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 With the rapid deployment of smart meters, utilities and regulators across the globe are 

considering the deployment of time-varying rates for residential customers. Ontario, Canada, 

has deployed time-of-use rates in the province for several years.  California plans to deploy 

time-of-use rates as the default tariff beginning in 2019. However, many observers still disagree 

on the magnitude of demand response that would be induced by time-varying rates, such as time-

of-use rates, critical peak pricing rates, peak time rebates and real-time pricing. Our analysis of 

the impact of several studies of time-varying rates from across the globe finds that much of the 

discrepancy in results across the studies goes away once demand-response is expressed as a 

function of the peak to off-peak price ratio. We find that customers do respond to higher peak to 

off-peak price ratios by lowering their peak demand, and this effect is amplified by the presence 

of enabling technologies. We also find that there are diminishing returns to dialing up the peak 

to off-peak price ratio beyond a certain threshold. 

 

Introduction 

  The first wave of time-varying rates studies began in the 1970s when twelve pricing 

experiments were carried out in the US. They were administered by the Federal Energy 

                                                           
1 The authors are economists with The Brattle Group. They are grateful for comments on early drafts of the paper by 
several people, including Neil Lessem, Ryan Hledik and Phil Hanser. They are also very grateful to the authors of 
the studies whose results made it possible to build the Arcturus database and to carry out the meta-analysis that is 
presented in the paper. This paper reflects the views of the authors and not necessarily the views of their employer. 
Comments can be directed to ahmad.faruqui@brattle.com. 
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Administration, a predecessor to the U.S. Department of Energy.2 Approximately 7,000 

customers were enrolled in the first wave. Although the results were promising, the quality of the 

experimental designs in many cases left much to be desired and thus the results were not of 

immediate use by regulators, policy makers and utilities.  

 The second wave of studies came in the mid-1980s, when the Electric Policy Research 

Institute (EPRI) reexamined the results of the five most promising pilots from the first wave and 

found consistent evidence of demand response across the five studies. However, in the absence 

of smart meters, the momentum was lost. As the industry began to restructure in the mid-to-late 

1990s, time-varying rates were given low priority and next to nothing happened for two decades.   

 California’s energy crisis of 2000-01 triggered renewed interest in the topic. Time-

varying rates were judged by many experts and the regulators in California in particular to be a 

good way to link retail and wholesale markets and prevent a recurrence of the energy crisis. The 

argument was made that if customers had an incentive to reduce usage during costly peak 

periods, demand and supply would come into balance automatically and avert the need for 

administrative solutions to avert a crisis.  

 In the third wave, the pilots were expanded to include enabling technologies like smart 

thermostats and in-home displays. The third wave also incorporated dynamic rate designs that 

went beyond the traditional time-of-use (TOU) structure, such as critical-peak pricing (CPP), 

peak-time rebate (PTR), and variable-peak pricing (VPP).  

 The fourth wave of pilots will likely evolve to incorporate demand charges. Over 30 

utilities in the U.S. currently offer residential demand charges, and more utilities are interested in 

expanding them to their residential customer base. In a recent general rate case, Arizona Public 

                                                           
2  Faruqui, Ahmad and J. Robert Malko, “The residential demand for electricity by time-of-use: A survey of twelve 
experiments with peak load pricing,” Energy 8:10, 1983, pp. 781-795. 



3 
 

Service, which has about 10% of its customers on a demand charge, had proposed deploying 

demand charges on a default basis for its residential customers. Earlier, Oklahoma Gas & 

Electric had made a similar proposal for all those customers but who were on the company’s 

Smart Hours program, a VPP rate. 

 Over time, we have built a database of the results from dynamic pricing deployments 

from around the globe. It is called Arcturus, since the results take the form of arcs of price 

response. We believe this is the largest repository of time-varying rate designs in the world. Its 

contents are drawn mostly from the third wave, whose studies feature almost 1.4 million 

customers, compared to the first wave’s 7,000 customers. It also includes the results from 

Ontario’s default deployment of TOU rates to the four million customers in the province. Results 

are also included from a study that was done on Italy’s default TOU rate deployment to some 25 

million customers.3 

 

Arc 1.0 and Arc 2.0 Comparison 

 Faruqui and Sergici published the first analysis of the Arcturus database in this journal in 

2013.4 Due to growing industry interest in dynamic pricing, Arcturus has more than doubled in 

size since then. In 2013, Arcturus 1.0 contained 163 experimental pricing treatments from 34 

pilots. Arcturus 2.0 contains 337 treatments from 63 pilots.  Arcturus 2.0 also contains 

information from two additional countries. Arcturus 2.0  features new categorical information 

                                                           
 
3 Presented by Walter Graterri and Simone Maggiore, “Impact of a Mandatory Time-of-Use Tariff on the 
Residential Customers in Italy,” Ricerca Sisterna Energetico, November 14-16, 2012, available: 
http://www.ieadsm.org/wp/files/Content/14.Espoo_IEA_DSM_Espoo2012_SimoneMaggiore_RSE.pdf  
 
4 Faruqui, Ahmad and Sanem Sergici, “Arcturus: International Evidence on Dynamic Pricing,” The Electricity 
Journal, August/September 2013. 
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about the pilots as well, including details on the duration of each rate design’s peak hours, 

whether the pilot was administered on an opt-in or opt-out basis, and if the pilot measured 

impacts in the summer, winter, or both. Finally, it contains pilots that offer the latest types of 

enabling technologies. For example, in 2016, San Diego Gas & Electric offered the Ecobee 

Smart Si thermostat to customers on its peak-time rebate program.5 The Ecobee Smart Si 

thermostat allows a residential customer to monitor and control his or her energy usage remotely 

from a smartphone or computer. Additionally, some Ecobee thermostats are compatible with 

Amazon’s voice-enabled home assistant, Alexa. This allows customers to more easily set their 

thermostats’ cycling tendencies. 

 For comparison, the results of Arcturus 1.0 and Arc 2.0 are plotted together in Figure 1. 

The curves were estimated using regression analysis, and the estimation is described in further 

detail later in this paper. Figure 1 shows that the slope of Arcturus 2.0 is slightly steeper than its 

predecessor. This implies there are greater gains to customer load-shifting from incremental 

increases in the peak-to-off-peak price ratio. However, the intercept on Arcturus 1.0 is higher 

than Arcturus 2.0, which means Arcturus 1.0 estimates greater peak reductions than Arcturus 2.0 

until a price ratio of approximately four. 

                                                           
5 Itron, Inc., “2016 Impact Evaluation of San Diego Gas & Electric’s Residential Peak Time Rebate and Small 
Customer Technology Deployment Programs,” March 20, 2017, available: 
http://www.calmac.org/publications/SDGE_PTR_2016_Final_Report.pdf  
 

http://www.calmac.org/publications/SDGE_PTR_2016_Final_Report.pdf
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Figure 1: Comparison of Arcturus 1.0 (2013) and Arcturus 2.0 (2017)  

Experimental Treatments without Enabling Technology 

 

 

 The curves in Figure 1 do not include the effect of enabling technologies like smart 

thermostats. As discussed later in this paper, enabling technologies enhance a customer’s ability 

to reduce peak demand. Similar to Figure 1, Figure 2 compares Arcturus 1.0 and Arcturus 2.0 

for treatments that feature enabling technology. Just like Figure 1, the slope of Arcturus 2.0 is 

slightly steeper than Arcturus 1.0.  
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Figure 2: Comparison of Arcturus 1.0 (2013) and Arcturus 2.0 (2017)  

Experimental Treatments with Enabling Technology 

 

 One notable difference between Arcturus 1.0 and the model presented in this paper is the 

incremental impact of enabling technology. Arcturus 1.0 estimates, on average, that a customer 

assisted by enabling technology will reduce his or her peak usage by 5.4% more than a customer 

without enabling technology. In contrast, Arcturus 2.0 estimates an incremental effect of 4.6%, 

which is almost a percentage point less than the original Arcturus. The details of the Arcturus 2.0 

estimation, including summaries of the dataset and the model specification, are discussed in the 

following sections.  

 

The Studies 

 Spanning four continents, Arcturus contains 337 experimental and non-experimental 

pricing treatments from over 60 pilots. The pricing experiments typically take the form of a 

treatment group that is enrolled on a time-varying rate and a control group that remains on a 
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standard residential rate. The purpose of the experiment is to measure how much customers 

reduce their electricity usage during peak-hours in comparison to a control group. 

 The studies begin as early as 1997, and the most recent study was published in 2017. 

Only pilots that adhere to the rigorous standards of experimental research design are added to the 

database. Similarly, results from pricing treatments that are not statistically significant at 

acceptable levels are deemed to have no effect.6 Figure 3 shows how interest in time-varying 

pricing experiments has grown considerably over the last twenty years. Specifically, Figure 3 

plots the number of cumulative pricing treatments by year. Each pilot consists of one or more 

pricing treatments. For example, Xcel Energy carried out a pilot from October 2010 to 

September 2013 that introduced customers in Boulder, Colorado to a variety of TOU, CPP, and 

PTR pricing treatments.7 The single pilot reported impacts for sixteen pricing treatments. 

                                                           
6 These pricing experiments are excluded from the model’s estimation of customer impacts but are included in the 
bar charts below.  
 
7 Gouin, Andre and Craig Williamson, “SmartGridCity Pricing Pilot Program: Impact Evaluation Results, 2011 – 
2013,” prepared for Xcel Energy, December 6, 2013, available: 
http://s3.amazonaws.com/dive_static/diveimages/SGC_Pricing_Pilot_Evaluation_Report_FINAL-1.pdf  

http://s3.amazonaws.com/dive_static/diveimages/SGC_Pricing_Pilot_Evaluation_Report_FINAL-1.pdf
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Figure 3: Cumulative Pricing Treatments  

Arcturus Database 

 

  

  Arcturus contains four different types of time-varying rate designs: TOU, CPP, PTR, and 

VPP, with the majority being TOU rate designs. These types of designs break up the day into 

two or more periods and charge a higher price per kWh in one period in comparison to the 

other(s). The higher price period is known as the peak-period and the lower price period is 

known as the off-peak period. The differential between prices in the peak-period and off-peak 

period are typically designed to reflect the marginal costs a utility incurs for producing 

electricity. TOU rate designs may also break up the calendar year into seasons and charge a 

higher price in the summer months and a lower price in the winter months for summer-peaking 

utilities.  

 The second and third rate designs contained in Arcturus are CPP and PTR. These two 

differ from TOU designs in that the higher price periods are not known well in advance. Under a 
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CPP or PTR structure, the utility notifies customers a day in advance and sometimes on the day 

of the event. In much of the U.S., peak events typically coincide with the hottest days of the 

summer when load from residential air-conditioning drives up forecasted peak demand. Many of 

the pilots planned to hold at least ten event days during the study period and at most fifteen. 

Sometimes, the study period was uncharacteristically cool, leading to fewer event days during 

the study period. On an event day, CPP charges customers a peak price that is often several 

multiples of the off-peak price. In some cases, the critical peak price exceeds $1 per kilowatt-

hour. Similarly, a PTR rate design resembles CPP, except customers receive a rebate for shifting 

on-peak usage to the off-peak hours rather than paying a higher rate.  No discount is offered 

during the off-peak periods and the standard tariff applies during all hours. 

 VPP is the fourth and final rate design contained in Arcturus. During the peak period, 

customers are charged a rate that varies by the utility and usually mimics the wholesale price of 

electricity. In this way, VPP is a hybrid of a TOU rate design and real-time pricing. Because 

peak-prices mimic the market prices for electricity, VPP rate designs more accurately match the 

utility’s cost of producing electricity. As seen in Figure 4, there are fewer VPP rate designs than 

TOU, CPP, and PTR rate designs.  
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Figure 4: Summary of Rate Designs  

Arcturus 2.0 

 

 Nearly three-quarters of the studies in Arcturus were conducted during the summer 

months. Often, utilities conduct these pilots during the summer months because they are 

summer-peaking utilities and can benefit most from peak reductions in the summer months. 

However, there are winter-peaking utilities in New Zealand and Ontario that have conducted 

their studies during winter months.  

 Figure 4 also shows that 84% of the treatments are based on an opt-in recruitment 

design. It is politically challenging to administer a pilot on an opt-out (or default) design because 

customers may be resistant to enrollment on an experimental rate without prior consent. This is 

an important point because the peak impacts of a full-scale deployment are more likely to 

resemble the effects of an opt-out design rather than opt-in. Under an opt-in design, the 

customers who enroll in the experimental rate are typically more conscious of their energy usage 

and are typically more conservation-minded. Faruqui, Hledik, and Lessem (2014) show that 

although default rate designs result in smaller impacts per customer, the aggregate peak impacts 

Rate Design N
Summer 

Only Rate
Winter 

Only Rate
Annual

Rate Opt-In Opt-Out
Peak Hours 

Greater Than 4
[1] [2] [3] [4] [5] [6] [7] [8]

TOU 153 59% 19% 22% 75% 25% 64%
CPP 105 70% 6% 25% 90% 10% 36%
PTR 64 91% 5% 5% 91% 9% 52%
VPP 15 87% 7% 7% 100% 0% 60%

All 337 69% 12% 19% 84% 16% 53%

RecruitmentSeason
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are higher compared to opt-in rate designs.8 The higher aggregate impacts come from the higher 

enrollment rates under a default rate. Under a default rate, customers are less likely to actively 

opt-out of the dynamic rate design and thus stay on the rate by default. In contrast, opt-in rates 

require utilities to actively market the rate product and recruit customers for enrollment. This is a 

costly process and results in aggregate enrollment rates that are lower than default rate designs. 

The Smart Pricing Options Pilot administered by Sacramento Municipal Utility District includes 

a detailed study of the impacts of default TOU and CPP rate designs.9  

  Arcturus also contains data on each pricing treatment’s peak period duration. Figure 4 

shows that half of the experimental treatments feature peak periods that are greater than four 

hours. On average, the duration of CPP rates are much shorter than the other types of rate 

designs. Only a third of CPP rate designs feature peak periods lasting more than four hours.  For 

the most part, each pilot’s peak period lasted from three to five hours. However, in rare cases, 

some pilots featured peak periods lasting more than ten hours.  

  

Research Hypothesis 

 Our meta-analysis examines two fundamental questions. First, do customers respond to 

dynamic pricing by reducing their peak usage? Second, if customers do respond, is the treatment 

effect stronger in the presence of enabling technology? The depth of Arcturus allows us to 

explore such a hypothesis. Figure 5 ranks the peak impact of each experimental treatment from 

lowest to highest. It is clear that there is a wide range of peak impacts in Arcturus. For this 

                                                           
8 Ahmad Faruqui, Ryan Hledik, and Neil Lessem, “Smart by Default,” Public Utilities Fortnightly, August 2014, 
available: https://www.fortnightly.com/fortnightly/2014/08/smart-default  
 
9 Potter, Jennifer M., Stephen S. George, and Lupe R. Jimenez, “SmartPricing Options Final Evaluation,” prepared 
for U.S. Department of Energy, September 5, 2014, available: 
https://www.smartgrid.gov/files/SMUD_SmartPricingOptionPilotEvaluationFinalCombo11_5_2014.pdf  
 

https://www.fortnightly.com/fortnightly/2014/08/smart-default
https://www.smartgrid.gov/files/SMUD_SmartPricingOptionPilotEvaluationFinalCombo11_5_2014.pdf
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reason, the results shown in Figure 5 do not provide conclusive answers to our research 

questions. Several peak impacts are no more than two percent while others exceed fifty percent.    

Figure 5: Pricing Treatments by Rank 

 

 After grouping the treatments by those that use enabling technology and those that do 

not, it is easier to detect a pattern in the results. Enabling technologies include devices that 

provide a customer with the ability to actively manage their electricity usage, particularly during 

the peak period. For example, Australia’s Smart Grid Smart City project used Energy Aware’s 

in-home display to communicate usage amounts and real-time prices to households.10 The utility 

could send text messages to the display to inform the customer about price changes and peak 

events. Additionally, the display shows the current price of electricity and enables the customer 

to reduce peak usage when prices are high. Figure 6 shows the distribution of peak impacts 
                                                           
10 AEFI Consulting Consortium, “Smart Grid, Smart City: Shaping Australia’s Energy Future, National Cost 
Benefit Assessment,” July 2014.  
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among treatments without enabling technology, and Figure 7 shows the distribution of peak 

impacts among treatments with enabling technology. 

 

Figure 6: All Treatments without Enabling Technology 

 

 

Figure 7: All Treatments with Enabling Technology 
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 In Figure 6, the distribution of peak impacts is clustered below a peak impact of twenty 

percent. In contrast, Figure 7 features a wider distribution of peak impacts that are not clustered 

closely together like in Figure 6. This can be partly explained by the variation in the enabling 

technologies as well as the control strategies adopted in different experiments. The wider 

distribution in Figure 7 is also consistent with the hypothesis that enabling technology increases 

a customer’s response to a price signal. Figure 8 overlays both of these distributions and shows 

that there is a clear distinction between the two types of treatments.  

 

Figure 8: Comparison of All Treatments 

 

  

 This hypothesis is verified within each type of rate design as well. Figure 9 compares the 

distributions of peak impacts for TOU rate designs with and without enabling technology. TOU 

rate designs that do not implement enabling technology result in peak impacts that are clustered 

at the ten percent mark or lower. In contrast, TOU rates that feature enabling technology result in 

a wider distribution of peak impacts. The intuition behind these results is that a customer with an 



15 
 

in-home display is more likely to turn down his or her air-conditioning unit during peak hours 

than a customer without an in-home display.   

Figure 9: TOU Treatment Comparison 

  

 This relationship between enabling technology and peak reductions is also found within 

CPP and PTR rate designs. Figure 10 shows the distribution of CPP treatments and Figure 11 

shows the distribution of PTR treatments. 
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Figure 10: CPP Treatment Comparison 

 

 

Figure 11: PTR Treatment Comparison 
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 Again, comparing the pricing treatments by technology appears to confirm part of our 

hypothesis. In the next section, we build a simple econometric model that applies a statistical test 

to answer the two research questions. 

The Arc of Price Responsiveness 

 Our hypothesis is two-fold. First, customers respond to a price signal by reducing their 

peak electricity usage. If a customer faces a stronger price signal (a higher on-peak price), then 

he or she will reduce peak electricity usage even further. Second, if a rate design is accompanied 

by enabling technology, he or she will reduce his or her peak electricity usage even more. To test 

this hypothesis, we constructed a simple linear regression model that estimates the effects of the 

peak to off-peak price ratio and the use of enabling technology. The model is simple because it 

assumes the peak to off-peak ratio is the primary determinant of variations in peak usage. Other 

factors, such as weather or income, may influence peak usage but are not included here. 

However, the simplicity of the model is also one of its strengths. It is easy to interpret and 

presents peak usage as a simple function of the peak to off-peak price ratio. 

 The model takes the form of a log-linear specification, in which the amount of the peak 

reduction is a function of the log of the price ratio.  

𝑦 = 𝑎 + 𝑏 ∗ ln(𝑝𝑟𝑖𝑐𝑒 𝑟𝑎𝑡𝑖𝑜) + 𝑐 ∗ ln (𝑝𝑟𝑖𝑐𝑒 𝑟𝑎𝑡𝑖𝑜 ∗ 𝑡𝑒𝑐ℎ) 

where y: peak demand reduction expressed as a percentage; 

ln(price ratio): natural logarithm of the peak to off-peak price ratio; 

ln(price ratio * tech): interaction of the ln(price ratio) and tech dummy variable where tech takes 

a value of 1 when enabling technology is offered with price. 
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Figure 12 presents the results of the model. The coefficient on the log of the price ratio is 

negative, indicating an inverse relationship between the price ratio and peak usage. Similarly, the 

coefficient on the interaction between the log of the price ratio and the presence of enabling 

technology is negative. The value of the coefficient on the log of the price ratio signifies that a 

10% increase in the price ratio would result in a 6.5% decrease in peak usage. The same 

interpretation holds for the coefficient on the technology interaction term. In the presence of 

enabling technology, a 10% increase in the price ratio results in a 4.6% incremental decrease in 

peak usage, for a total reduction of 11.1%. 

The standard errors of the estimated coefficients suggest this relationship is statistically 

significant. In other words, it is very unlikely that the estimated coefficients are simply a random 

estimate not statistically distinguishable from zero.  The R-squared value indicates that over half 

of the variation in the percent reduction in peak demand (i.e., demand response) can be explained 

by the independent variables.  
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Figure 12: Primary Regression Results 

 
 Dependent variable: 

  
 Peak Impact 

 Log of Peak/Off-Peak Ratio -0.065*** 

 (0.007) 
  Log of Peak/Off-Peak Ratio x Technology -0.046*** 

 (0.008) 
  Constant -0.011 

 (0.007) 
   Observations 335 
R2 0.569 
Adjusted R2 0.566 
Residual Std. Error 0.064 (df = 332) 

 Note: *p<0.1; **p<0.05; ***p<0.01 
 

 The model was estimated using a robust regression technique that down-weights outlying 

observations. By using MM-estimation, the model ensures that the estimated coefficients are not 

influenced by pilots that report substantially higher peak impacts.11 In this analysis, we used the 

“robustbase” package available through the open-source programming language R to apply the 

weights to each observation. Also, two pilots tested price ratios that exceeded 35 to 1. Because 

these ratios are on the extreme end of the sample, they were dropped from the analysis.  

 In addition to the model specification shown in Figure 12, we tested a model that 

included a binary if the rate design was administered on an opt-out basis. Based on Faruqui, 

Hledik, and Lessem’s (2014) analysis we would expect peak impacts to be lower under an opt-

                                                           
11 Yohai, Victor J., “High Breakdown-Point and High Efficiency Robust Estimates for Regression,” The Annals of 
Statistics 15:20, 1987, pp. 642-656, available: https://projecteuclid.org/download/pdf_1/euclid.aos/1176350366; 
    
Martin Maechler, Peter Rousseeuw, Christophe Croux, Valentin Todorov, Andreas Ruckstuhl, Matias Salibian-
Barrera, Tobias Verbeke, Manuel Koller, Eduardo L. T. Conceicao and Maria Anna di Palma, robustbase: Basic 
Robust Statistics R, package version 0.92-7, 2016, available: http://CRAN.R-project.org/package=robustbase   

https://projecteuclid.org/download/pdf_1/euclid.aos/1176350366
http://cran.r-project.org/package=robustbase
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out rate design. Indeed, the coefficients on the opt-out binaries in Figure 13 demonstrate that 

opt-out designs have a positive impact of 3.9% on peak usage in comparison to opt-in designs. 

The coefficients on the log of the price ratio and the technology interaction term are still negative 

and significant under the alternative specification. This implies the treatment effect is robust 

even after adding additional control variables. Other specifications and controls were tested as 

well, including a binary if the duration of the peak period lasted more than four hours and a 

binary if the impacts were measured in the summer or in the winter. However, the coefficients 

were not significant. For this reason, they are not reported. 

Figure 13: Alternative Regression Results 

 
 Dependent variable: 

  
 Peak Impact 

 (1) (2) 
Log of Peak/Off-Peak Ratio -0.065*** -0.058*** 

 (0.007) (0.007) 
   Log of Peak/Off-Peak Ratio x Technology -0.046*** -0.047*** 

 (0.008) (0.008) 
   Opt-Out Binary  0.039*** 

  (0.009) 
      Constant -0.011 -0.028*** 

 (0.007) (0.009) 
   Observations 335 335 
R2 0.569 0.588 
Adjusted R2 0.566 0.584 
Residual Std. Error 0.064 (df = 332) 0.063 (df = 331) 
   Note: *p<0.1; **p<0.05; ***p<0.01 

 

Using the estimated coefficients in Figure 12, Figure 14 plots estimated % reductions in 

peak demand (i.e., demand response), against  the  peak to off-peak price ratios. The relationship 
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between the price ratio and the % peak reduction has an arc-like shape, which has let us name the 

database Arcturus.  

Figure 14: The Arc of Price Responsiveness 

  

 

The Arc of Price Responsiveness shows that, on average, a customer facing a peak-to-

off-peak price ratio of 2:1 will drop his or her demand by 5% and consume 95% of his or her 

typical peak usage.  As this ratio increases to 4:1, the customer will consume 90% of his or her 

typical peak usage. The “With Enabling Technology” line in Figure 14 shows that in the 

presence of enabling technology this effect is even stronger. At a ratio of 2:1, a customer with 

enabling technology will consume 91% of his or her typical peak usage, and he or she will 
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consume 84% as the ratio increases to 4:1. The arc-like shape of the curve suggests additional 

increases in the peak-to-off-peak price ratio result in smaller changes to peak-shifting behavior.   

Conclusion 

 The third wave of studies with time-varying rates has greatly expanded the body of 

evidence on residential customers’ load-shifting behaviors. Arcturus 2.0 allows us to carry out a 

meta-analysis of the results from 63 pilots containing a total of 337 pricing treatments in nine 

countries located on four continents. We have shown beyond the shadow of a doubt that 

customers do reduce their peak load in response to higher peak to off-peak price ratios. Price-

based demand response is real and predictable. It can be relied upon by utilities, regulators, 

independent system operators and other market participants to plan their activities. The 

magnitude of demand response is even stronger when the customer is provided with enabling 

technology such as smart thermostats and in-home displays. We expect the next wave of pilots 

might include other types of rate designs that combine time-varying rates with demand charges, 

demand subscription service, and transactive energy featuring peer-to-peer transactions. It is our 

intention to include the results of those studies in Arcturus 3.0.  
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Appendix A: List of Pilots Included in the Arcturus Database 

 

Utility, Municipality, or Pilot Year(s) of Study Type of Rate Country U.S. State

[1] Automated Demand Response Sytem Pilot 2004 - 2005 TOU, CPP United States CA
[2] Ameren Missouri 2004 - 2005 CPP United States MO
[3] Anaheim Public Utilities 2005 PTR United States CA
[4] Ausgrid 2006 - 2008 TOU, CPP Australia -
[5] Baltimore Gas & Electric Company 2008 - 2011 CPP, PTR United States MD
[6] BC Hydro 2008 TOU, CPP Canada -
[7] British Gas; Northern Powergrid 2012 - 2013 TOU United Kingdom -
[8] California Statewide Pricing Pilot 2004 - 2005 TOU, CPP United States CA
[9] City of Fort Collins 2015 TOU United States CO

[10] City of Kitakyushu 2012 - 2013 CPP, VPP Japan -
[11] City of Kyoto 2012 - 2014 CPP Japan -
[12] Commonwealth Edison Company 2011, 2015 TOU, CPP, PTR United States IL
[13] Connecticut Light & Power Company 2009 TOU, CPP, PTR United States CT
[14] Consumers Energy 2010 CPP, PTR United States MI
[15] Country Energy 2005 CPP Australia -
[16] Department of Public Utilities in Los Alamos County 2013 CPP, PTR United States NM
[17] Detroit Edison Company 2013 CPP United States MI
[18] EDF Energy; E.ON; Scottish Power; Southern Energy 2007 - 2010 TOU United Kingdom -
[19] Energex; Ergon 2011 - 2013 CPP Australia -
[20] FirstEnergy Corporation 2012 - 2014 PTR United States OH
[21] Florida Power & Light Company 2011 CPP United States FL
[22] GPU, Inc. 1997 TOU United States NJ
[23] Green Mountain Power 2012 - 2013 CPP, PTR United States VT
[24] Gulf Power Company 2000 - 2002 TOU, CPP United States FL
[25] Hydro One Limited 2007 TOU Canada -
[26] Hydro Ottawa 2007 TOU, CPP, PTR Canada -
[27] Idaho Power Company 2006 TOU, CPP United States ID
[28] Integral Enegy 2007 - 2008 CPP Australia -
[29] Ireland 2010 TOU Ireland -
[30] Italy 2010 - 2012 TOU Italy -
[31] Kansas City Power and Light Company 2012 - 2014 TOU United States KS/MO
[32] Marblehead Municipal Electric Light Department 2011 - 2012 CPP United States MA
[33] Mercury NZ 2008 TOU New Zealand -
[34] Newmarket - Tay Power Distribution Limited 2009 TOU Canada -
[35] Newmarket Hydro 2007 TOU, CPP Canada -
[36] Northern Ireland 2003 - 2004 TOU United Kingdom -
[37] NV Energy 2013 - 2015 TOU, CPP United States NV
[38] Oklahoma Gas & Electric Energy Corporation 2011 TOU, VPP United States OK
[39] Olympic Peninsula Project 2007 CPP United States WA/OR
[40] Ontario Power Authority 2012 - 2014 TOU Canada -
[41] Pacific Gas & Electric Company 2009 - 2016 TOU, CPP United States CA
[42] PacifiCorp 2002 - 2005 TOU United States OR
[43] PECO 2014 TOU United States PA
[44] Portland General Electric 2002 - 2003, 2011 - 2013 TOU, CPP United States OR
[45] Potomac Electric Power Company 2010 CPP, PTR United States DC
[46] PSE&G 2006 - 2007 TOU, CPP United States NJ
[47] Puget Sound Energy 2001 TOU United States WA
[48] Sacramento Municipal Utility District 2011 - 2013 TOU, CPP United States CA
[49] Salt River Project 2008 - 2009 TOU United States AZ
[50] San Diego Gas & Electric Company 2011, 2015 - 2016 TOU, CPP, PTR United States CA
[51] SmartGrid SmartCity Pilot 2012 - 2014 CPP Australia -
[52] Southern California Edison Company 2016 TOU United States CA
[53] Southwestern Ontario 2011 - 2012 TOU Canada -
[54] Sun Valley Electric Supply Company 2011 CPP United States ND
[55] UK Power Networks 2013 TOU United Kingdom -
[56] Vermont Electric Cooperative 2013-2014 VPP United States VT
[57] Xcel Energy, Inc. 2011 - 2013 TOU, CPP, PTR United States CO
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Notes:  
The results of one time-varying pilot are not public, so it is excluded in the above table but still included in Arcturus 
2.0.  
Some utilities have tested multiple pilots that report separate results. These pilots include: 
 City of Kitakyushu (Kato et al. study; Ito et al. study); 
 Commonwealth Edison Company (2011 TOU, CPP, PTR study; 2015 PTR study); 
 Portland General Electric (2002 TOU Pilot; 2011 CPP Pilot); 

San Diego Gas & Electric (Residential Peak Time Rebate and Small Customer Technology Deployment 
Program, Voluntary Residential CPP and TOU Rates); 
SMUD (Residential Summer Solutions; Smart Pricing Options Pilot). 

Including the pilots noted above brings the total count to 63 pilots.  
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Appendix B: Peak Period Duration and Season of Pilots in Arcturus 2.0  

 

Seasons Included in Pilot

Utility or Municipality
Average Peak 

Duration (Hours) Summer Winter Annual

[1] Automated Demand Response Sytem Pilot 5 No No Yes
[2] Ameren Missouri 4 Yes No No
[3] Anaheim Public Utilities 6 Yes No No
[4] Ausgrid 4 Yes Yes Yes
[5] Baltimore Gas & Electric Company 5 Yes No No
[6] BC Hydro 6 No Yes No
[7] British Gas; Northern Powergrid 4 No No Yes
[8] California Statewide Pricing Pilot 5 Yes No Yes
[9] City of Fort Collins 0 Yes No No

[10] City of Kitakyushu 4 Yes No No
[11] City of Kyoto 4 No No Yes
[12] Commonwealth Edison Company 4 Yes No No
[13] Connecticut Light & Power Company 5 Yes No No
[14] Consumers Energy 4 Yes No No
[15] Country Energy 2 No No Yes
[16] Department of Public Utilities in Los Alamos County 3 Yes No No
[17] Detroit Edison Company 4 Yes No No
[18] EDF Energy; E.ON; Scottish Power; Southern Energy 3 No No Yes
[19] Energex; Ergon 4 No No Yes
[20] FirstEnergy Corporation 4 Yes No No
[21] Florida Power & Light Company 4 No No Yes
[22] GPU, Inc. 3 Yes No No
[23] Green Mountain Power 5 Yes No Yes
[24] Gulf Power Company 9 Yes No No
[25] Hydro One Limited 6 Yes No No
[26] Hydro Ottawa 7 Yes Yes Yes
[27] Idaho Power Company 6 Yes No No
[28] Integral Enegy 4 No No Yes
[29] Ireland 2 No No Yes
[30] Italy 11 No No Yes
[31] Kansas City Power and Light Company 4 Yes No No
[32] Marblehead Municipal Electric Light Department 6 Yes No No
[33] Mercury NZ 12 No Yes No
[34] Newmarket - Tay Power Distribution Limited 6 No No Yes
[35] Newmarket Hydro 5 Yes No Yes
[36] Northern Ireland - No No Yes
[37] NV Energy 5 Yes No No
[38] Oklahoma Gas & Electric Energy Corporation 5 Yes No No
[39] Olympic Peninsula Project 4 No No Yes
[40] Ontario Power Authority 6 Yes Yes No
[41] Pacific Gas & Electric Company 5 Yes Yes Yes
[42] PacifiCorp 6 Yes Yes No
[43] PECO 4 Yes No No
[44] Portland General Electric 6 Yes Yes No
[45] Potomac Electric Power Company 4 Yes No No
[46] PSE&G 5 Yes No Yes
[47] Puget Sound Energy - No No Yes
[48] Sacramento Municipal Utility District 3 Yes No No
[49] Salt River Project 3 Yes No No
[50] San Diego Gas & Electric Company 6 Yes No No
[51] SmartGrid SmartCity Pilot 3 No No Yes
[52] Southern California Edison Company 5 Yes No No
[53] Southwestern Ontario 6 No No Yes
[54] Sun Valley Electric Supply Company 4 Yes No No
[55] UK Power Networks 6 No No Yes
[56] Vermont Electric Cooperative 5 Yes Yes Yes
[57] Xcel Energy, Inc. 6 Yes Yes No
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Notes:  
Pilots report customer impacts either during the summer months, winter months, or for the entire year. In some 
cases, pilots report all three. The corresponding columns in Appendix B have a value of “Yes” if any of the pilot’s 
experimental pricing treatments reported impacts for that corresponding season. 
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Appendix C: Maps of Countries included in Arcturus 2.0 

Note: For confidentiality, one Asian utility is not included in 
the above map.   


