ADVANCED RATE DESIGN FOR DISTRIBUTION SERVICES

CPUC Rate Design Forum

Dan Cross-Call | December 11, 2017

Transforming global energy use to create a clean, prosperous, and secure low-carbon future.

Pricing will be an evolution toward more sophisticated options

Managing Rate Complexity for the Customer

HGH	Desired State for Most Customers:		Current & Future State For Select Customers:			
	Sophisticated Rates with Technology & Solution Providers Simplifying the Customer Experience		Customers Respond To Price Signals Directly (e.g., Respond To TOU Rates Through Behavior Change)			
	Traditional Experience For Most Customers Today: Simplified Rates With No Role For Complexity Management					
24						

Near- and Long-term Evolutionary Rate Structures

Near-Term Default or	Longer-Term, More	
Opt-in Possibilities	Sophisticated Possibilities	
Time-of-Use Pricing	Real-Time Pricing	
Energy + Capacity Pricing	Unbundled Attribute-	
(e.g., demand charges)	Based Pricing	
Distribution "Hot Spot"	Distribution Locational	
Credits	Marginal Pricing	

Source: Rate Design for the Distribution Edge. RMI, 2014.

Nine key dimensions to consider in time-varying rates

Source: <u>A Review of Alternative Rate Designs</u>, RMI, 2016

Structure: Peak/Off-Peak Price Ratio

The POPP ratio is a key determinant of how impactful a rate will be

OPTIONS

POPP ratios vary widely in practice, and differ depending on the structure:

- Basic Time-Based Rates: $1:1 \rightarrow 7:1$.
- *Modified Time-Based Rates*: 4:1→ 20:1, including CP modifications.

IMPORTANT CONSIDERATIONS

- The POPP ratio is a function of four input dimensions
- To set an appropriate ratio, all dimensions should be considered in balance with each other

Source: A Review of Alternative Rate Designs, RMI, 2016

A similar set should be considered for demand charges

5

Source: <u>A Review of Alternative Rate Designs</u>, RMI, 2016

Pricing Foundation: Cost Components

Approaches boil down to three options:

1. Narrow Demand Charges

Include only a customer's service drop and share of the line transformer

2. Broad Demand Charges

Also include other capacity-related distribution costs

3. Extensive Demand Charges

Include all costs for system infrastructure built to meet peak demand

	APPROACH				
COST COMPONENTS	NARROW DEMAND CHARGE	BROAD DEMAND CHARGE	EXTENSIVE DEMAND CHARGE		
Customer Meter*	×	×	×		
Service Drop and Transformer	~	~	~		
Other Marginal Distribution- Capacity Costs	×	v	v		
Marginal Transmission- Capacity Costs	×	×	~		
Marginal Generation- Capacity Costs	×	×	~		

Source: A Review of Alternative Rate Designs, RMI, 2016

Many existing demand charges are based on the customer's non-coincident peak demand, but alternative options may better reflect cost causation.

OPTIONS

- 1. Non-coincident peak—customer's maximum demand any time in a billing period
- 2. Coincident peak—customer's peak demand at the time of the system peak
 - *–When is the timing of peak established?*
 - *Ex ante*—predetermined peak period (selected to coincide with system peak)
 - Ex post—time when system peak actually occurs
 - *–What level of the system determines the peak?*
 - Distribution system—only the portion of the system local to the customer
 - Bulk system—includes loading on the utility's entire power system

Source: <u>A Review of Alternative Rate Designs</u>, RMI, 2016

8

Design for desired outcomes: How do we encourage *buildings as grid assets*?

RMI's new net-zero energy office in Boulder, CO

- Targeting 26 kBtu/SF/yr
- 596 kW Solar
- Lighting = 0.35 W/SF

9

Thank You

10