

Exploring transmission access charge issues Deep dive to transmission rates panel

Chris Devon, Senior Infrastructure & Regulatory Policy Developer Neil Millar, Executive Director, Infrastructure Development

CPUC Advanced Rate Design Forum December 11, 2017

Review of current transmission access charge structure is currently underway

- CAISO is exploring potential modifications to high voltage Transmission Access Charge (TAC)
- Changes would have impacts on the cost allocation of existing system's embedded (sunk) costs
 - May have potential impacts on future transmission cost drivers
- Review TAC Structure initiative must consider important guiding principles
 - CAISO and most stakeholders agree any modifications must meet traditional FERC ratemaking principles and CAISO cost allocation principles

What are the priorities for what we want to accomplish, given TAC recovers the costs of facilities that are in service, not that are planned

- Current TAC design was heavily influenced by perceived "fair" cost recovery and minimizing economic dispatch interference
- Should design changes consider:
 - The cost drivers of the past?
 - Current use of the system?
 - Future cost drivers? / Send behavior signal to minimize future costs?
 - All above objectives reasonably fall within FERC principles
- Due to constant changes in how the transmission system is being planned and used, these are not necessarily aligned

Two major aspects of TAC structure are under consideration in the CAISO stakeholder initiative

- TAC billing determinant current method is a volumetric measurement (MWh's)
 - Exploring peak demand charges (MWs), time of use, fixed charges, and hybrid methods (blend of volumetric and peak demand)
- TAC point of measurement currently assessed by load reported at end use customer meters
 - Exploring T-D interface measurement point option as an alternative method

Market efficiency impacts are key consideration if changing the existing TAC structure

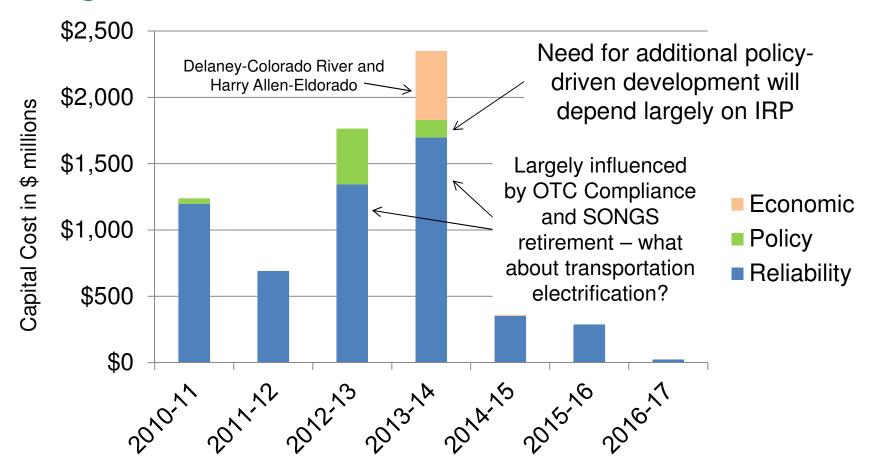
- Stakeholders have raised concerns related to potential impacts to market efficiency and economic dispatch
 - These issues are especially important considerations for CAISO
- CAISO's Department of Market Monitoring and CAISO's Market Surveillance Committee confirm the current volumetric billing determinant (MWh) may cause inefficient outcomes:
 - Charging TAC to each MWh of load results in the TAC rate becoming part of the marginal price of energy, thus creating a potential market inefficiency¹

¹ <u>DMM Comments - Review Transmission Access Charge Structure - Working Group</u> Meetings - Aug 29 and Sep 25, 2017 10/25/2017

Transmission cost drivers and supporting analysis

- CAISO looking into extent existing and currently planned and future transmission investments driven by coincident peak loads, minimum loads, other reliability concerns, or policy goals
- CAISO analysis of historic needs identified through Transmission Planning Process (TPP)
 - TPP project cost drivers and justification: Looking into trying to determine what share of reliability projects were needed for onpeak vs off-peak
 - Also compare share of approved costs for policy-driven projects and economic projects
 - Future transmission needs/drivers are hard to predict

New transmission costs and drivers are significantly different than historical costs and drivers:


- New transmission investment has a much higher impact on TAC than old, due to depreciation and inflation
 - For example, Sunrise almost single-handedly doubled SDG&E's high voltage rate base
- A significant amount of new transmission that was approved pre-2010 was planned for policy purposes
- ISO "RTPP" approved capital since 2010 was mainly reliability driven but very little load growth driven
- Capital maintenance and refurbishment planned by Transmission Owners, not the ISO, also reflect aging facilities...
 - Recent annual increases in TAC have largely been due to non-ISO capital projects – but no long term projection is available

Transmission underway to meet 33% RPS in 2020

		Transmission upgrade	Approval status		Online
	rransinission upgrade		ISO	CPUC	
	1	Carrizo-Midway	LGIA	NOC effective	energized
	2	Sunrise Powerlink	Approved	Approved	energized
	_	Suncrest dynamic reactive	Approved	Pending	2017
3	3	Eldorado-Ivanpah	LGIA	Approved	energized
	4	Valley-Colorado River	Approved	Approved	energized
	5	West of Devers	LGIA	Approved	2021
	6	Tehachapi (segments 1, 2 & 3a of 11 completed)	Approved	Approved	energized
t	7	Cool Water-Lugo	LGIA	Pending	2018
	8	South Contra Costa	LGIA	In process	2016
	9	Borden-Gregg	LGIA	Not yet filed	2018
	10	Path 42 reconductoring Imperial Valley C Station	Approved Approved	Not needed Not needed	energized 2015
	11	Sycamore-Penasquitos	Approved	Not yet filed	2018
	12	Lugo-Eldorado line reroute	Approved	Not yet filed	2018
	13	Lugo-Eldorado and Lugo- Mohave series caps	Approved	Not needed	2019
	14	Warnerville-Bellota recond.	Approved	Not yet filed	2017
	15	Wilson-Le Grand recond	Approved	Not yet filed	2020

Transmission <u>approvals</u> over the last 6 years – over 30 projects a year until 2014-2015 – and <u>some</u> are now being cancelled:

Scope of CAISO's TAC cost shift impact modeling

- CAISO has engaged The Brattle Group to assist in this effort through development of TAC cost shift impact model
- Model will provide CAISO and stakeholders the ability to analyze cost shifts associated with a host of potential changes:
 - Billing determinant: Current volumetric basis, peak demand charge basis (1CP, 4CP, & 12CP options), time of use method, and hybrid method (blended volumetric and peak demand, with option to adjust %'s)
 - Point of measurement: Current end use customer meter method or change to T-D interface method

CAISO's HV TAC cost shift impact model preview

Choose Billing Unit Gross Load	Choose Rate Design Volumetric	¥
Gloss Load	Volumenic	·
Assumptions for Specific TAC Designs		
Assumptions for Specific TAC Designs		Notes
Anaheim	6.42%	Taken from the CEC Staff Paper
Azusa		A Review of Transmission Losses in
Banning		Planning Studies, August 2011
Colton	6.42%	,
PG&E	5.26%	
Pasadena	6.42%	
Riverside	6.42%	
SDG&E	6.18%	
SCE	6.42%	
VEA	6.42%	
Vernon	6.42%	
Distribution of TRR for TOU rate design		Used only for TOU rate design
% Peak:	70%	
% Off-Peak:	30%	
Billing units for Hybrid TAC		Used only for Hybrid rate design
Volumetric billing unit	Gross Load	Change in cell C6
Peak billing unit	Coincident Peak 1 Period	_
Distribution of TRR for Hybrid rate design		Used only for Hybrid rate design
% Volumetric	50%	, ,
% Peak	50%	

Questions?

