LEAP 2022 LOAD IMPACT EVALUATION

Demand Response Providers' 2023 Final Report Workshop Hosted by the California Public Utilities Commission May 10, 2023

AGENDA

- » Introduction
- » Leap portfolio
- » Events
- » Ex Post
 - Methods
 - Results
- » Ex Ante
 - Methods
 - Results

2022 LEAP PORTFOLIO

Based on Customer and Event Data

- » Multiple load types
- » High frequency of events
- » Geographic diversity

Castan	Load Type	Er	nrollment Count	Unique Event	Unique	
Sector		PG&E	SCE	SDG&E	IDs	SubLAPs
	Cold Storage				10	3
	Electric Vehicle	17			13	6
	HVAC	547	1,151	224	172	21
Commercial	Large Battery Storage	13		14	166	8
	Manufacturing / Process				25	2
	Pumping	142	394		52	14
	Small Battery Storage		12		161	5
Total Comme	ercial	736	1,571	252	599	59
	Electric Vehicle	2,103	2,420	715	417	21
Residential	HVAC	14,395	817	641	178	21
	Other				10	2
	Storage	230	464	47	294	21
Total Residential		16,732	3,701	1,403	899	65
Grand Total		17,468	5,272	1,655	1,498	124

METERS BY EVENT

Average and percentiles by load type

» For residential load type, use of panel data models make low-participation events more difficult to model.

			Average #						
Sector	Load Type	# Events	Meters	10%	25%	50%	75%	90%	Max
	EV - Resi	2,318	214	19	57	148	319	492	838
Residential	HVAC- Resi	976	415	11	44	185	397	890	3,445
	Resi Storage	1,099	27				22	122	192
	Battery Storage								
	Cold Storage	36							
	EV - C/I	126							
Commorcial	HVAC - C/I	1,009	37				16	42	83
commercial	Large Battery Storage	317							
	Manufacturing / Process	53							
	Pumping	276	25				10	19	62
	Small Battery Storage	267							

DATA SOURCES

Both Non-Residential and Residential Load Types

- » Ex post impacts relied on the following data sources:
 - Customer/meter information: Load type, location, etc.
 - Meter data: hourly net kWh readings.
 - Event data: Event ID, event type, start and end time by meter.
 - Weather data: Hourly temperature readings, mapped to meters by nearest coordinates.
- > Ex ante impacts relied on the above sources, plus:
 - Ex ante weather scenarios, provided the utilities and CAISO.
 - Low and high enrollment forecasts by load type.

EVENTS BY LOAD TYPE AND MONTH

- » Based on unique "event IDs"
- » Predictably, more events during summer.
- » Residential EV most evenly distributed over the year.

EX POST IMPACTS

RESIDENTIAL APPROACH

- » Panel data models estimated for each SubLAP and event month.
- » Model selection based on a proxy event day to select best model based on out-of-sample performance.
- » Estimate impacts by SubLAP for each month separately.
 - Impacts estimated separately for each event ID, with overlapping event IDs combined at the meter level:
 - '2022-11-081921' individual Leap event
 - '2022-10-061617' '2022-10-061920' Test and market event.
 - '2022-09-071820' 'ELRP2022-09-071621' Overlapping ELRP and Leap event.
- Participation is not uniform, so in some cases those meters not participating in an event can act as control for those meters that are.

NON-RESIDENTIAL APPROACH

- » Individual regression models for each meter, with some aggregation where appropriate.
- » Analysis to assess weather sensitivity of meters to determine a model family, done seasonally.
- » Model selection based on a proxy event day to select best model based on out-ofsample performance.

EX POST IMPACTS

Per Capita kW by Load Type and Month

Non-Residential							l	Residential		
	Cold			Large Battery	Manufact./		Small Battery			Battery
Month	Storage	EV	HVAC	Storage	Process	Pumping	Storage	HVAC	EV	Storage
Jan.			0.8	631.7				0.11		
Feb.			0.4	744.4			11.2			
Mar.			6.2	150.6	81.7	69.7	53.7	0.03	0.12	
April			5.3	94.9				0.08		
Мау			1.6	215.7	18.8	33.4	7.3		0.02	
June	131.5		6.1	52.5	76.8	35.8	40	0.17		0.11
July	18.6	0.3	1.8	342.2	8.2	46.9	19.6	0.18	0.03	0.09
Aug.	23.8	5.2	2.2	475.1	34.7	41.1	57.8	0.27		
Sept.	0.4	34.4	0.8	227.9	6.8	3.7	79	0.25	0.03	
Oct.	17.9		0.8	869.4	2.1	16.4	130.5	0.13	0.13	0.25
Nov.			0.7	227.9	1.2	394.4	145.6	0.01		
Dec.			0.8	77.2	0.7	5.6	23.9	0.03		

VERDANT

EX POST IMPACTS

By Month and Load Type

» Full ex post MW resource potential based on all meters enrolled

SEPTEMBER HEAT WAVE EVENTS

Unique Events by Date and Load Type

- » Late August through mid-September had many events.
- » Up to nine consecutive days in some cases.
- » In some cases, possibly led to event fatigue.

EX ANTE IMPACTS

APPROACH

VERDANT

- » Models informed by ex post, but modified as follows:
 - Events interacted with a weather term
 - Specification employs and "hour-of-event" approach.
 - Unmodeled RA hours use derated impacts from modeled hours.
- » Model impact parameters applied to weather scenarios to reflect impacts under different conditions.
- » Per-capita impacts multiplied by low and high enrollment scenarios.

Date	Hour Ending		Event	EH1	EH2	EH3
9-Aug		16	Ν	0	0	0
		17	Ν	0	0	0
		18	Y	1	0	0
		19	Y	0	1	0
		20	Y	0	0	1
		21	Ν	0	0	0
10-Aug		16	Ν	0	0	0
		17	Y	1	0	0
		18	Y	0	1	0
		19	Ν	0	0	0
		20	Ν	0	0	0
		21	Ν	0	0	0

EX ANTE IMPACTS BY LOAD TYPE

August Aggregate Impacts

		Low Case		High Case			
Sector and Load Type	Forecast Participant Count	CAISO 1-in-2 (MW)	Utility 1-in-2 (MW)	Forecast Participant Count	CAISO 1-in-2 (MW)	Utility 1-in-2 (MW)	
Commercial							
Cold Storage	1	0.02	0.02	2	0.04	0.04	
HVAC – Non Residential	4,127	25.24	28.16	4,953	30.29	33.79	
Large Battery Storage	92	9.45	9.96	111	11.40	12.01	
Manufacturing/ Process	8	0.25	0.25	10	0.31	0.31	
Other	64	0.20	0.17	77	0.24	0.21	
Pumping	789	35.15	35.88	947	42.19	43.06	
Small Battery Storage	25	0.68	0.71	30	0.82	0.86	
Residential							
Res HVAC	26,919	13.96	14.21	32,303	16.75	17.06	
Total							
Total	32,025	84.95	89.36	38,433	102.04	107.33	

Leap Program Year 2022 Load Impacts 16

- » Low enrollment forecast.
- » Utility 1-in-2 weather.

QUALIFYING CAPACITY VALUES

- » August 1-in-2 weather year
- » Utility weather scenario
- » Low and high growth scenarios in 2024

IOU Service	Low Growt Scen	h Forecast ario	High Growth Forecast Scenario		
Territory	Number of Customers	MW	Number of Customers	MW	
PG&E	18,372	14.51	22,048	17.45	
SCE	10,501	61.89	12,602	74.30	
SDG&E	3,152	12.95	3,783	15.59	
Total	32,025	89.36	38,433	107.33	

IMPACT RECONCILIATION

2021 Ex Ante to 2022 Ex Post

» Per-capita impacts, FY 2022 ex ante for August utility 1-2 with FY 2023 ex post results

Load Type	FY 2022 Ex Ante	FY 2023 Ex Post
Cold Storage	168	23.80
Non-Res HVAC	7.0	2.2
Large Battery Storage	1,322	475
Pumping	83	41.1
Small Battery Storage	13	57.8
Res HVAC	0.60	0.27

IMPACT RECONCILIATION

Caveats

- » For non-residential load types, the ex post impacts are highly sensitive to customer makeup.
- » For the residential HVAC, impacts highly sensitive to geography, so weighting of ex ante results versus actual meters dispatched influences results.
- » Methods a small factor reasonable baselines should yield similar results.
- » Change in evaluator prevents granular investigation into specific causes.

CONCLUSION AND RECOMMENDATIONS

CONCLUSION AND RECOMMENDATIONS

- » Full extent of ex post impacts incomplete.
 - Some events could not be estimated due to insufficient data or load volatility.
 - Appropriate extrapolation for volatile customers/load types merits investigation.
- Some resources would benefit from having net load, particularly residential EV and battery storage:
 - Very high presence of net energy metering customers.
 - Presence of zero load makes it hard to model.
- Ex ante methods could better portray how resources perform importance of start time, length of events, and other factors are all obscured by current methods.

THANK YOU

