#### Panel Three: Do We Need a Paradigm Shift in How California Funds Climate Change Initiatives?

**Moderator**: Edward Randolph, Deputy Executive Director CPUC **Panelists**:

- Severin Borenstein, UC Berkeley Professor and Director of the Energy Institute at Haas; member of CAISO Board of Governors
- Mark LeBel, Associate, Regulatory Assistance Project
- Michael Wara, Director of Climate and Energy Policy Program, Woods Institute for the Environment, Stanford University
- Anthony Kinslow II, CEO, Gemini Energy Solutions; Stanford University Lecturer
- Mark Toney, Executive Director, The Utility Reform Network



California Public Utilities Commission

### Designing Electricity Rates for an Equitable Energy Transition

Severin Borenstein

Haas School of Business and Energy Institute at Haas

**Meredith Fowlie** 

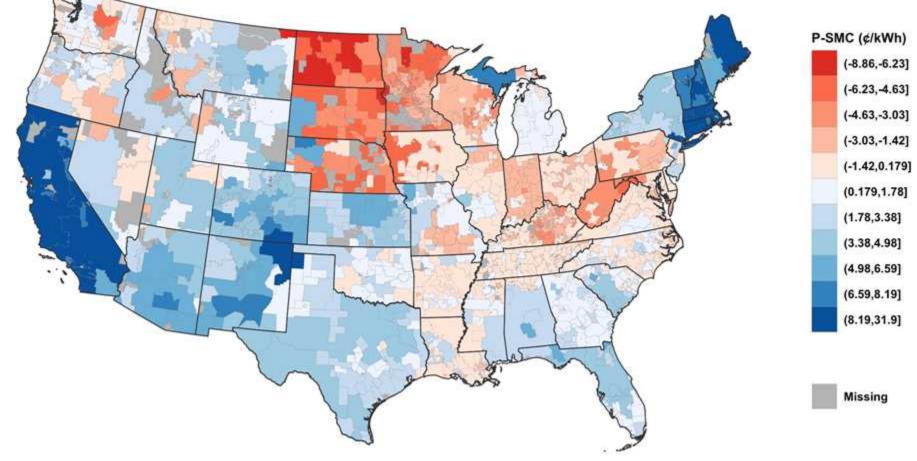
Agricultural & Resource Economics and Energy Institute at Haas

James Sallee

Agricultural & Resource Economics and Energy Institute at Haas UC Berkeley

Study supported by Next 10 and available at Next10.org




CPUC En Banc: Electric Costs and Rates - Feb 24, 2021

# Efficiency and equity effects of residential electricity rates

- Pricing that deviates from social marginal cost (SMC) creates incentives for overconsumption or under consumption
  - SMC must include all externalities
  - Price way above SMC discourages electrification
- But utilities have to cover all of their costs and setting P=SMC will under-recover in most cases
  - How to recover costs without undermining efficient consumption?
  - How to maintain affordability for low-income and middle income households?

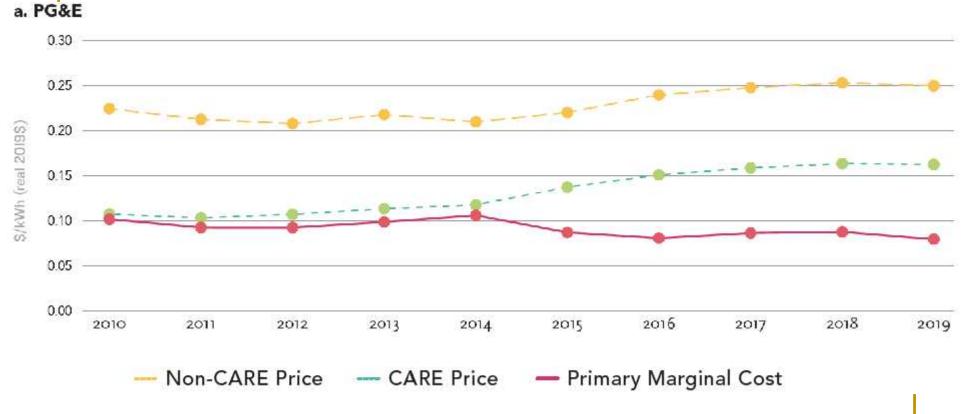


#### Price versus Social Marginal Cost Across the Country



Borenstein and Bushnell, "Do Two Electricity Pricing Wrongs Make a Right? Cost Recovery, Externalities, and Efficiency", Energy Institute at Haas Working Paper #294, revised July 2019




CPUC En Banc: Electric Costs and Rates - Feb 24, 2021

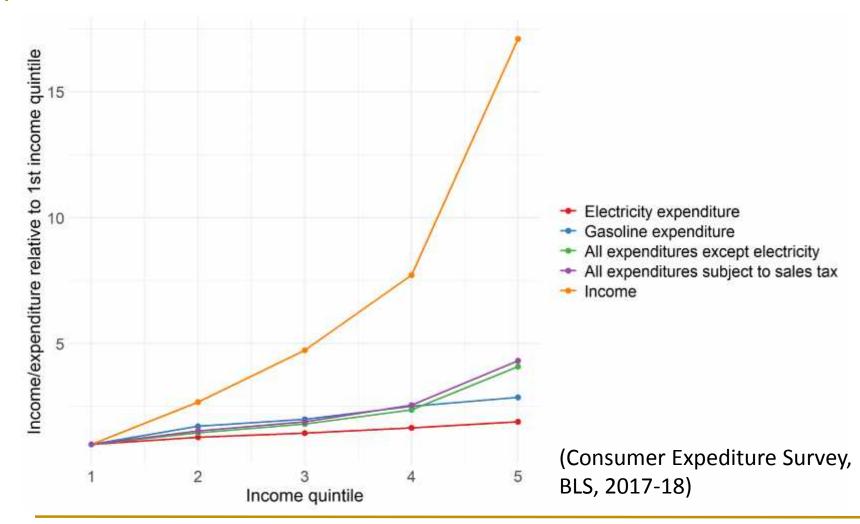
## Why are residential electricity rates so high?





#### Volumetric Price is Far Above Social Marginal Cost






California IOUs cover the residential revenue gap through volumetric charges

- This is essentially a volumetric tax on electricity to cover infrastructure and public purpose programs
  - CARE customers pay a discounted volumetric charge, but even that is above SMC
- But at this point wealthier households consume only slightly more (net) electricity from the grid than poorer households
- Which makes a volumetric tax on electricity more regressive than sales tax or gasoline tax, and way more regressive than income tax



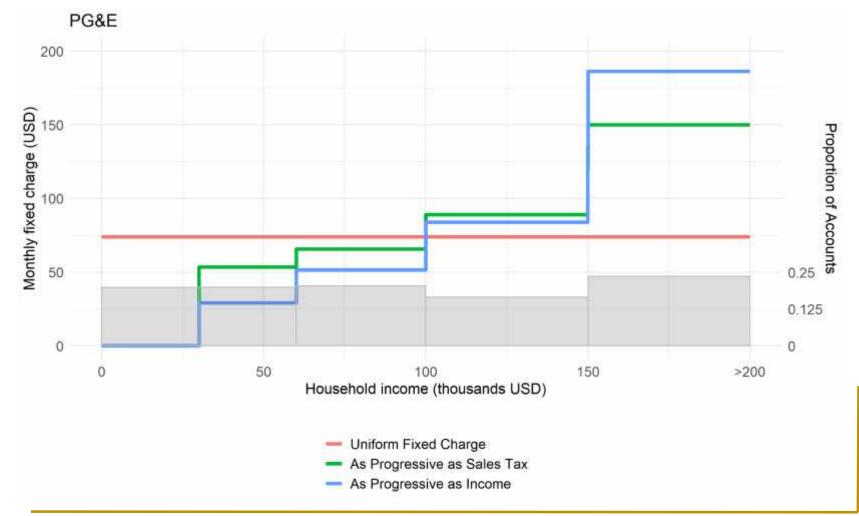
### Expenditures by category across income quintiles





Is there a way to reduce volumetric price without raising regressivity?

- Uniform fixed monthly charge is probably still more regressive than volumetric pricing
  - Even if CARE customers were omitted
- One way to reduce the problem is load fewer costs into electricity bills
  - Subsidies for behind-the-meter generation
  - CARE
  - Energy efficiency programs
  - Wildfire mitigation and compensation
  - Infrastructure




#### Alternative Approach: Income-Based Fixed Charges

- Would require much more effective income verification than currently used for CARE
- Our report examines alternative ways this could be done
  - Declaration to utility, true up with Franchise Tax Board
    Opt-in verification only
  - FTB transfers information on fixed charge categories to the utilities
  - Third-party or FTB does confidential merge of utility and FTB data
  - Default charge by location
- This would be paired with lowering the volumetric price to social marginal cost, around 8-10 cents per kWh



#### Some Example Fixed Charge Schedules





CPUC En Banc: Electric Costs and Rates - Feb 24, 2021

#### Conclusions

- Current residential rate schedules create perverse incentives
- Most of revenue collected with volumetric rates does not pay volumetric costs
- Differential is due to infrastructure, wildfire, BTM PV, CARE, public purpose programs
- Volumetric collection is a highly regressive tax
- One partial solution: pay for state policy priorities through the state budget
- Another possible solution: income-based fixed charges



#### **Report and Webinar**

Report is available at <a href="https://www.next10.org/publications/electricity-rates">https://www.next10.org/publications/electricity-rates</a>

Webinar presentation, March 4, 1pm <u>https://register.gotowebinar.com/register/3136680587841562123</u>





February 24, 2021

# Rate Design Theory and Practice

#### Electric Costs and Rates in California - En Banc Hearing

Mark LeBel Associate Regulatory Assistance Project (RAP)® 50 State Street, Suite 3 Montpelier, Vermont 05602 USA 802-498-0732 mlebel@raponline.org raponline.org

# Why and How Do We Regulate Utilities?

- Public policy goals
  - Efficient competition and control of monopoly pricing
  - Environmental and public health requirements
  - Societal equity (e.g., universal access and affordability)
- Principles for setting utility prices
  - Effective recovery of the revenue requirement
  - Revenue and bill stability
  - Customer understanding and acceptance
  - Equitable allocation of costs
  - Efficient forward-looking price signals

#### Algorithm for Socially Efficient Price Signals

- 1. Start with short-run marginal costs where you can
- 2. Layer in long-run marginal costs
- 3. Add any unpriced externalities
- 4. End by allocating and pricing "residual" costs that must be recovered through rates

#### NY Value of Distributed Energy Resources Export Credit Structure

- Hourly wholesale energy pricing
- Generation capacity credit
- Delivery credits
  - DRV Utility system-wide value
  - LSRV Locational adder
- Environmental value credit

#### We pay for other "grids" in volumetric prices



#### **Advanced Residential Rate Design**

| Cost Recovery Only                                                           |         |
|------------------------------------------------------------------------------|---------|
| Customer Charge (\$/mo.)                                                     | \$10    |
| Site Infrastructure (\$/individual NCP kW)                                   | \$1     |
| Bidirectional Distribution Network Charge (Cents/kWh on imports and exports) | 5 cents |

| Symmetric Charges and Credits |          |
|-------------------------------|----------|
| Off-peak (cents/kWh)          | 5 cents  |
| Mid-peak (cents/kWh)          | 12 cents |
| On-peak (cents/kWh)           | 28 cents |
| Critical peak (cents/kWh)     | 75 cents |

#### **Problems with Ramsey Pricing**

Ramsey pricing rule - place residual costs on the least elastic pricing element

- Elasticity estimates are not always obvious and can change
- Ramsey model underplays dynamic efficiency, information asymmetry, and competition across markets
- Distributional impacts can be challenging



#### **About RAP**

The Regulatory Assistance Project (RAP)<sup>®</sup> is an independent, non-partisan, non-governmental organization dedicated to accelerating the transition to a clean, reliable, and efficient energy future.

Learn more about our work at raponline.org



Mark LeBel Associate Regulatory Assistance Project (RAP)® 50 State Street, Suite 3 Montpelier, Vermont 05602 USA 802-498-0732 mlebel@raponline.org raponline.org