11 December 2017

## Smart Non-Residential Rate Design

#### **California Public Utilities Commission**

Carl Linvill, PhD Principal The Regulatory Assistance Project (RAP)<sup>®</sup> Davis, California United States

#### December 11, 2017

+1 802 498 0723 clinvill@raponline.org raponline.org

# Agenda

- 1. Why NR Rate Design Needs to Change
- 2. Match Fixed & NC Demand Charges Specifically to Cost Causation
- 3. Reward Load Diversity
- 4. Address Peak Demand
- 5. Establish Price Signals that Convey System Cost
- 6. Additional Considerations for a Model Tariff
- 7. Takeaways

# 1 Why NR Rate Design Needs to Change

# **Bonbright Principles Still Useful**

- 1. Fair
- 2. Simple
- **3. Unambiguous**
- 4. Revenue adequacy
- 5. Proxy for what competition would provide

### Technologies Affect What is Possible

Some technologies are here...

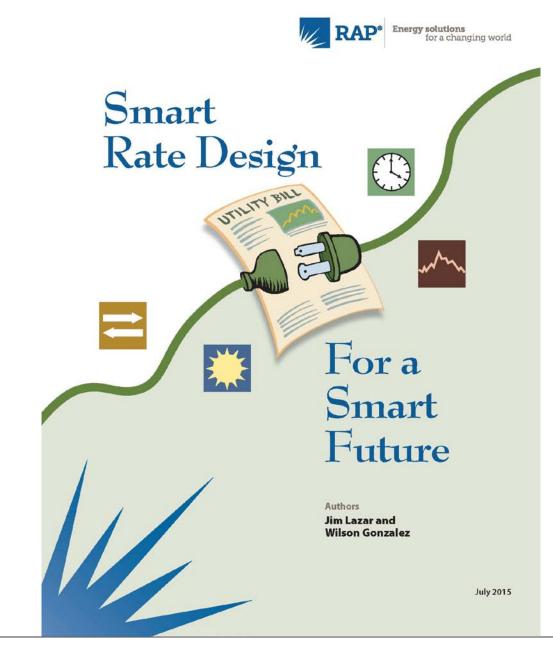
- Advanced metering
- Solar
- Wind

Some technologies are ascending...

- Battery storage
- Demand response

Some are still emerging...

Ice air conditioning


#### ... and Desirable

Technology delivers much lower carbon emissions -

- Buildings sector
- Transportation sector
- Power sector

## California Policy Affects How Bonbright is Applied

- SB 350
- DER Action Plan
- And whatever is next



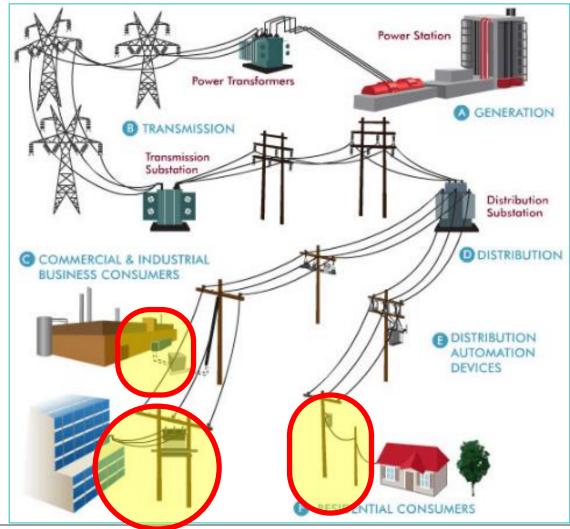
## Illustrative Future Non-Residential Rate Design

Table ES-1. Proposed Illustrative Rate Design for Non-Residential Consumers

|                            | Production | Transmission | Distribution | Total    | Unit  |
|----------------------------|------------|--------------|--------------|----------|-------|
| Metering, Billing          |            |              | \$100.00     | \$100.00 | Month |
| Site Infrastructure Charge |            |              | \$2/kW       | \$2/kW   | kW    |
| Summer On-Peak             | \$0.140    | \$0.020      | \$0.040      | \$0.20   | kWh   |
| Summer/Winter Mid-Peak     | \$0.100    | \$0.015      | \$0.035      | \$0.15   | kWh   |
| Summer/Winter Off-Peak     | \$0.070    | \$0.010      | \$0.020      | \$0.10   | kWh   |
| Super Off-Peak             | \$0.030    | \$0.010      | \$0.010      | \$0.05   | kWh   |
| Critical Peak              | Ma         | er year      | \$0.75       | kWh      |       |

# **Optional Real-Time Pricing**

- A wholesale energy cost component, charged on a per kWh basis, that fluctuates hourly
   Based on CAISO locational marginal prices
- Transmission, distribution costs, and residual generation costs in time-varying rates


#### 2 Match Fixed & NC Demand Charges Specifically to Cost Causation

# **NR Principle #1**

 Service drop, metering, and billing costs should be recovered in a customer fixed charge

• Final transformer is a customer-specific charge

#### **Costs that Vary with Customer NCP: Final Line Transformer and Service Drop**



#### Large Non-Residential Customers Typically on Demand Charge Tariffs



# Site Infrastructure Charge

| Customer Type             | NCP<br>Demand | \$/kW | Site Infrastructure<br>Charge |
|---------------------------|---------------|-------|-------------------------------|
| Small Retail or<br>Office | 20 kW         | \$2   | \$40/month                    |
| Supermarket               | 300 kW        | \$2   | \$600/month                   |
| Office Tower              | 600 kW        | \$2   | \$1,200/month                 |
| Suburban<br>Shopping Mall | 2,000 kW      | \$2   | \$4,000/month                 |



# **NR Principle 2.1**

• De-emphasize NCP demand charges except as noted in NR Principle 1

 All <u>shared</u> generation and transmission capacity costs should be reflected in systemwide time-varying rates so that diversity benefits are equitably rewarded Rate Design Matters: Eversource impedes workplace charging in large commercial

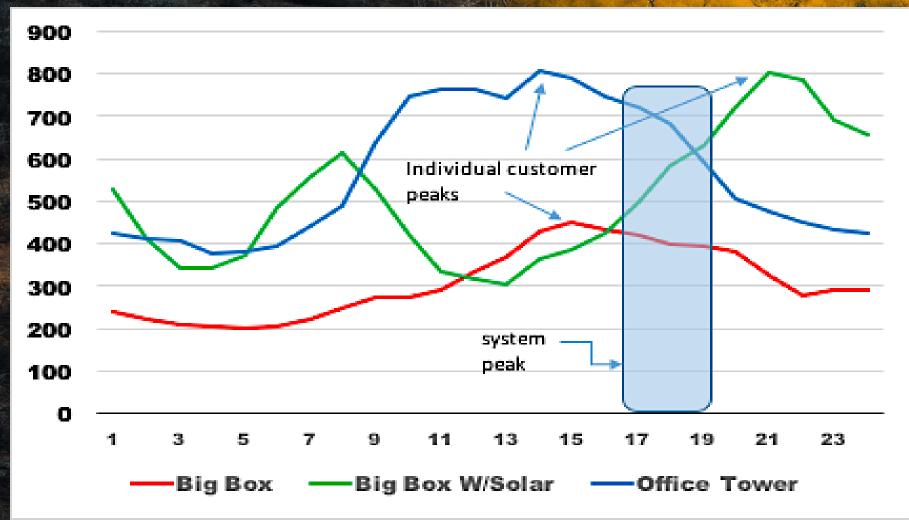
NCP Demand Charge\$13.75/kWEnergy Charge:~\$0.12/kWh

6.6 kW charger, 200 kWh/month:
\$90 Demand + \$24 energy = \$114 =
\$0.57/kWh or \$5.70/gallon equivalent

Source: Jim Lazar, RAP

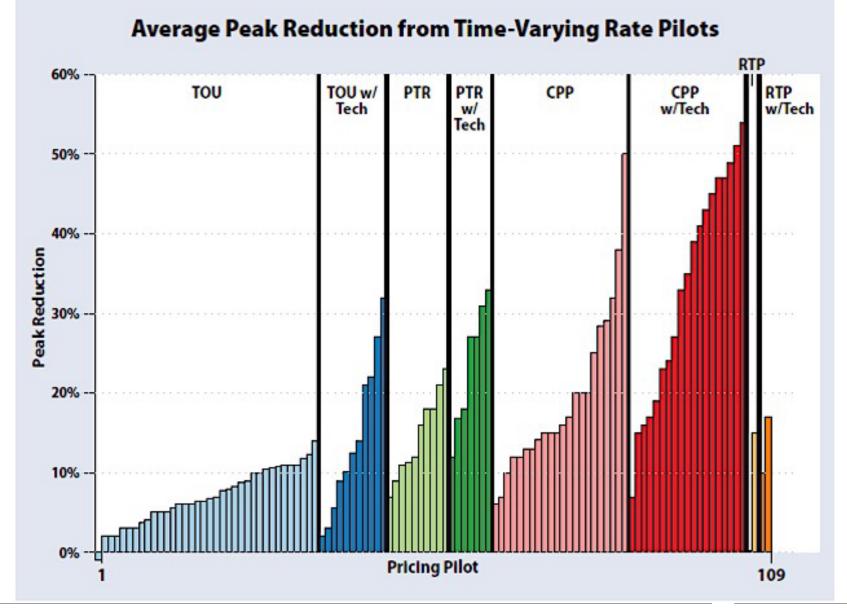
#### **Rate Design Matters:** SMUD encourages workplace charging in large commercial prior to the system peak period **NCP Demand Charge: \$2.82/kW** CP Demand: (2 – 8 PM, summer): \$6.91/kW **Energy Charges: Off-Peak:** \$0.10 **Mid-Peak:** \$0.13 On-Peak (2 – 8 PM, Summer): \$0.19 6.6 kW charger, 200 kWh/month: \$18.61 Demand + \$23 energy = \$42 = \$0.21/kWh or \$2.10/gallon equivalent

# Load Diversity Between School and Church


| Hours       | System Peak | Church | School | Mini-Mart | Total |
|-------------|-------------|--------|--------|-----------|-------|
| Weekday 9-4 | Mid-Peak    | 5      | 45     | 50        | 100   |
| Weekday 4-8 | On-Peak     | 5      | 15     | 50        | 70    |
| Nights      | Off-Peak    | 5      | 5      | 50        | 60    |
| Weekend     | Off-Peak    | 45     | 5      | 50        | 100   |
|             |             |        |        |           |       |
| NCP         |             | 45     | 45     | 50        | 140   |
| %           |             | 32%    | 32%    | 36%       |       |
| СР          |             | 5      | 15     | 50        | 70    |
| %           |             | 7%     | 21%    | 71%       |       |



# **NR Principle 2.2**


 Shift shared distribution network revenue requirements into regional or nodal timevarying rates

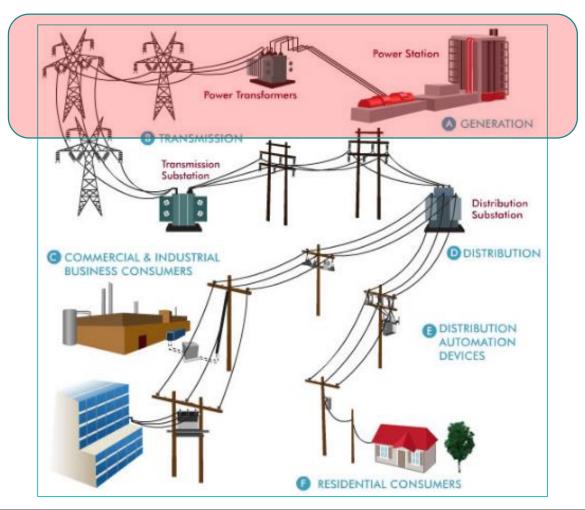
# Three Actual Large Commercial Customers



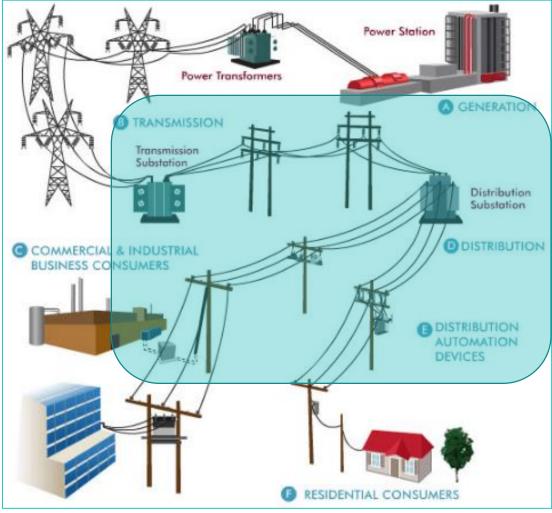
### Rate Designs That Address Peak Demand

- A Critical Peak Price
- Well-designed Time of Use Prices
- Transparent Real Time Prices
- Peak Time Rebates
- Coincident Peak Demand Charges




Regulatory Assistance Project (RAP)®

### 5 Establish Price Signals that Convey System Cost


# **NR Principle 2.2**

 Shift shared distribution network revenue requirements into regional or nodal timevarying rates

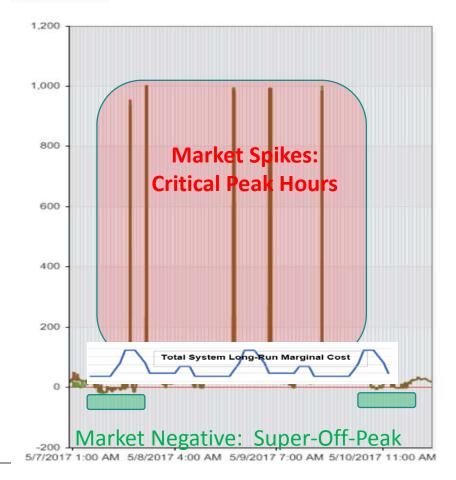
#### Costs that Vary with System TOU Loads: Generation and Bulk Transmission



#### **Costs that Vary with Nodal TOU Loads: Network Transmission and Distribution**



# NR Principles 2.3 & 2.4


- NR Principle 2.3: Consider short-run marginal cost pricing signals and long-run marginal cost pricing signals
- NR Principle 2.4: Time-varying rates should align incentives for controllable load, customer generation, and storage dispatch with electric system needs

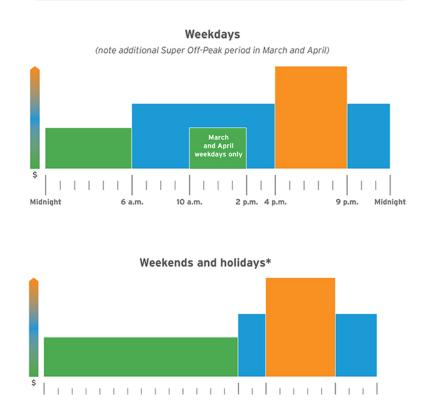
#### Focus on Long-Run Costs Except when deviation is severe

Market spikes: Critical Peak Pricing

Market goes negative: Super-Off-Peak Pricing

Long-run marginal costs are the relevant, except during periods of severe deviation. CAISO (California ISO) Real-time Price




## **Reasons to Consider TOU Rates**

- More equitable cost recovery
- Reduce peak demand
- Provide price signal for electric vehicle charging during off-peak and shoulder hours
- Provide price signal for air conditioning controls or ice storage
- Provide price signal for beneficial use of onsite storage

## SDG&E New TOU Rates: A Big Improvement

On-peak period moved to early evening

Super off-peak period attractive for EV charging, ice-storage A/C and other controllable loads



# 6 Additional Considerations for a Model Tariff

# **NR Principle 2.5**

- Simple default tariff
- Optional tariffs with more granular elements

## What Utility Tariff Best Exemplifies Our Principles?

- We looked at about 20 utilities from CA, around the country and a couple of international examples
- We looked at:
  - Customer charges
  - Demand charges (Distribution and Generation)
  - Volumetric rates
  - Time of use rates
  - Seasonal rates

# SMUD Rate Design NR Best of Class

| Customer Charge            | \$108/month     |         |
|----------------------------|-----------------|---------|
| Site Infrastructure Charge | \$3.80/kW/month |         |
| Super Peak Demand Charge   | \$7.65/kW       |         |
| Energy Charge              | Summer          | Winter  |
| Super Peak                 | \$0.20          | N/A     |
| On-Peak                    | \$0.137         | \$0.104 |
| Off-Peak                   | \$0.109         | \$0.083 |
|                            |                 |         |

We made two changes:

- 1) Convert the super-peak demand charge to a critical peak energy charge, applied to specific hours of system stress;
- 2) Add a super-off-peak rate, to encourage consumption when energy is unusually abundant and market prices are near zero.

# Illustrative Future Non-Residential Rate Design

#### Table ES-1. Proposed Illustrative Rate Design for Non-Residential Consumers

|                            | Production | Transmission              | Distribution | Total    | Unit  |
|----------------------------|------------|---------------------------|--------------|----------|-------|
| Metering, Billing          |            |                           | \$100.00     | \$100.00 | Month |
|                            |            |                           |              |          |       |
| Site Infrastructure Charge |            |                           | \$2/kW       | \$2/kW   | kW    |
|                            |            |                           |              |          |       |
| Summer On-Peak             | \$0.140    | \$0.020                   | \$0.040      | \$0.20   | kWh   |
| Summer/Winter Mid-Peak     | \$0.100    | \$0.015                   | \$0.035      | \$0.15   | kWh   |
| Summer/Winter Off-Peak     | \$0.070    | \$0.010                   | \$0.020      | \$0.10   | kWh   |
| Super Off-Peak             | \$0.030    | \$0.010                   | \$0.010      | \$0.05   | kWh   |
|                            |            |                           |              |          |       |
| Critical Peak              | Ма         | Maximum 50 hours per year |              |          | kWh   |

# **Optional Real-Time Pricing**

- A wholesale energy cost component, charged on a per kWh basis, that fluctuates hourly
- Tied to CAISO locational marginal prices
- Transmission, distribution, and residual generation costs would be collected in TOU rates

# **NR Principle 2.6**

 Optimal non-residential rate design will evolve as technology and system operations mature

 Opportunities to revisit rate design should occur regularly



- 1. Match Fixed & NC Demand Charges Specifically to Cost Causation
- 2. Reward Load Diversity
- 3. Address Peak Demand
- 4. Establish Price Signals that Convey System Cost
- 5. Include an Optional Real Time Pricing Tariff



### **About RAP**

The Regulatory Assistance Project (RAP)<sup>®</sup> is an independent, non-partisan, non-governmental organization dedicated to accelerating the transition to a clean, reliable, and efficient energy future.

#### Learn more about our work at raponline.org



Carl Linvill, PhD Principal The Regulatory Assistance Project (RAP)<sup>®</sup> Davis, California United States +1 802 498 0723 clinvill@raponline.org raponline.org