

Market Studies, BROs, & Low Income

2021 Potential and Goals

October 8, 2020

Agenda

01 Introduction

02 Market Adoption Study*

03 Industrial and Agricultural Study **04** BROs Approach

05 Low Income Analysis

06 Closing

*5 minute break afterward

Conference Call Etiquette During Q&A Sessions

- We know everyone is working from home, background noise if you are speaking is inevitable.
- <u>BUT</u> please mute yourself when you aren't speaking.
- Please do not place the line on hold.
- We are actively monitoring the chat window; consider submitting questions/comments via chat.

CPUC EE Potential & Goals Study Team

- Coby Rudolph, Project Lead
- Genesis Tang
- Lisa Paulo
- Jessica Allison
- Peter Franzese
- Travis Holtby
- Paula Gruendling, Project Supervisor

Two EE Potential & Goals Tracks

1. Goals-adoption Policymaking Track (Policy Track):

Formal comments via EE rulemaking proceeding. Topics have included:

- Energy efficiency portfolio objectives and Goals metrics
- Energy efficiency / IRP Integration Opportunities
- Cost-effectiveness questions, treatment of non-resource programs and budget approval
- Prioritization & other issues

2. Potential and Goals Study Track (Study Track):

Informal work on the EE Potential & Goals Study.

- CPUC Energy Division staff (along with Guidehouse) is soliciting ongoing, informal feedback from stakeholders on methodological and technical issues related to the Study.
- As in previous studies, stakeholder engagement on technical will take place in coordination with the CEC's Demand Analysis Working Group (DAWG).

EE Potential & Goals Background

Potential and Goals Study serves multiple purposes:

1. PG Study informs the CPUC Decision adopting IOU Energy Efficiency Goals.

2. EE Goals inform the statewide Demand Forecast (& IRP), SB 350 forecast.

Potential & Goals Next steps (Subject to Change)

Activity	Track / Venue	When	
ALJ Kao Ruling Questions (from 3/12/20)	Policy / formal comment	Completed	
Study launch Workshop & Workplan	Study / informal comment	Completed	
Measure characterization, data inputs	Study / informal comment	June 2020 DAWG mtg	
Modeling	Study / informal comment	July 2020 DAWG mtg	
Market studies, BROs, Low Income analysis	Study / informal comment	Today	Complete
Scenarios, Top-down scoping	Study / informal comment	Q3/Q4 2020	complete
EE/DR/IRP Integration, Locational post- processing, Draft results	Study / informal comment	Q1 2021	
Proposed Decision on Goals Adoption for 2022 and Beyond	Policy / formal comment	Q2 /Q3 2021	
Decision on Goals Adoption for 2022 & Beyond	Policy / formal comment	Q3 2021	
Additional Policy Activities TBD	Policy / formal comment	TBD	

California Public Utilities Commission

Speakers Today

Amul Sathe Project Director Guidehouse

Tyler Capps Modeling Team Lead Guidehouse

Dustin Bailey Industrial and Agricultural Lead Guidehouse

Brian Chang Behavioral, Retrocommissioning, and Operational Efficiency Lead Guidehouse

Vania Fong Modeling Support Guidehouse

Melanie Munroe Market Adoption Characteristics Study Lead Opinion Dynamics Corporation

Christopher Dyson Industrial and Agricultural Measure Study Lead DNVGL

DNV·GL

PG Study Workflow

What is a Potential Study?

Technical Potential Total energy savings available by end-use and sector, relevant to current population forecast

Economic Potential CPUC Cost-effectiveness Screen

Program Intervention

Avoided Costs

Measure Costs

Customer Adoption Characteristics Achievable Potential EE expected to be adopted by programs

Establishes Goals & Scenarios for Forecast

Objectives for today

PG study data integration and additional components

Behavior, Retrocommissioning, and Operational Efficiency (BROs) Plan Overview

Low-Income Analysis Overview

Market Adoption Study Findings

Stakeholder Presentation Melanie Munroe, Opinion Dynamics

Introduction

• Discussion topics:

- Study objectives
- -Survey methods and results
- -Value factor metrics

Market Study Survey Objectives

Impetus for Updating Adoption Logic

- Historically, the model primarily considered levelized measure cost to inform EE adoption
- Stakeholder feedback from Approaches for Assessing Energy Efficiency Potential & Goals Workshop (October 2019)
 - Economics is not the only driver of adoption behavior, and in some cases, it may not even be the primary driver
 - Suggestions to study customer behavior and preferences
- Research outlines the importance of social and behavioral insights in modeling adoption of EE
 - Understanding of non-rational decision making
 - Other program features impact adoption beyond financial incentives

Market Adoption Study Objectives

- Consider a broader set of customer preferences on economic and noneconomic factors when modeling energy efficient technology adoption
- Collect residential and commercial customer characteristics, attitudes, and behaviors (value factors) to inform reported adoption decision-making
 - Energy Efficiency
 - Fuel Substitution
 - Demand Response
- Combine customer preferences and technology characteristics to determine market share within customer groups

Single Family, Multifamily, and Commercial Survey Methods and Results

Single-Family Survey Methods & Response Rate

- Mail-push-to-web survey approach
 - Survey invitation letter with web link
 - Email & postcard reminders with web link
 - Inbound phone option for those who didn't want to complete on web
- Fielded July 20 September 4 and offered \$10 gift card to respondents
- Sample of 7,475 California residents stratified proportionally by IOU
- 14% Response Rate (n=598)
- Must be non-low-income, must reside in home with 4 or fewer units, and must have responsibility in decisions about energy using equipment
- To reduce the potential for bias, we:
 - Mailed survey letters so as not to exclude those without an email address on record
 - Stratified the sample proportionally by IOU and applied weights
 - Weighted on age, income, education, race, and gender to offset any under- or over-represented groups

Single-Family Survey Topics and Measures

- Survey questions about:
 - Program awareness
 - Purchase decision-making, barriers, and attitudes about EE, DR, and fuel switching measures
 - COVID-19 impacts
 - Demographics and household characteristics
- Measures asked about in the survey:
 - High touch: refrigerator, clothes dryer, or smart thermostat
 - Low touch: furnace, central AC, insulation, water heater
 - DR: smart thermostat
 - Fuel switching: furnace and water heater
- Respondents assigned to be asked about one high touch measure, one low touch measure, one fuel switching measure, and one demand response program

Single-Family Segmentation Clusters

- Used Latent Class Analysis, a statistical method, to identify four attitudinal-based clusters
 - The attitudinal inputs included values related to environmental preservation, energy use and conservation, purchasing decisions, social signaling, and perceived financial wellbeing)

Cluster	Size	Description
Average Americans	50%	Attitudes and values are normally distributed (does not strongly skew in either direction on most items)
Eager Adopters	20%	Believes strongly in environmental issues, wants to save energy, and has the financial means to afford energy upgrades
Likely Laggards	19%	Not very concerned with environmental issues, saving energy, or social signaling; fairly apathetic
Economically Strained Environmentalists	11%	Extremely concerned with environmental issues, however efficiency upgrades can be out of financial reach, so desire to save energy is both altruistic and pragmatic; social signaling is important

Multifamily Survey Methods & Response Rate

- Mail-push-to-web survey approach
 - Survey invitation letter with web link
 - Postcard reminders with web link
- Fielded August 4 August 28 and offered \$25 gift card to respondents
- Sample of 3,030 multifamily building owners & property managers in California stratified proportionally by IOU
- 8% Response Rate (n=104)
- Must have 5 or more market rate units at the property and must have responsibility in decisions about energyusing equipment in units
- To reduce the potential for bias, we:
 - Mailed survey invitations so as not to exclude those without an email address on record
 - Stratified the sample by IOU and applied weights.

Multifamily Survey Topics and Measures

- Survey questions about:
 - Program awareness
 - Purchase decision-making, barriers, and attitudes about EE, DR, and fuel switching measures
 - COVID-19 impacts
 - Property and equipment characteristics
- Measures asked about in the survey:
 - Minor investment: refrigerator and smart thermostat
 - Major investment: insulation and water heater
 - Fuel switching: water heater
- Respondents assigned to be asked about one minor and one major measure

Commercial Survey Methods & Response Rate

- Mail-push-to-web survey approach
 - Survey invitation letters and emails with web link
 - Postcard & email reminders with web link
- Fielded August 7 September 4 and offered a \$25 gift card to respondents
- Sample of 19,270 commercial customers in California stratified by size (2/3 small/med and 1/3 large) based on annual energy usage (large = 300,000+ kWh/year) and proportionally by IOU
- 7% Response Rate (n=757)
- Must be a business segment other than industrial, agricultural, or governmental, must not be permanently closed, must have responsibility in decisions about energy-using equipment in the facility
- To reduce the potential for bias, we:
 - Mailed survey invitations so as not to exclude those without an email address on record
 - Stratified by Large and Small/Medium based on annual energy usage and proportionally by IOU, and applied weights

Commercial Survey Methods & Response Rate

- Survey questions about:
 - Program awareness
 - Purchase decision-making, barriers, and attitudes about EE, DR, and fuel switching measures
 - COVID-19 impacts
 - Firmographics and facility and equipment characteristics
- Measures asked about in the survey:
 - Minor investments: smart power strip, PC power management, smart thermostat, occupancy sensor
 - Major investments: refrigeration display case/storage unit, water heater, insulation, EMS
 - DR measure: smart thermostat and EMS
 - Fuel switching measures: water heater
- Respondents assigned to be asked about one minor measure, one major measure, one fuel switching measure, and one demand response program

Commercial Segments

Segment	Small* (n = 425)	Large* (n = 332)	Total Count (n = 757)	Total Percent
Office	137	103	240	32%
Retail	85	63	148	20%
Other	92	48	140	19%
Health	65	37	102	13%
Restaurant	43	55	98	13%
Warehouse	47	32	79	10%
Lodging	28	22	50	7%
School	20	19	39	5%
Grocery	16	14	30	4%
College	5	4	9	1%

* Size based on energy usage where large = annual usage of at least 300,000 kWh/year. When size is based on reported annual revenue and/or number of employees, 70 (9%) were large and 687 (91%) were small/medium

Value Factor Metrics from Surveys

Value Factor Descriptions

- Customers' considerations when making energy efficient equipment purchase decisions that can influence their willingness to make the purchase
 - Lifetime Costs: importance of long-term energy costs/savings of the equipment
 - Upfront Costs: importance of initial out-of-pocket price of equipment
 - Eco Impacts: importance of environmental impacts from energy consumption
 - Social Signals: importance of being perceived as environmentally/socially responsible
 - Hassle Factor: importance of ease/difficulty, convenience/inconvenience of installing/operating equipment
 - Non-consumption Performance: importance of non-energy benefits, aesthetics, features
- Mean scores will be reported across EE, DR, and fuel switching measures by segment
 - 1 to 5 scale where 1 means not at all important and 5 means very important in decision making.

DRAFT Residential Value Factors For All EE Measures

NOTE: Preliminary, unadjusted results. Further analysis/adjustments are pending.

Segment	Lifetime Costs	Upfront Costs	Hassle Factor	Eco Impacts	Social Signals	Non-Consumption Performance
Average Americans	18%	14%	16%	21%	15%	16%
Eager Adopters	18%	11%	15%	24%	16%	15%
Likely Laggards	18%	14%	18%	18%	16%	16%
Economically Strained Environmentalists	17%	15%	16%	21%	17%	14%
SF Total	18%	13%	16%	21%	16%	16%
MF Total	16%	14%	17%	21%	18%	14%

DRAFT Commercial Value Factors All EE Measures

NOTE: Preliminary, unadjusted results. Further analysis/adjustments are pending.

Segment	Lifetime Costs	Upfront Costs	Hassle Factor	Eco Impacts	Social Signals	Non-Consumption Performance
Office	18%	12%	16%	21%	18%	15%
Retail	18%	14%	17%	20%	17%	15%
Other	18%	14%	15%	21%	18%	14%
Health	18%	12%	17%	21%	18%	15%
Restaurant	17%	13%	16%	21%	18%	15%
Warehouse	18%	13%	16%	21%	18%	14%
Lodging	18%	12%	15%	21%	19%	15%
School	18%	12%	16%	20%	18%	15%
Grocery	17%	14%	16%	18%	18%	16%
College	18%	12%	16%	21%	18%	14%
Small/Medium	18%	13%	16%	20%	18%	15%
Large	18%	13%	17%	21%	19%	15%
Total	18%	13%	16%	20%	18%	15%

Leveraging Market Study Results

Stakeholder Presentation Vania Fong and Dustin Bailey, Guidehouse

Introduction

• Discussion topics:

- -Willingness Calculation
- -Logic Flow
- -Impacts of DR and FS

2021 Study - Update to Willingness Calculation – Res/Com

Updating the Decision Model to include Multiple Attributes

- Accounts for factors beyond LMC in adoption decisions
- Will be informed by primary data collection from the parallel market studies

• Industrial/Agriculture modifications are still under development

Market Study Integration

Logic Flow Survey Results to Model Inputs

Survey	Aggregation	Input Generation	Adoption Calculation
Field Survey	Aggregate Survey Responses	Create Customer Preference Weightings	Calculate Market Share
 20-minute, online- based survey administered by Opinion Dynamics 	Program AwarenessCustomer ClusterTechnology Group	 Aggregate survey responses to generate customer preference weightings 	 Combine customer preferences and technology characteristics to determine market share within competition groups
		Compute Technology Characteristic Utility	
		 Quantify characteristics that differ across technologies and drive differences in 	

adoption behavior

Provided by ODC

Calculated in model

Aggregate Survey Responses

• Survey responses will be aggregated over each combination of the following dimensions

Create Customer Preference Weighting

Create Customer Preference Weighting

- Convert transformed responses for each technology attribute to relative weightings (0-100%) that indicate the importance of each technology characteristic in determining adoption
- Values can be interpreted as percentage of decision driven by each technology characteristic

Average Transformed Response (for Tech Attribute) Sum of Average Response (of all Tech Attributes) Technology Group and Awareness Group combination

	Average Transformed Response	Preference Weighting	
Technology Attributes	Sample Customer Group	Sample Customer Group	
Lifetime Cost (LMC)	3.5	18%	
Upfront Cost	2.6	13%	
Hassle Factor	3.2 ///.	16%	
Eco Impacts	4.1 4.1 K	a ti 21%	
Eco Signaling	3.1	16%	
Non Conservation Performance	3.1	16%	
Total		100%	
		25	

Customer Weightings Impacted by DR and FS

• Preliminary, unadjusted results

Survey Topics	EE	DR	EE + DR	FS	EE + FS
Attribute	Customer Preference Weighting	Attributes Asked About	Customer Preference Weighting	Attributes Asked About	Customer Preference Weighting
Lifetime Cost (LMC)	18%	Y	20%	Y	15%
Upfront Cost	13%	Y III	35%	Y	15%
Hassle Factor	16%	Y	tratin 15%	Y	35%
Eco Impacts	21%		15%	Y	15%
Eco Signaling	16%		10%		5%
Non-conservation performance	16%	Y	5%	Y	15%
Total	100%		100%		100%

Compute Technology Characteristic Utility

- Use measure characterization data and subject matter knowledge to develop a numerical or binary value for each characteristic for each measure
- Convert to a dimensionless "utility" value by dividing by the average over the competition group (CG). Can be interpreted as the relative value of the measure compared to the other CG measures

Attributes	Characteristic Value
Lifetime Cost (LMC)	NPV of All Costs (\$)
Upfront Cost	Upfront Cost (\$)
Hassle Factor	Labor Cost (\$)
Eco Impacts	Energy Consumption (kWh, Therms)
Eco Signaling	Energy Consumption (kWh, Therms)
Non Conservation	1 = High Touch
Performance	0 = Low Touch

<u>Formula</u>

 $Utility_{Attribute}(Measure) =$

(Characteristic Value (for measure) (Average Characteristic Value (across CG))

Example

 $\begin{aligned} Utility_{LMC}(LED) &= \\ & \left(\frac{\$400}{Average(\$400,\$100,\$500)}\right) = 1.2 \end{aligned}$

Variation Across Dimensions

• The table indicates if customer preference weightings and technology characteristics vary across each modeling dimension

	Program Awareness	Customer Cluster	Technology Group	Value Factor	Measure
Customer Preference Weights	х	х	х	x	
Technology Characteristics	X*			X	X

*Example: Customers only aware of EE programs would make decisions based on only EE benefit streams, whereas customers aware of both EE and DR would decide based on EE+DR benefit streams

Market Share Calculation

- Use customer preference weights to calculate weighted average of relative technology characteristics for every measure
- Feed weighted value into decision model to calculate market share

Guidehouse

Competition, **Program**

Market Share Calculation Example

Industrial and Agricultural Market Study Findings

Stakeholder Presentation Christopher Dyson, DNV GL

Introduction

• Discussion topics:

- -Research Objectives, Subsector Targets
- -EE Technology/ System Identification
- -Market Penetration Estimation
- Key questions for stakeholders:
 - What considerations or other studies that may exist to supplement the finding, especially when it comes to measure cost?

Research Objectives, Subsector Targets

Research Objectives

- Identifying up to 3 technologies/systems with greatest potential for future energy savings in 6 prioritized subsectors
- Quantifying market penetration of selected technologies/systems
- Determining factors preventing their wider adoption including whether customers opt for other demand-side options such as self-generation
- Projecting customer willingness to adopt EE technologies w/ and w/o program interventions

Measure characterization and market penetration forecasts will feed into the PG study.

Targeted Subsectors

Industrial

- -Food services/production
- -Chemical manufacturing
- -Electronics/semiconductor

Agricultural

- -Greenhouses
- -Dairies
- -Water pumping (agricultural sector only)

EE Technology/ System Identification

EE Technology/ System Identification

- Literature/database review
- Completed interviews with 60 subsector experts
 - Experts identified through lit review, industry knowledge, implementers of CA EE programs, referrals from initial interviewees including PA subsector specialists
- Identified 3 promising EE technologies in each of 6 subsectors
 - -End use accounted for large % of subsector's energy use
 - -Measures believed to have large untapped energy savings potential
 - -Multiple experts recommended measure
 - -Frequently mentioned in subsector literature
 - -Frequently-recommended measure in Industrial Assessment Center (IAC) database
- Experts also identified barriers to adoption: Lack of EE knowledge among subsector operators and management, first cost, project competition for capital, low energy costs, low margins, fear of interrupting production

EE Technology/ System Identification

Industrial	Agriculture
Chemical Manufacturing	Dairies
Heat recovery	Heat recovery
Automation and optimization	VFDs on pumps
VSDs	Fans and ventilation
Electronics Manufacturing	Greenhouses
Chilled water plant optimization	LED growlights
O&M retrocommissioning	High efficiency HVAC
Low-pressure drop HEPA/ULPA filters	Energy curtains
Food Production	Water Pumping for Agriculture
Refrigeration system optimization	Efficient pumps and motors
Heat recovery	Sensors and controls
VFDs	Comprehensive program

Expert perspectives on DG/DR activity/potential within industrial subsectors

Subsector	DG/DR Activity
Chemical manufacturing	 Combined Heat and Power (CHP) is standard equipment in most new facilities & biggest driver of subsector's recent decline in energy intensity and GHG per unit of production. DR activity for those whose operations can tolerate part-loads and non-steady state conditions Some renewables for corporate sustainability goals
Electronics manufacturing	 Little use of cogeneration due to lack of sustained heat demand; competition for capital from production line improvements and retooling; energy is small % of overall expenditures Some renewables for corporate sustainability goals
Food production	 Renewables adoption not widespread due to same concerns about interrupting production that are barrier to EE projects Exceptions are companies who see branding value in green energy

Note: Not necessarily representative as the experts targeted (as was intended by our scope) were primarily in the EE space.

Expert perspectives on DG/DR activity/potential within agriculture subsectors

Subsector	DG/DR Activity
Dairies	 Competition with EE from solar PV opportunities is small-to-moderate and wind offered little competition with EE Dairies more likely to lease land for solar arrays or wind turbines than install own generation equipment
Greenhouses	 CHP/cogen has high technical potential, but low market potential due to many greenhouses lacking access to natural gas Compost heating, bio-gas steam heating, and geothermal heating are gaining traction. However, first cost is the primary barrier to adoption. Also some farmers fear crop damage from pests & wider temperature fluctuations using compost heating Solar PV market penetration is low
Water pumping - agricultural	Has long participated in utility DR programs

Note: Not necessarily representative as the experts targeted (as was intended by our scope) were primarily in the EE space.

Guidehouse

CA Net Energy Metering (NEM) Database Review

- Examined the number of recent (2015-2020) solar projects for our six subsectors in the NEM database (by matching NAICS codes)
- Found recent solar activity was limited
 - Only 15 total solar projects across these 6 segments were found in the NEM database
 - While renewables may compete more w/ EE in future, this implies in recent past the competition has been limited.
- <u>Caveat</u>: unclear if NEM database is capturing all DG activity or if NAICS codes are fully accurate

Electronics manufacturing 5 Chemical manufacturing 5 Food processing 3 Water distribution for ag 2 Dairies 0 Greenhouses 0

Number of solar projects 2015-2020 as reported

in NFM database

Market Penetration Estimation

Vendor & Customer Interviews

Guidehouse

- ~60 equipment vendor interviews for recommended EE measures Vendors identified through web searches, lit review, PA referrals, and initial vendor interviews
- 50 end user interviews across the 6 subsectors Identified by NAICS code in InfoSource database

Scope of Vendor Interviews Scope of Customer Interviews Penetration of recommended EE measures as Penetration of recommended EE measures w/in ٠ observed among their client base their own facility Barriers to EE implementation Barriers to EE implementation ٠ Whether EE faced competition from renewables, Whether EE faced competition from renewables, ٠ DR DR Payback/ROI criteria for EE projects Average energy savings of these EE measures ٠ • Awareness of, participation in EE, DG, and DR programs/rebates Likelihood of purchasing EE equipment based on example incremental costs & incentive levels Involvement in DG and its impacts on their willingness to invest in EE Impact of COVID on operations

Current Activities/Next Steps

- Wrapped up end user interviews in late September
- Calculating inputs for PG model
 - Calculating current CA market penetration estimates for recommended EE measures using both vendor and customer interviews
 - -Estimating energy savings for the recommended measures
 - -Estimating customer willingness to pay for EE w/ and w/o incentives
- Summarizing other findings in October report
 - -Barriers to EE implementation from 3 different perspectives (experts, vendors, and customers)
 - -How investments in renewables/DR impact customer willingness to invest in EE
 - Industrial/ag customer interest in various DR options/programs
 - -Impacts of COVID on ag & industrial sectors

Preliminary Results

Much untapped potential in industrial/ag subsectors even for EE

~40% of facilities haven't reported ever receiving an EE rebate

Preliminary Results

EE incentives can impact willingness to adopt EE

Preliminary Results

Overall, how much has the COVID-19 pandemic impacted your business since March 2020?

Industrial/ Agricultural Measure Characterization and Study Integration

Stakeholder Presentation

Dustin Bailey, Guidehouse

Measure Types and Approach

There are 4 types of measures under consideration.

Measure Type	Approach	
Characterized Custom	Deemed measure characterization process using CEDARS, primary data collection*, and secondary source data	
Generic Custom	Top-down analysis leveraging historical program trends and consumption forecasts	
Emerging Technologies		
Strategic Energy Management (Including Retrocommissioning and Optimization)	BROs approach	

* Data from the Ind/Ag Market Study described earlier.

Industrial/Ag Characterization

CEDARS Measure Data Reviewed in 2020

- Based on review no changes were made to characterized custom measure list from last study related to electric energy, demand, and/or gas savings
- Measure cost
 - Cost will be updated slightly but savings will remain the same and no new measures where identified

Ind/Ag Market Study

 Primary data is still processing but sector specific measures will be added based on the results of their study

Supplementing Characterization with Market Data

Industrial	Agriculture
Chemical Manufacturing	Dairies
Heat recovery	Heat recovery
Automation and optimization	VFDs on pumps
VSDs	Fans and ventilation
Electronics Manufacturing	Greenhouses
Chilled water plant optimization	LED growlights
O&M retrocommissioning	High efficiency HVAC
Low-pressure drop HEPA/ULPA filters	Energy curtains
Food Production	Water Pumping for Agriculture
Refrigeration system optimization	Efficient pumps and motors
Heat recovery	Sensors and controls
VFDs	Comprehensive program

Guidehouse

Data from vendors and potential customers is being collected for each of these measures that will be included in the potential model. This data will be fed into the potential model including:

- Measure savings and applicability
- Scaling basis for each measure- how savings will scale to the population
- EUL- Measure life for each measure
- Cost- the total incremental cost to install a given measure
- Technology density- % of site with that have the equipment that could benefit from the measure
- Technology efficiency level- % of site that have the equipment in the baseline condition
- Technical suitability- % of sites that are willing and able to install a given technology

Industrial/Ag Characterization – Insights from CEDARS

Notable Points noted several interesting things while reviewing the CEDARS data

- In the industrial sector SEM is steadily becoming a larger % of the total industrial market savings with around 35% of the total claimed electric savings in 2020. This represents ~5% increase year over year.
- In the industrial sector "pipe insulation" represents around 70% of the total gas savings (2019 claims). This is
 a huge increase from previous years where this measures represented around 3% of the total industrial gas
 savings.

Questions:

- Can stakeholders confirm they have observed these as well?
- Do stakeholders think these trends are sustainable or an "exception"?

Behavior, Retrocommissioning, and Operational Efficiency (BROs) Plan

Stakeholder Presentation Brian Chang, Guidehouse

Introduction

• Discussion topics:

- -Overview of Work Plan and Approach
- -List of BROs programs and proposed updates

• Key questions for stakeholders:

- –Which BROs programs have seen significant changes in status over the past two years?
- –What other sources, reports, or evaluations are there that could inform updates?

BROs Work Plan

Guidehouse

BROs Approach: Market Potential

BROs Approach: Program Cost

2021 Study: BROs Updates

- The scope of BROs updates for the 2021 study is more focused than the 2019 study.
 - -The list of 12 programs will remain the same. No programs will be removed. All programs will receive a QA/QC of key inputs.
 - -We will focus on comprehensive updates to select high-priority programs.
- High-priority programs are those that:
 - -Have new sources of evaluated program data or pilot program results.
 - -Have begun or significantly increased implementation since the 2019 study.

Please provide us with any reports or data sources to inform updates.

Please provide us with any information of new or pending programs.

List of BROs Programs

 All programs will receive a QA/QC of key inputs. Programs with a
 are a high-priority for comprehensive updates based on new evaluations, pilots, or other studies.

Sector	Program (2019 Study)	High-Priority 2021 Update	Notes / Sources (From review of published studies, CEDARS, ABALs)
Residential	Home Energy Reports	\checkmark	New PY 2016 and 2017 evaluations, 2021 ABALs
	Universal Audit Tool	\checkmark	Nexant Phase I Early EM&V for PG&E UAT
	Web-Based Real-Time Feedback		
	In Home Display RT Feedback		
	Competitions: Large and Small		
Commercial	Strategic Energy Management		Major updates not expected until release of new CEUS
	Retrocommissioning		CEDARS claims for RCx and Facility Assessment Service Program
	BEIMS		Major updates not expected until release of new CEUS
	Building Benchmarking		Review local ordinances and ability to claim savings
	Building Operator Certification		
	Business Energy Reports		
	Competitions		

Question for Stakeholders

• Which BROs programs have seen significant changes in status over the past two years?

- The following Appendix lists sources that we have identified for updating high-priority programs
 - -Are there other significant sources of evaluation data for these programs?

Appendix: BROs Sources for 2021 Update

Residential: Home Energy Reports (HERs)

Nexant. Sep 2, 2020. Evaluation of Southern California Edison's HER Persistence Pilot. Southern California Edison Co. CALMAC ID: SCE0447.

California IOUs. 2020. RTR for the Impact Evaluation of Home Energy Report: Residential Sector – Program Year 2018 (EM&V Group A). CALMAC ID: CPU0206.02.

DNV-GL. Apr 16, 2020. Impact Evaluation of Home Energy Reports: Residential Sector – Program Year 2018. California Public Utilities Commission. CALMAC ID: CPU0206.01.

Nexant. Mar 25, 2020. PG&E HER 2017 Energy and Demand Savings Early EM&V. Pacific Gas & Electric. CALMAC ID: PGE0448.001.

DNV-GL. May 1, 2019. Impact Evaluation Report: Home Energy Reports – Residential Program Year 2017. California Public Utilities Commission. CALMAC ID: CPU0194.01.

DNV-GL. May 1, 2019. Impact Evaluation Report: Home Energy Reports – Residential Program Year 2016. California Public Utilities Commission. CALMAC ID: CPU0190.01.

Opinion Dynamics. Dec 10, 2018. PG&E Home Energy Report (HER) Energy Savings Distribution Analysis and Trends Study. CALMAC ID: PGE0426.01.

Guidehouse
Appendix: BROs Sources for 2021 Update

Residential: Universal Audit Tool (UAT)

Nexant. Sep 2020. Phase I: Residential Online Audit Early EM&V for 2019 Savings Claim (PG&E).

Commercial: Strategic Energy Management (SEM) and Retrocommissioning

Navigant: Luboff, J., Legett, R., Jangra, V., & Firme, R. Commercial Strategic Energy Management: Approaches and Best Practices. *UC Berkeley: Behavior, Energy and Climate Change Conference*. 2016.

Strategic Energy Group. Strategic Energy Management Case Study: Clovis Unified School District—Clovis, CA.

Strategic Energy Group. Strategic Energy Management Case Study: Idaho Office of Energy Resources K12 Energy Efficiency Project.

Annual Budget Advice Letters (ABALs):

PG&E. Sep 1, 2020. 2021 Energy Efficiency Annual Budget Advice Letter. Advice 4303-G/5936-E.

SCE. Sep 3, 2019. Efficiency Program and Portfolio Annual Budget Advice Letter for Program Year 2020. Advice 4068-E.

SCG. Sep 1, 2020. Request for Approval of Annual Energy Efficiency Budget Filing for Program Year 2021. Advice 5684.

SDG&E. Sep 1, 2020. 2021 Annual Energy Efficiency Program and Portfolio Budget Request. Advice 3599-E/2897-G.

Guidehouse

Low Income Plan Overview

Stakeholder Presentation Amul Sathe, Guidehouse

Overview

• The original scope for the Low Income (LI) sector in the study was documented in the 2021 PG study workplan as follows:

"...this study will revert back to the method utilized by the 2018 PG study. The method is to request data from the IOUs on the number of expected program treatments and retreatments and apply estimated unit energy savings values (based on IOU reports or impact evaluations) to forecast market potential."

- · New direction is for this task to inform the CPUC low income proceeding
 - The original scope wasn't designed with this in mind
 - A more granular scope is being considered

Objectives and Priorities

CPUC Low Income Team's Objectives

- Identify measures that can provide deeper energy savings at the household level including those that do not meet CPUC's EE portfolio cost effectiveness thresholds.
- 2. Identify measures that have high participant benefits cost savings, health/comfort/safety if possible.
- 3. Estimate a total achievable energy efficiency potential that could act as a benchmark to guide policymaking in the ESA program.

Priorities for the 2021 PG Study

- Develop a bottom-up, measure-level potential for Energy Savings Assistance (ESA) Program
- Estimate
 - o Technical potential
 - o Achievable potential
 - Associated program budget

Draft Revised Scope

Measure Selection and Characterization

- Develop a list of current and potential future ESA measures
- Characterize measures using existing data sources

Technical Potential Analysis

- Represents the remaining untapped potential
- Leverage recent saturation data from RASS

Achievable Potential Analysis

- Represents the potential that is achievable through ESA program intervention
- Forecasting methodology considers historical program treatments and uptake of measures, as well as forward looking analysis for how new measures might penetrate the low-income sector

Program Budget Analysis

 Calculates the measure costs and program expenditures associated with both the technical and achievable potential

Overall Schedule Reminder

Reminders and Next Steps

Stakeholder engagement is critical and CPUC and the Potential and Goals Study team values the input and direction provided.

- Study-related comments are informal.
- Study-related comments on the topics covered today are due October 22 via e-mail to: <u>coby.Rudolph@cpuc.ca.gov</u> & <u>travis.holtby@cpuc.ca.gov</u>.
- We suggest comments be focused on the questions posed throughout this slide deck
- For topics with no explicitly posed questions, open comment is welcome.

Stay Informed

CPUC's 2021 Energy Efficiency Potential & Goals Webpage:

<u>https://www.cpuc.ca.gov/General.aspx?id=6442464362</u>

CEC's Demand Analysis Working Group (DAWG):

- This meeting and future meetings are being noticed to the DAWG listserv (not the EE proceeding listserv)
- Sign up for the DAWG listserv to get future notices here: <u>https://www.energy.ca.gov/programs-and-</u> <u>topics/topics/energy-assessment/demand-analysis-</u> <u>working-group-dawg</u>

Contact

Amul Sathe Director, Project Director Amul.Sathe@guidehouse.com (415) 399-2180

Karen Maoz

Associate Director, Project Manager Karen.Maoz@guidehouse.com (415) 399-2172

Tyler Capps

Managing Consultant, Modeling Team Lead Tyler.Capps@guidehouse.com (916) 631-3205

Dustin Bailey

Senior Consultant, Ind/Ag Lead Dustin.Bailey@guidehouse.com (360) 828-4006

Vania Fong

Consultant, Modeling Support Vania.Fong@guidehouse.com (415) 356-7133

Brian Chang

Consultant, BROs Lead Brian.Chang@guidehouse.com (415) 356-7145

Melanie Munroe

Director, Opinion Dynamics mmunroe@opiniondynamics.com (617) 492-1400

Christopher Dyson

Principal Consultant, DNV GL Christopher.Dyson @dnvgl.com (608) 417-9664

©2020 Guidehouse Inc. All rights reserved. This content is for general information purposes only, and should not be used as a substitute for consultation with professional advisors.