## 2025 Energy Efficiency Potential & Goals Study

January 24, 2024 CPUC Planning Workshop



California Public Utilities Commission

## Conference Call Etiquette

- If you have a question or comment -
- We are actively monitoring the chat window; feel free to submit questions/comments via chat at any time.
- Use the "raise hand" feature to request to be unmuted.
- Once unmuted, please hold your question for the end of each section.
- Webinar is being recorded

#### **CPUC EE Potential & Goals Study Team**

- Hanna Navarro Goldberg study lead
- Alex Moisa
- Will Graswich
- Leanne Hoadley supervisor
- Low-Income study lead: Kapil Kulkarni

## **Background and Webinar Objectives**

#### Today's Focus:

EE & FS Potential Forecast – Introduce ideas for changes to methodology and input assumptions

#### Objectives

- Communicate proposed updates
- Present 2025 Study timeline and Stakeholder engagement milestones
- Ensure PG Study priorities align with Stakeholder objectives
- Understand gaps and opportunities to reduce uncertainty

#### Stakeholder Asks

- Comment about the schedule
- Confirm CPUC needs and expectations align with your priorities
- Review the identified modifications to the 2025 study approach and scope
- Provide responses to our questions and proposed plans

Low-income to be addressed at a separate timeline.

## Stakeholder Engagement Opportunities

- Study-related comments are informal.
  - Comments on today's presentation are due **February 7, 2024** via e-mail to:
    - hanna.NavarroGoldberg@cpuc.ca.gov
    - npodkowsky@guidehouse.com
    - William.Graswich@cpuc.ca.gov
    - Alex.Moisa@cpuc.ca.gov
  - Stakeholders will also have an opportunity to comment on the draft workplan which is anticipated to be published in March, 2024.

# What is the Energy Efficiency Potential and Goals Study?

- Develops estimates of total system benefit, energy impact, and demand impact potential in the service territories of California's major investor-owned utilities (IOUs)
- Forecast from 2026-2037, reporting net impacts
- Results have multiple uses:
  - Informs the CPUC goal setting process
  - Informs Program Administrators' EE program portfolio planning, budget setting, and procurement efforts
  - Supports planning efforts of the CPUC, CEC, CAISO
  - Informs strategic contributions to Demand Forecast, IRP, SB350 targets
  - Identifies new energy efficiency and fuel substitution savings opportunities

## The PG Study itself does not set goals; Guidehouse does not make recommendations to CPUC regarding goal setting.

## **EE Potential and Goals Legal Basis**

- Public Utilities Code 454.55-56
  - (a)(1) The commission, in consultation with the Energy Commission, shall identify all potentially achievable cost-effective electricity efficiency savings and establish efficiency targets for an electrical corporation to achieve
  - (a) The commission, in consultation with the Energy Commission, shall identify all potentially achievable cost-effective natural gas efficiency savings and establish efficiency targets for the gas corporation to achieve



CPUC 2025 Potential and Goals Study Updates Stakeholder Webinar

#### Agenda

Study Overview

#### Timeline Adjustments

**Fuel Substitution** 

Industrial & SEM

Total System Benefit & Policy

Summary & Final Questions

#### Guidehouse Team



**Neil Podkowsky** Associate Director Project Manager Karen Maoz Associate Director Technical Advisor Amul Sathe Director Project Director



## Study Overview

## What is a Potential Study?

- Measure Energy Savings
- Measure Life
- Technology Density and Saturation

Technical Potential Total energy savings available by enduse and sector, relevant to current population forecast

- Avoided Costs
- Measure Costs

Economic Potential CPUC Cost-effectiveness Screen

- Historical Program Achievements
- Program Budget
- Customer Adoption Characteristics

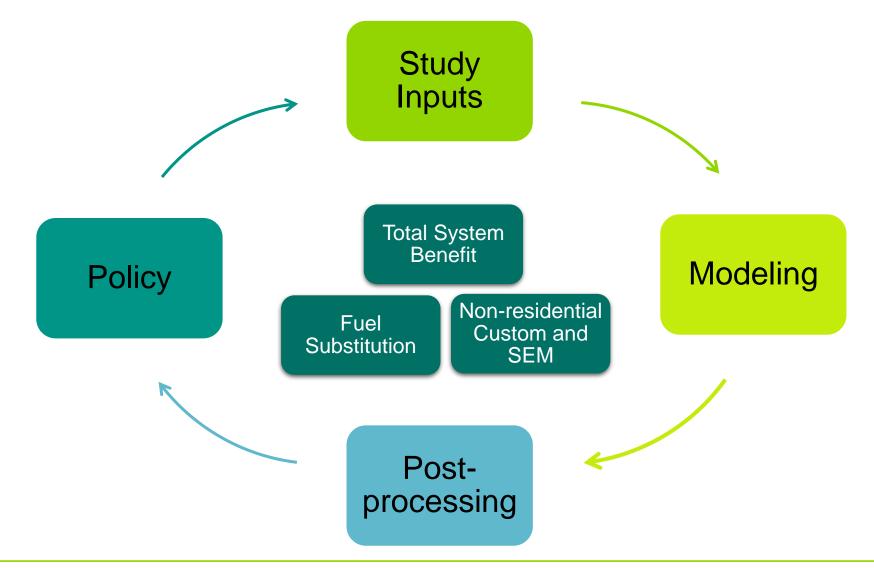
Achievable Potential EE expected to be adopted by programs

#### **Establishes Goals & Scenarios for Forecast**

### 2025 Potential and Goals Timeline

Separate timeline and process for low-income

| Activity                                     | Estimated Timeline |
|----------------------------------------------|--------------------|
| Study Launch Workshop & Workplan             | March 2024         |
| Measure Characterization                     | May 2024           |
| Scenarios                                    | August 2024        |
| Draft Results                                | January 2025       |
| Draft Results Comment Period                 | January 2025       |
| Proposed Decision Mailed                     | March-April 2025   |
| Decision on Goals Adoption for 2026 & Beyond | April-May 2025     |


#### What to expect for the 2025 Study

Refine and improve on past study cycles to inform the goals related CPUC staff policy questions

- Earlier project timeline with continued commitment to stakeholder engagement
- Fuel substitution characterization improvements
- Ind/Ag sector measure re-categorization
- Analysis for policy targets, i.e. What-if scenarios
- Application of Total System Benefit metric as model driver
- Right-sizing the model and analysis granularity to balance scope and budget:
  - Emphasis on characterization & analysis of high priority/high impact measures
  - o Continuing using past methodologies in other areas (Residential/Commercial, C&S, BROs)



#### Areas of focus within the study lifecycle





## **Timeline Adjustments**

#### Potential & Goals Study Dependencies California Energy Data and Reporting System Filings & claims Program Filings & claims data: (CEDARS) Administrators (PA) data kW, kWh, therms, Guidance EUL. NTGR folplanning CET input & output & doals data Measure Measure package package Filings **EE** Potential Claims development data **CET** input & & Goals output data: Study Measure Program & **CA eTRM** savings & measure costs DEER **CET** values TRC, PAC, Resources TSB CET Electric & gas Measure **CPUC** support avoided costs: Load tables packages Measure savings shape & CE values: Hourly library \$/kWh kW. kWh. therms, EUL, NTGR Hourly \$/ therm Avoided Measure combe package data CPUC Refrigera support Claims **DEER** tools: Electric & gas nt tables emission data (daily avoided costs **DEER Water Heater Calculator** Pass cost data svnc) / Fail Modified Lighting Calculator (MLC) AWS EM&V **Avoided Cost Fuel Substitution** DEER via DEER studies Refrigerant ACC Calculator Resolution Calculator database (ACC)

#### Source: Adapted from Group A EM&V Contractor

#### 2023 vs. 2025 Timeline

#### **Timeline changes:**

| Milestone      | 2023 Study       | 2025 Study              |
|----------------|------------------|-------------------------|
| Launch         | Late summer 2022 | Early spring 2024       |
| Measure review | Fall 2022        | Spring 2024             |
| Draft results  | Spring 2023      | January 2025            |
| Decision       | August 2023      | No later than June 2025 |

Allows for more time of downstream PG study use cases to incorporate the study results

- $\circ$  Portfolio planning
- Resource procurement
- $\circ$  IEPR

#### **Study dependencies:**

- Measure related data must be available by June 1, 2024
  - eTRM/DEER: Unclear if will have sufficient updates to the DEER database
  - o CEUS: Delays in releasing study results
  - Any other data from evaluation or other sources
- Model inputs must be available by July 1, 2024
  - Avoided costs expected no later than July 31, 2024
  - CEDARs (2023 accomplishments) typically by July 1, 2024
  - $\,\circ\,$  IEPR data (retail rates, consumption, stock) Feb 2024

#### Timeline and Budget Constrain Depth of Scope

Seeking stakeholder input on priorities to inform workplan emphasis

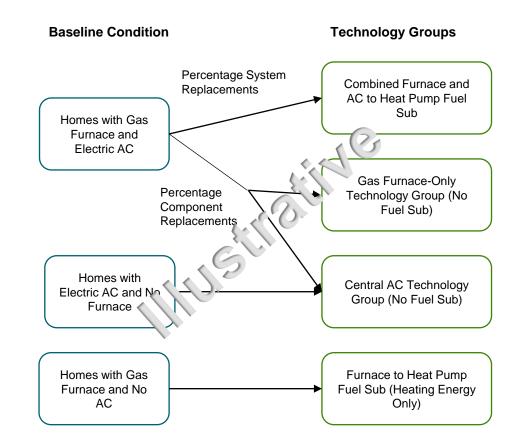
For example...







Enhanced analysis of custom & SEM


non-residential savings and whole building (for residential and commercial) comes at the cost of reduced effort on updating rebated technologies Simplified **locational analysis** using existing data from other studies reduces budget needed for this effort (relative to a completely new study/effort) freeing up funds for additional study enhancements Conduct analysis of **public sector and equity segments** depending on existing data availability, without readily available data this effort can be costly



## 2023 Fuel Substitution (FS) Approach

Gas to electric substitution in HVAC, water heating, food service, and appliance end uses

- FS infrastructure cost inputs considered only electric panel upgrades
- Technical and economic potential (kWh/Therms) assigned to the IOU serving new electric load
- FS adoption employed same adoption modeling framework as EE with the following additions:
  - Lower identified familiarity with FS technology, impacting willingness
  - Calibration parameters based on historical adoption which was in its nascent stage
  - $_{\odot}$  2030 phaseout of gas technologies (CARB SIP)



#### **Inputs - Measure Characterization**

| Objective                | Enhance the FS measure and market characterization                                                                                                                                                  |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Considerations           | Insights gained through 2023 Group E Market Studies will improve accuracy and relevance of<br>analysis for total FS measure costs.<br>Other potential area for consideration: AC load impacts       |
| Approach Options         | Incorporate findings from the FS market studies, refining infrastructure requirements and parameters including cost. Other data will be included, as available.                                     |
| Stakeholder<br>Questions | <ul> <li>Does having AC shift decisions and impact savings claims when customer originally had no AC?</li> <li>What other data sources may be available to enhance the characterization?</li> </ul> |
| Recommended<br>Plan      | <ul> <li>Measure Costs using the research on infrastructure needs and costs</li> <li>Incorporate AC load impacts, if available in eTRM by June 2024</li> </ul>                                      |



#### **Modeling - Calibration of Market Achievable Potential**

| Objective                | Incorporate broader FS program data in the calibration process                                                                                                                                                                                                                     |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Considerations           | TECH program has experienced significant activity and uptake since inception. 2025 Study should assess the feasibility of including TECH & other program data in addition to IOU FS programs to calibrate modeled achievable potential.                                            |
| Approach Options         | <ul> <li>Low/Med-effort – Non-IOU program data analysis</li> <li>Med/High-effort – primary data collection and analysis</li> </ul>                                                                                                                                                 |
| Stakeholder<br>Questions | <ul> <li>Do infrastructure upgrade requirements and associated costs represent a gap in understanding measure adoption and cost effectiveness?</li> <li>Do market limits such as technology, work force education, and competing non-IOU programs impact market uptake?</li> </ul> |
| Recommended<br>Plan      | Leverage additional program data for calibration of market status by incorporating non-IOU program – both the POU and TECH data                                                                                                                                                    |

#### **Modeling - Scenarios**

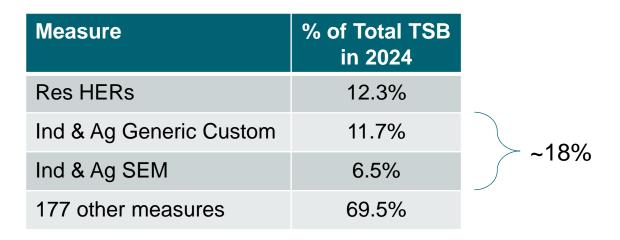
| Objective                | Assess alternative FS incentive structure                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Considerations           | 2023 Study based incentive levels based an adjustment to EE. Instead use existing FS-specific data                                                                                                                                                                                                                                                                                                                                                              |
| Approach Options         | Conduct benchmarking/secondary research and analysis for all funding streams and impacts to programs/customers                                                                                                                                                                                                                                                                                                                                                  |
| Stakeholder<br>Questions | <ul> <li>Would it be beneficial to explore a broader set of incentive assumptions?</li> <li>Based on experience as program administrators, what are seen as feasible incentive levels?</li> <li>What analysis or studies exist that explore/evaluate impacts from stacking or layering incentives or other benefits?</li> <li>Are there specific examples and data on how external factors (such as other programs) may impact achievable potential?</li> </ul> |
| Recommended<br>Plan      | Incentive and other financial parameters stacked or layered into FS. Validate analysis with other studies or market data.                                                                                                                                                                                                                                                                                                                                       |

#### Policy – CARB SIP 2030 Zero Emission Standard

| Objective                | Improve approach to accounting for CARB SIP Standard                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Considerations           | <ul> <li>If the gas technology phaseout plan changes, then how should the PG study consider the impacts</li> <li>Shift in baseline to IOU programs – changing timelines and technology applicability</li> <li>Anticipation may impact adoption, grow a secondary market, supply uncertainty, and out of state purchases</li> <li>Changes to avoided costs and retail rates for natural gas in particular</li> </ul> |
| Approach<br>Options      | <ul> <li>Investigate the different scenarios considered by CARB</li> <li>Review literature for changes in adoption due to phaseout plans (T12s, LEDs, other) and adjustments to baseline</li> <li>Consider accelerated replacement valuation of savings</li> <li>Check for CEC and IRP analysis on scenarios for impacting costs</li> </ul>                                                                         |
| Stakeholder<br>Questions | <ul> <li>Does the CARB SIP rollout uncertainty merit alternative scenario analysis?</li> <li>Should accounting metrics align to CARB's metrics?</li> </ul>                                                                                                                                                                                                                                                          |
| Recommended<br>Plan      | <ul> <li>Low-effort to assess a shift in baseline and addressing laggards.</li> <li>Incorporate sensitivities/scenarios to address CARB SIP implementation timeline delays</li> </ul>                                                                                                                                                                                                                               |

#### **Post Processing – Locational Analysis**

| Objective                | Post-process study results to a locational analysis for quantifying geographic and grid forecasting. As FS grows, the impacts are more pressing.                                                                                                                                      |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Considerations           | Further break-out IOU service territories to help with NG phase out strategizing and grid impact analysis.                                                                                                                                                                            |
| Approach Options         | <ul> <li>Use Electrification Impact Study feeder level disaggregation factors; or</li> <li>Use IOU disaggregation factors for DPP – GNA analysis; or</li> <li>Base on historical program penetration and conduct some analytics on future adoption propensity by geography</li> </ul> |
| Challenges               | Maintain consistency across analysis methods within CPUC and across other state entities                                                                                                                                                                                              |
| Stakeholder<br>Questions | <ul> <li>What is the preferred level of granularity?</li> <li>More interest in grid vs. geographic analysis or both?</li> </ul>                                                                                                                                                       |
| Recommended<br>Plan      | Be consistent with other forecasting in statewide plans. Therefore, no new analysis recommended and only applying available disaggregation factors.                                                                                                                                   |


## Industrial and SEM

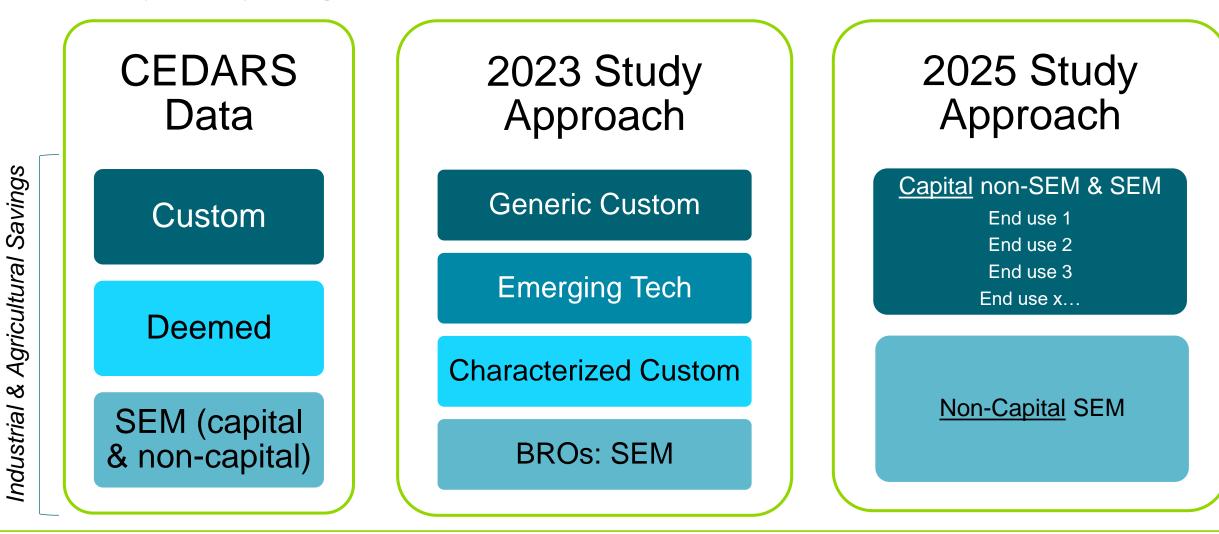
## Non-residential Custom and SEM

#### **Focused Analysis**

- Past potential analysis rooted in historical savings, costs, and trajectory in a top-down type of analysis
- Need to explore new options as a large amount of TSB comes from a limited number of measures

#### 2023 PG Study Results




#### 2023 Study Ind/Ag Measure Types and Approach

| Measure Type                                                                | Approach                                                                                                                                  |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Characterized Custom                                                        | <b>Bottom-up</b> - Deemed measure<br>characterization process using CEDARS,<br>2021 primary data collection, and secondary<br>source data |
| Generic Custom                                                              | Top-down analysis leveraging historical                                                                                                   |
| Emerging Technologies                                                       | program trends and consumption forecasts                                                                                                  |
| Strategic Energy Management (Including Retrocommissioning and Optimization) | Top-down - BROs approach                                                                                                                  |



## Recategorizing Industrial and Agricultural Measures

2025 analysis only using top-down



Guidehouse

## Redefining Industrial and Agricultural Measures

Plan for implementing the recategorization and adoption model

| Objective                        | Re-categorizing quantified savings to the program delivery approach of measures implemented                                                                                                                                                                                                                                                 |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Considerations                   | <ul> <li>SEM was considered a standalone BRO measure, but program also includes capital measures</li> <li>Identifying true potential is challenging in the Ind/Ag sectors due to lack of extensive baseline/saturation studies</li> <li>Mitigating double counting across SEM and custom while appropriating capturing potential</li> </ul> |
| Approach/<br>Recommended<br>Plan | <ol> <li>Categorize CEDARs measures and incorporate evaluation findings</li> <li>Quantify the BRO (non-capital) vs. capital measure penetration to date</li> <li>Extrapolate in a top-down based approach <u>or</u> explore other forecasting method options</li> </ol>                                                                     |
| Challenges                       | <ul> <li>Sufficient data to differentiate non-capital vs. capital (by end use) measures</li> <li>Forward looking adoption analysis grounded in data under new program paradigm</li> </ul>                                                                                                                                                   |

## **Redefining Industrial and Agricultural Measures**

Plan for implementing the recategorization and adoption model (cont'd)

#### Stakeholder Questions

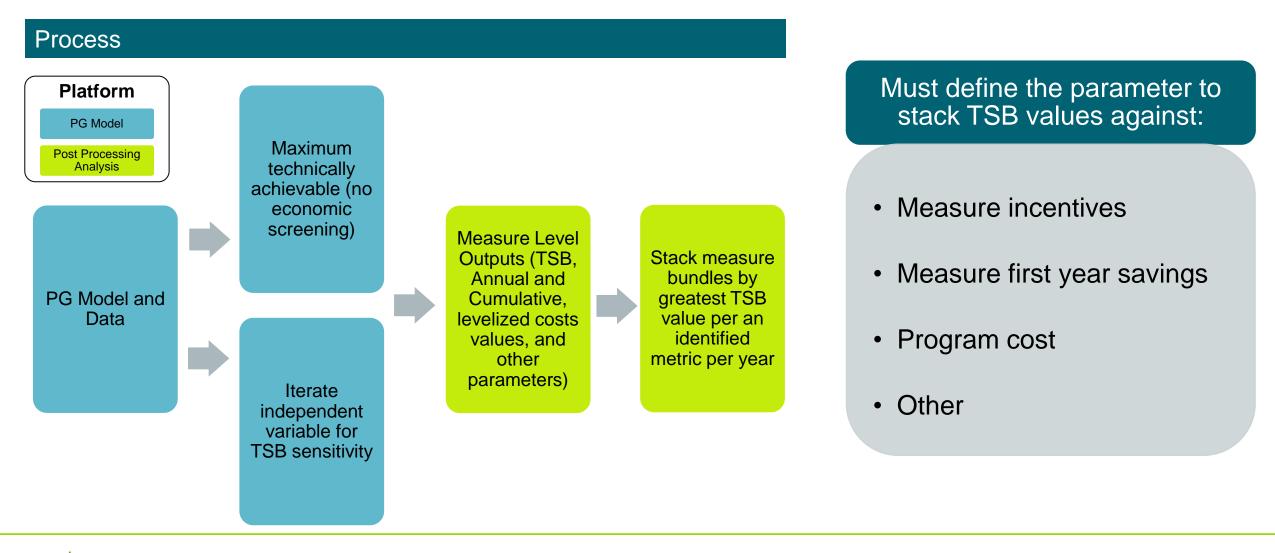
Should we consider the possibilities that the shift in program design from incentives to performancebased using an NMEC approach:

- 1. Delivers more savings per site by encouraging sites to implement more measures with to-code and BROs-type savings?
- 2. Allows programs to deliver savings to more customers by reducing the administrative burden of calculating and reporting savings?

SEM evaluation will differentiate between capital and non-capital measures. What are the existing challenges in implementation and administration to capture savings by category?



# Total System Benefit & Policy


## **Total System Benefit**

#### **Study Element - Modeling**

| Objective                | Better align 2025 study with TSB as the statewide Goal Setting metric                                                                                                                                                                                                                                                                                                                                |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Considerations           | 2021 and 2023 PG Study used kWh and Therms as a primary study metric. Shift potential analysis to analyze around TSB.                                                                                                                                                                                                                                                                                |
| Approach<br>Options      | <ul> <li>Low-effort: Modify existing potential modeling approach to develop Technical, Economic and Achievable potential using TSB as the key output instead of first year energy impacts, including calibration by TSB.</li> <li>Medium effort: Conduct a post processing "pseudo-optimization" analysis using existing model and secondary regression analysis to derive supply curves*</li> </ul> |
| Stakeholder<br>Questions | <ul> <li>Based on experience as program administrators, what program design and<br/>implementation elements most directly impact TSB?</li> </ul>                                                                                                                                                                                                                                                     |
| Recommended<br>Plan      | Conduct both approaches. The low-effort is for the standard potential study analysis. The medium-effort is to explore the range of potential when optimizing to TSB to align to implementation behaviors.                                                                                                                                                                                            |

\*See next slide for description.

#### Post processing TSB "pseudo-optimization" analysis



Guidehouse

## Policy and Regulatory Coordination

**Emerging and Continued External Influences** 

#### **IRP** Process

- 2021 and 2023 PG Studies planned for coordination
- CPUC prioritized other emerging needs over this post-goals activity for 2023
- Stakeholder Question: Is direct application of the PG model to develop IRP Supply Curves of sufficient value to prioritize and coordinate this task as part of the 2025 study?

#### 2045 CA Statewide Net Zero Goal

- Opportunity to leverage PG Study Model to assess long term aspirational objectives with a more aggressive EE and FS scenario
- Use the PG model to analyze what it would take to achieve that target. The results would be
  positioned along the lines of "we need \$XB and Y installations of technologies to achieve that goal"
  and less an analysis of "will the market be able to move this fast to actually adopt at this level"
- Stakeholder Question: Does this potential "Reach" goal provide meaningful direction?

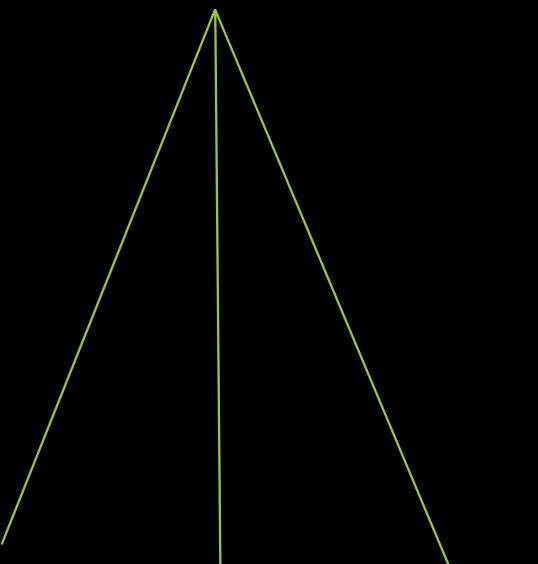




#### Summary of 2025 Priorities

#### Revisiting Fuel Substitution

#### Reframing Industrial and Agricultural Savings


Adapting to a TSB-based metric

Expanding policy-based analysis

Guidehouse

## **Reminders and Next Steps**

- Stay informed: Energy Efficiency Potential and Goals Studies (ca.gov)
- Study-related comments are informal.
  - Comments on today's presentation are due February 7, 2024 via e-mail to:
  - <u>Hanna.Navarrogoldberg@cpuc.ca.gov</u>
  - <u>npodkowsky@guidehouse.com</u>
  - <u>William.Graswich@cpuc.ca.gov</u>
  - <u>Alex.Moisa@cpuc.ca.gov</u>
  - Stakeholders will also have an opportunity to comment on the draft workplan which is anticipated to be published in March, 2024.



#### Karen Maoz

Associate Director karen.maoz@guidehouse.com (415) 356-7173

Amul Sathe Director amul.sathe@guidehouse.com (415) 399-2180

Neil Podkowsky Associate Director npodkowsky@guidehouse.com (602) 528-8028

## Thank You

©2024 Guidehouse Inc. All rights reserved. This content is for general information purposes only, and should not be used as a substitute for consultation with professional advisors.