable when integrated in a utility.  

We are not suggesting that big, bold or risky projects should not be undertaken.  To the contrary, we 

think that many of those types of projects can be quite valuable to utilities and customers. Rather, we 
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suggest that projects should not only be valued based on its current expectations of value to a utility 

(the NPV rule), but also should be valued on the options that they present to the utilities.  

The financial sector has already discovered that the option value of investments can be quite high and 

typically increases significantly as either the uncertainty or cost of an investment increases.  This is most 

notably demonstrated by the Black-Scholes equation which estimates the value of a financial option 

based on a measure of volatility and the cost of an investment.15   

It seems intuitive that a project with managerial flexibility, i.e., real options, should also be more 

valuable than projects without flexibility.  What is unclear, however, is how this nebulous concept of 

flexibility translates into real and quantifiable benefits for a utility, its investors, and its customers.  

Capturing the additional benefits (e.g., decreased operational cost, lowered service outage rates, etc.) 

from an option focused investment strategy, instead of an NPV maximizing strategy, requires that 

utilities and regulators first develop a coherent strategy for evaluating the future. 

Developing a future focused investment strategy is directed more by how managerial options can 

resolve and respond to uncertainties.  Rather than the rigid NPV model paradigm, where managers take 

the uncertainties as they unfold, an options paradigm assumes more proactive managers.  

Below we discuss three fundamental types of options that can be used by utilities:  1) timing 
investments, 2) expand investments, or 3) abandon investments. 

1) Timing Option 

The timing option is the most obvious course for utilities.  With little or no competition, delaying MRU 

investments provides utilities the ability to resolve uncertainties (e.g., big leak or small leak) before 

making irreversible commitments to projects that may turn out to be unsuccessful.  It also allows 

utilities to make other, less risky investments while they wait.  A significant problem arises here, because 

utilities cannot delay indefinitely - at some point systems will fail.  A utility’s decision comes down to 

how long the utility wants to wait to ascertain the status of a system component.  Regulators must be 

aware of this incentive for utilities to delay and respond by developing a process for balancing the 

performance of the network while also allowing for discovery and innovation.  The consequence for not 

recognizing the incentive to delay repairs and maintenance may be that systems will begin to age in 

place, as has already been noted.16 

2) Expand Option 

Utilities may also find it valuable to expand projects even when the NPV approach shows a negative 

value.  The expansion option is desirable when a current project provides utilities with the ability to 

make additional future investments that would not be possible absent the current investment.  This 
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 See, David Luenberger, Investment Science, Oxford University Press, at Chapter 13 (1998) (contains definition of 
Black Sholes option pricing formula). 
16

 There may be other financial or cash flow benefits to waiting or investing in other assets instead of investing in 
infrastructure maintenance or repairs. 
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option is perhaps less intuitive than the delay option, but can nevertheless have significant impacts on 

the long term performance of a firm.  As noted in Grenadier: 

 
During the 1970s some manufacturing firms invested in automatic and 
electronically controlled machine tools.  Returns on the initial investment 
were reported to be modest.  However, microprocessor-based technologies 
arrived in the early 1980s, bringing about the opportunity for much more 
dramatic returns (greater performance at lower cost).  Firms that had 
previously invested in electronically controlled machine tools were able to 
migrate quickly and cheaply to the new technology.  Because operators, 
maintenance personnel, and process engineers were already comfortable 
with electronic technology, it was relatively simple to retrofit existing 
machines with powerful microelectronics.  Companies that had deferred 
investment in electronically controlled machine tools quickly fell behind.17 

 

This example points out another problem with the NPV rule as it relates to research and development 

(R&D) and pilot projects: as new projects are inherently uncertain, it is difficult to justify them given the 

potentially high failure rate. In addition, the static NPV rule does not include the practical value gained 

even in failure.  This value occurs because projects are rarely complete failures or complete successes.  

Even in under-performing projects there are still some benefits generated by resolving uncertainties, 

expanding the technical base of a firm, or developing new skill sets among employees.  The NPV rule 

simply does not give any value to the expanded potential for future investments given this enhanced 

technical position of the firm, while an option based approach explicitly requires it. 

3) Abandon Option 

Managers clearly can and do abandon projects when they are not successful.  The option to abandon a 

project is valuable in itself since losses can be limited when projects do not payoff as expected.  Having 

this option can also provide an incentive to utilities to take on more risky projects since their downside 

losses can be limited.  When projects go south, the NPV rule may encourage managers and regulators to 

adhere to prior decision instead of thinking about past investments as sunk costs, thereby causing 

utilities to continue to operate subpar performing assets longer than financially or operationally 

reasonable. 

Barriers to Valuing Real Options  
When evaluating investment decisions in the MRU context, including the value of managerial flexibility 

can make a significant difference.  In many cases it can flip a decision from a “no-go” decision to a “go” 

decision.  This may be true particularly when uncertainties and investment costs are both high – as is the 

case for many newer technologies - simply relying on NPV-like assessments can significantly undervalue 
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 Steven Grenadier, A. Weiss, “Investment in Technological Innovations: An Option Pricing Approach,” Journal of 
Financial Economics, Vol. 44, at 398 (1997) 
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projects and lead to many missed opportunities.  Forgoing these projects represents a loss in value to 

utilities, their investors, and to the customers, as well as a loss in the general welfare of the public.   

Utility 
Utility operations managers are usually tasked with establishing priorities in the MRU context.  In our 

discussion with the utilities, it was clear that keeping the lights on and the water flowing were the 

underlying priorities and risk reduction was at the core of the managers objectives.  The value of 

developing new processes and installing new technology was seen in the context of how it could reduce 

risk within the scope of their planning horizon and authority.  As a result, the ability to value new 

information enabled by advanced technology may be limited by a utility’s planning outlook.  This can be 

seen in several ways:  1) all else being equal, the manager has little incentive to invest in current or new 

technology, since the payoff of new technology is likely beyond their planning horizon; 2) maintaining 

current technology due to the familiarity or comfort with the technology is a low risk option; 3) taking 

risks regarding newer technology may negatively impact reliability metrics within the scope of their 

budget cycle; 4) historical budget constraints are biased towards using the current technology which 

cost less than newer technology in the short run; and 5) the manager and employees may lack the 

appropriate level of training to use the new technology.  Each of these issues essentially undervalues 

information and experimentation with advanced technology, and may unwittingly be perpetuating 

unidentified or unknown risks to the operation of the grid.18   

Understanding and valuing the capabilities of new technology is easier said than done.  Managers, like 

everyone else, have different comfort levels regarding adoption of new technology.  Limited pilots can 

help with this acceptance, but allowing and encouraging managers to trial these new technologies under 

a variety of situations can both provide much needed real world experience with the technology as well 

as provide managers an opportunity to have some experience working with the technology.  Without 

enabling these real world trials, breaking down this risk aversion at the local level will continue to be a 

challenge, and may delay the eventual adoption of advanced technology.19 

Regulatory  
Just as often, the regulator may act as the barrier to utility investment in advanced technologies.  While 

the Commission has encouraged and supported the investment in some advanced technologies, such as 

Advanced Metering Infrastructure (AMI), it is not as simple with other technologies.  Recently, the 

Commission rejected providing SDG&E with full funding for several Smart Grid-related projects, siding 
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 A related barrier is the GRC cycle itself which relies on a three year budgeting cycle; the extent to which that 
cycle may also provide a disincentive for longer term planning horizons in favor of shorter term costs is examined 
below. 
19

 There is an analog to this problem in cybersecurity where utilities manage cybersecurity to be compliant with 
standards and not necessarily to the actual risk.  Recognizing the risks with managing cybersecurity protocols to 
meet compliance standards, the industry is moving towards a risk-based approach where utilities manage 
cybersecurity protocols to address the risks.  See, e.g., “Electricity Subsector Cybersecurity Capability Maturity 
Model,” Department of Energy (May 31, 2012); “Electricity Subsector Cybersecurity Risk Management Process,” 
Department of Energy (May 2012); and “Guidelines for Smart Grid Cyber Security,” The Smart Grid Interoperability 
Panel- Cyber Security Working Group, NIST Intergovernmental Report 7628 (August 2011). 
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with the consumer advocates that the technologies were too risky and benefits were unknown.20  The 

riskiness and unknowns about future needs played a role in determining appropriate funding levels for 

these investments.  Other states have made similar pronouncements on a number of other advanced 

technologies, including AMI.21  Oftentimes, a regulatory determination is made primarily on a cost-

effectiveness or NPV-like rule determination. Unfortunately, the nature of these new technologies does 

not readily submit to a simple NPV rule evaluation, nor do they fit in a 3 year GRC planning cycle.  As we 

have discussed, the NPV rule consistently undervalues investments, particularly when investment 

uncertainty and costs are high.  Some examples of undervaluation include; the cost savings from AMI 

attributable to conservation that results from responding to AMI information such as more time 

sensitive price data, or operational efficiencies from predictive modeling of future demands such as 

electric vehicle.  Attempting to value advanced technologies based on time static and simple NPV tests 

quite frankly misses that vast bulk of the opportunity that these technologies offer.  

Regulatory risk is present in all utility programs, but infrastructure investments pose challenges to this 

model.  Since many infrastructure investments have costly upfront expenses, ensuring that the utility is 

including all the potential value in technological risks is important and should be understood and 

encouraged by regulators.  Encouraging utilities to consider, test, and plan to invest in new technologies 

at the urging of a PUC, then rejecting the funding for those programs is not productive in building the 

grid, or water system, of the future.  None of this is to say that regulators should provide a blank check 

to utilities to test any new technology; rather, allowing the utility to manage a risk portfolio, 

understanding that some products will fail and others will succeed, will lead to better utility planning 

and execution, as well as provide the utility better opportunities to try out new technologies in a more 

responsible manner.22  These trials also can be a proving ground for new technologies and provide for a 

clearer road map for future investments and needs.  Regulators should not hide from technology or 

failures of technologies, for without these trials and errors we lose the ability to improve. 

Current Metrics 
The ability to measure performance of the system is critical to making wise MRU investment decisions. 

Metrics of technical and operational performance provide regulators, suppliers, utilities, and the public 

with a basic understanding of the quality of service provided to customers.  It is imperative, however, to 

have metrics that are understandable, usable, actionable, and meaningful in order to be useful.  Indeed, 

without metrics it is difficult to understand how successful, or unsuccessful, utility investments in 
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 See, D.13-05-010 at 100-101, 132, 208-232 (May 14, 2013).  See also, D.12-11-051 at 118 and 129 (November 29, 
2012) (decision on Southern California Edison Company GRC reducing funding for several Smart Grid projects). 
21

 See, e.g., Proceeding on Motion of the Commission to Consider Regulatory Policies Regarding Smart Grid Systems 
and the Modernization of the Electric Grid, “Smart Grid Policy Statement,” New York Public Service Commission, 
Case 10-E-0285, at 30-31 (August 19, 2011) (finding that “[m]any new smart grid technologies are still expensive, 
and the risks associated with such technologies can be significant.  We believe it is most appropriate to start with 
technology investments that can provide a relatively certain return, and continue to evaluate technologies whose 
potential benefits remain uncertain, particularly for technologies such as smart meters that are dependent on 
intensive customer engagement of behavior changes to produce those benefits.”).   
22

 Allowing this portfolio approach should also span beyond a single GRC cycle precisely because needs and 
priorities may change over time; flexibility itself should be considered valuable. 
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operations have been.  The conventional way to evaluate investments was based on historical cost 

benchmarks along with an NPV-like analysis, but when the option value of investments is included, 

information quality becomes more important.  A by-product of including real options in investment 

decisions is that uncertainties can be identified and resolved more effectively than with a simple NPV-

like investment rule.  Detailed metrics with sufficient resolution and granularity are an important 

prerequisite for determining if uncertainties have in fact been resolved.  Determining which 

uncertainties can be resolved by which technologies will be increasingly difficult in the increasingly 

dynamic and complex utility environment.  New systems and technologies will have different types of 

impacts on the network and understanding how these technologies influence performance is critical to 

understanding the effectiveness of the new technical options.  The ability of our current set of metrics to 

provide the requisite level of information to assess new investments should be reviewed as new 

technology can provide more detailed information about the performance of the grid, network, and 

associated investments. 

1) Electric service 

In 1996, the Commission issued D.96-09-045 which adopted reliability reporting requirements for the 

electric utilities in California under Commission jurisdiction.  That decision adopted SAIDI, SAIFI, and 

MAIFI as the three metrics by which the Commission (and the public) can measure how reliable utility 

service is for the utilities.  In adopting these standards, the Commission noted that  

Uniform and measurable system standards are an important first step in 
defining reliability.  They will help us fulfill our commitment to 
preserving reliability at levels that we have previously accepted as 
reasonable.  In the absence of any statute or Commission rule defining 
statutorily acceptable performance measures of reliability, and 
recognizing that reliability is strongly tied to costs, we refer to 
"statutory reliability" as those levels of reliability historically accepted as 
reasonable, as measured by indices then in use at the time.  It is our 
goal to encourage improvement in this area.23   

Although this decision was adopted at the beginning of California’s experiment with restructuring and 

retail choice, many of the same concerns raised in that decision are still valid today, notably that costs 

associated with reliability may be getting short shrift as utilities (as directed by state law and 

Commission policy) focus on other areas of service.24 

The metrics adopted by the Commission are the three most commonly identified metrics in the 

electricity industry for measuring the reliability of the distribution grid.  These metrics, defined below, 
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 D.96-09-045 at 11-12 (July 21, 2001).  It is also worth noting that the Decision identified that the adopted 
reliability measures may act as a floor and provided details regarding a performance-based ratemaking mechanism 
that was to counter the utility desire to reduce costs.   
24

 Indeed, D.96-09-045 also noted that “[a]lthough system measures of reliability may give us these means for 
holding utilities accountable to measurable criteria, satisfaction of system measures is not a shield … System 
measures may mask more localized problems, and the utility may still be found to have acted unreasonably with 
respect to maintenance or replacement of some portion of the system.”  D.96-09-045 at 12. 
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form the basis of our understanding of the distribution grid.  However, these metrics really only tell part 

of the story as advanced technology has the capability to provide greater visibility down into the 

distribution grid.   

SAIDI is defined as follows:  

The total minutes of sustained customer interruption divided by the 
total number of customers, expressed in minutes per year.  It may be 
expressed in smaller time periods (month or quarter) or smaller 
portions of the system (region or circuit) upon request.  It characterizes 
the average length of time customers were without power during the 
time period. 

SAIFI is defined as follows: 

The total number of sustained customer interruptions divided by the 
total number of customers, expressed in interruptions per customer per 
year.  It may be expressed in smaller time periods (month or quarter) or 
smaller portions of the system (region or circuit) upon request.  It 
characterizes the average number of sustained power interruptions for 
each customer during the time period. 

MAIFI is defined as: 

The total number of momentary customer interruptions divided by the 
total number of customers, expressed as momentary interruptions per 
customer per year.  It may be expressed in smaller time periods (month 
or quarter) or smaller portions of the system (region or circuit) upon 
request.  It characterizes the average number of momentary power 
interruptions for each customer during the time period. 

2) Water Service 

Unlike with electricity service, service or reliability metrics for water companies are less developed.  For 

the most part, metrics associated with water tend to focus more on quality than on reliability.  However, 

there are other performance measurements that could be used to better monitor water service since 

water quality, while very important, fails to address service quality.  For example, advanced metering 

infrastructure (AMI) could be used by a water company to gain insight in water loss through the 

network, especially if used in conjunction with other information.  AMI can also support better billing 

practices, provide customers with more detailed information about their usage, and support new, 

innovative rates for customers.  Most importantly, AMI can be used to reduce non-revenue water losses 

and associated delivery costs.  Indeed, many municipal water utilities cite these savings as support for a 

water AMI use case.25  

                                                           
25

 See, e.g., City of Albuquerque and Bernalillo County (http://www.publicworks.com/doc/albuquerque-bernalillo-
county-water-utility-0001), City of Dubuque (http://www.cityofdubuque.org/DocumentCenter/Home/View/3116),  
and City of San Francisco (http://www.sfwater.org/index.aspx?page=51). 

http://www.publicworks.com/doc/albuquerque-bernalillo-county-water-utility-0001
http://www.publicworks.com/doc/albuquerque-bernalillo-county-water-utility-0001
http://www.cityofdubuque.org/DocumentCenter/Home/View/3116
http://www.sfwater.org/index.aspx?page=51
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Clearly, advanced technology provides utilities and the regulator with the potential for a new and vast 

array of metrics and an understanding of the utility’s system.  Yet, advanced technologies, like AMI for 

water, is typically considered expensive and not worth the cost primarily because water can be stored, 

has less “peak/off peak” issues compared to electricity, and water has fewer reliability concerns than 

electricity.  However, service quality and operational savings still matter, and should be measured.  For 

example, advanced technologies have the ability to help water utilities reduce non-revenue water 

losses, which provide direct savings to customers.  Information can be used to help reduce leaks as well 

as assist in identifying more leaky pipes or homes, which can provide significant cost savings to the 

utility and the customer.   

A second potential measurement that can be implemented would be water pressure at certain points 

throughout the network.  Assuring sufficient water pressure at a location or premise is a basic quality of 

service responsibility for water utility; in much the same way as an electric utility ensures a level of 

voltage at each premise.  Indeed, electric meters can (and do) measure voltage, as well as current; it is 

expected that advanced water utilities will be able to measure water pressure at a premise. 

Fundamentally, adequate and accurate metrics for service and quality require additional information 

which is currently unavailable, not for lack of technology, but, rather, for lack of investment and 

installation across the service territories of the utilities.  Until better information can be obtained, any 

measurements must, by necessity, be at the macro level, which may help with overall system 

performance, but not necessarily at the customer level.   

Conclusion 
Maintaining critical electricity and water infrastructure is of tremendous value.  Reliable electric and 

water services establishes a fundamental base for the economy, but an expansion of our population, 

changes to our environment, and an explosion of new technology are presenting new threats and 

opportunities to utilities.  The challenge we now face is how to leverage new technologies in order to 

mitigate these threats.  This new uncertainty for industries that have been weaned in an environment of 

certainty may be a challenge.  It will require that both utilities and regulators think about risk in new 

ways.  What risks should be avoided and which ones should be taken?  

Fortunately methods for managing new and emerging risks already exist.  The financial sector has 

developed a rich science around risk management and financial options.  There is also an emerging field 

of real options that can be applied to utilities; adopting these new methods will require a new way of 

thinking and acceptance of some failures in the process.  While there are certain financial risks 

associated with investments in new technologies, some level of failures should be expected.  Failure is 

part of learning; when one falls down, one must get back up.  Without some amount of failure, the 

utility may not fully understand what makes an investment succeed.  This ability to learn from ones 

failure is an important and necessary step in the utilities’ technological modernization.  That is, of 

course, not to say that utilities should be investing in every technology that comes its way; utilities and 

regulators must continue to be good stewards of customers and shareholders money, but all parties 

should be willing to accept that sometimes an apparently prudent investment in technology does not 
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work out as anticipated.  Understanding why something failed can then allow the utility to learn from 

that experience, understand where the technology failed, and move forward.  The use of NPV methods 

tends to undervalue the usefulness of data and information that could be gained from the adoption of 

new technologies.  For example, as discussed above, while NPV methods may tend to discourage 

investments in R&D, real options valuation encourages R&D by capturing the intangible benefits of R&D 

to a firm.   

Learning to accept failures, and recognizing the value of developing real options and robust strategies, is 

usually frowned upon by regulated utilities but can be tremendously valuable in a changing 

environment.   

Recommendations  
The main assertion of this paper is that utilities have a dis-incentive to take risks and proactively develop 

a robust and technologically advanced network.  It is our belief that this dis-incentive derives from the 

fact that utilities possess an option value that regulators do not recognize or measure.  As a 

consequence, utilities have an opportunity to capture part of this value by adjusting the timing of 

investments.  In many cases, utilities do not in fact have these options, e.g., in critical systems, but to 

the extent they do have them and can exercise them represents an untapped opportunity to improve 

the overall system.  In order to optimally utilize this potential value we make several recommendations:  

 In their GRCs, utilities should explain how they value information and new technology as part of 

their overall investment strategy, including defining the likelihood of an substantial impact event 

occurring and the consequence of it happening 

 In their GRCs, utilities should also explain how they may use advanced technologies, either 

already in the field or proposed to further reduce the risk of a substantial event on their grid or 

system. 

 In their GRCs, utilities should describe the methodology they use to prioritize risks and 

technology, and based on that methodology, explain how far along they are in implementing the 

prioritization. 

 The Commission should develop more effective metrics for water and electric grid that can be 

used to assess the impact of new technologies.  Identify systems as critical or non –critical.  For 

example, the Commission should develop new metrics for a “risk based” portfolio that allows 

utilities to outline specific new technologies they would like to value but do not due to current 

constraints.   

 The Commission should re-assess the budgeting process and rates of return to reflect the 

assumption that utilities have an accounted for option value built into some budgets.  This may 

also include allowing for budgets to span across GRC cycles. 
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