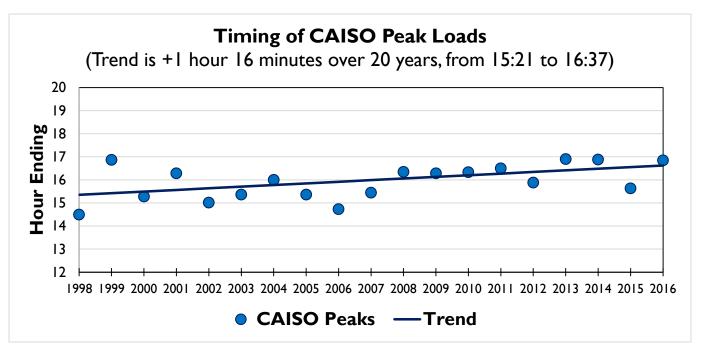
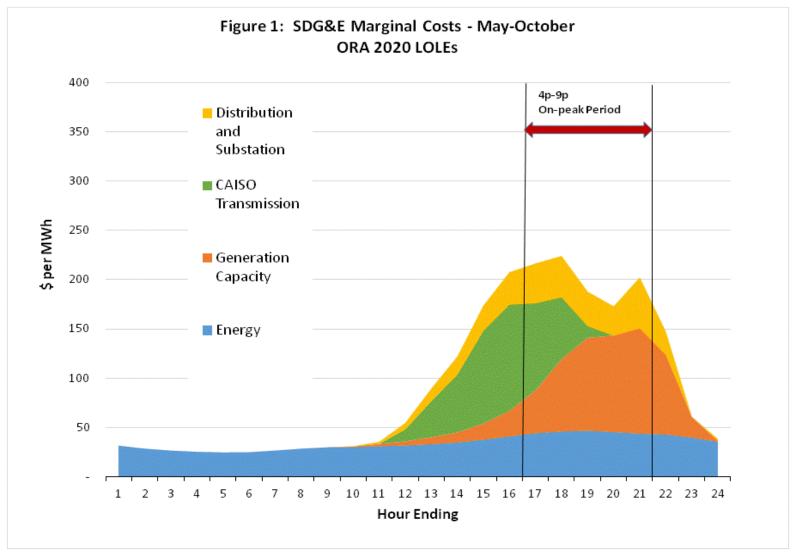
Transmission Rate Design in California


Presentation to the CPUC Rates Forum

Tom Beach Principal Consultant Crossborder Energy


December 11, 2017

Key Drivers of Transmission Investments

- Coincident peak demand for delivered power
 - Not "net load" (load wind solar)
- 2. Policy goals for use of transmission network
 - RPS / GHG focus on clean energy (MWh)

Hourly Profiles of Marginal Costs

Crossborder Energy

Types of Transmission Investments

- I. Serving regional or system peak loads
 - Load growth
 - Replacements avoid loss of peak capacity.
- 2. Reliability
 - Issues are more likely in high-demand hours.
- 3. Economic
 - Congestion is energy-related; local RA needs are peak-driven.
- 4. Policy-driven
 - RPS / GHG focus on energy use (MWh).

The transmission system is a network, and projects can have multiple types of benefits.

Transmission Cost Allocation / Rate Design Is a Mess.

- CAISO regional TAC charge
 - Allocated to utilities by end-use MWh
 - Discriminates against DG?
 - Most other RTOs use various CP measures.
- Transmission cost allocation at FERC
 - I2 CP to allocate costs to customer classes
- Transmission rate design
 - Mostly non-coincident demand charges for large C&I (SDG&E is 10% summer on-peak.)
 - Flat energy charge for small customers
 - No seasonal or TOU price signals

Recommended Transmission Rate Design

Allocate transmission costs to a two-part rate:

- I. Peak-related
 - TOU energy rate or time-dependent demand charge
 - Applicable TOU periods should include mid-afternoon hours, perhaps in a mid- or partial-peak period, as well as evening on-peak hours.
- 2. Network / policy-related
 - Flat energy rate

CPUC advocacy of reformed transmission rates before the FERC is welcome.