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1 Introduction 

The California Public Utilities Commission (CPUC) staff has prepared this “Revised 2019 Unified Resource 

Adequacy and Integrated Resource Plan Inputs and Assumptions – Guidance for Production Cost 

Modeling and Network Reliability Studies” document (2019 Unified RA&IRP I&A) to serve five primary 

functions: 

1. Describe the production cost modeling methodology, inputs, and assumptions that were used to 

inform the CPUC’s Integrated Resource Plan (IRP) proceeding (R.16-02-007) in 2018, including 

the system operational and reliability studies described in Attachment B of D.18-02-0181 and 

Attachment A of the November 15, 2018 ruling2 in the proceeding. 

2. Describe the production cost modeling methodology, inputs, and assumptions that were used to 

inform the CPUC’s Resource Adequacy (RA) proceeding (R.17-09-020) in 2018, specifically 

Effective Load Carrying Capability (ELCC) calculations. 

3. Describe the production cost modeling methodology, inputs, and assumptions that were used to 

inform the CPUC’s Aliso Canyon Order Instituting Investigation proceeding (I.17-02-002) in 2018. 

4. Describe certain inputs and assumptions to inform the production cost modeling and network 

reliability (“power flow”) studies of the CAISO’s 2019-20 Transmission Planning Process (TPP),3 

including the allocation of generic resources to transmission substations. 

5. Serve as a guide for other entities conducting similar electric system modeling. 

The 2019 Unified RA&IRP I&A primarily documents model inputs that were used during 2018 modeling 

activities.  It does not include modeling improvements and updates that CPUC staff expects to undertake 

during the 2019 modeling activities taking place for the IRP proceeding.  See the 2019-2020 IRP Events 

and Materials page on the CPUC website for more recent information about modeling inputs going 

forward.4 

The Unified RA&IRP I&A is “unified” in the sense that it consolidates descriptions of modeling inputs and 

guidance for the five primary functions listed above in a single document and associated sets of data 

that are posted on the CPUC’s website.  The production cost modeling methods and data to support 

modeling in the IRP, RA, and Aliso Canyon proceedings are consolidated in one document because the 

three proceedings share a common production cost modeling platform with similar data requirements.  

The Unified RA&IRP I&A is also “unified” in the sense of providing for a common and consistent set of 

modeling conventions and input data to facilitate comparison of study results across different planning 

processes at the CPUC and across different agencies. 

                                                           
1 Available at: http://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M209/K771/209771632.PDF. 
2 Available at: http://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M241/K155/241155600.PDF. 
3 In accordance with a May 2010 MOU between the CAISO and the CPUC, and in coordination with the CEC, the 

CPUC develops the new resource portfolios used by CAISO in its annual Transmission Planning Process (TPP) 
4 See: http://www.cpuc.ca.gov/General.aspx?id=6442459770 

http://www.cpuc.ca.gov/General.aspx?id=6442459770
http://www.cpuc.ca.gov/General.aspx?id=6442459770
http://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M209/K771/209771632.PDF
http://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M241/K155/241155600.PDF
http://www.cpuc.ca.gov/General.aspx?id=6442459770


 

- 6 - 

1.1 Background and Roadmap 

In previous years, the “Assumptions and Scenarios” document5 was issued annually via ruling in the 

CPUC’s Long-Term Procurement Plan (LTPP) proceedings6 to provide for a common set of data to guide 

electric system modeling activities in the LTPP proceeding and the CAISO’s TPP in the same calendar 

year.  The 2016 Order Instituting Rulemaking to Develop an Electricity Integrated Resource Planning 

Framework and to Coordinate and Refine Long-Term Procurement Planning Requirements (R.16-02-007) 

superseded the LTPP proceedings and is now commonly referred to as the IRP proceeding.  As such, the 

historical “Assumptions and Scenarios” document is superseded by this document, the Unified RA&IRP 

I&A, which is designed for the new IRP process and intended for use in other proceedings requiring 

similar types of electric system modeling.  The Unified RA&IRP I&A is expected to be updated annually 

and issued in February each calendar year. 

The historical “Assumptions and Scenarios” document was also accompanied by two key Excel 

workbook deliverables, the Renewables Portfolio Standard (RPS) Calculator & Portfolios7 and the 

Scenario Tool.8  These workbooks are superseded by new deliverables designed to support the new IRP 

process.  The new deliverables include the following: 

• Workbooks containing resource portfolios to plan for long-term (typically 10 years forward) 

infrastructure expansion at the CAISO system level.  The portfolios are based on the IRP 

Reference System Plan or the IRP Preferred System Plan.  In general, IRP capacity expansion 

modeling (currently conducted using the RESOLVE model9) forms the basis of the Reference 

System Plan while the aggregation of IRPs submitted by individual load-serving entities (LSEs) 

forms the basis of the Preferred System Plan.10 

• Workbooks capturing the inputs to the Strategic Energy Risk Valuation Model (SERVM)11 

production cost model being used by CPUC Energy Division staff to support the IRP, RA, and 

Aliso Canyon proceedings. 

The historical “Assumptions and Scenarios” document was also accompanied by supplemental data and 

guidance from the CEC and the three large Investor Owned Utilities to allocate load and/or generic 

resources to transmission substations.  This information will continue to be pointed to or provided with 

the Unified RA&IRP I&A document. 

                                                           
5 The February 2017 version: http://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M176/K948/176948479.PDF  This 

document has also been referred to as the Standard Planning Assumptions, or SPA. 
6 The previous LTPP proceeding is R.13-12-010. 
7 See RPS Calculator v6.2 here: http://www.cpuc.ca.gov/RPS_Calculator/ 
8 See Scenario Tool 2016 v1.2 here: http://www.cpuc.ca.gov/General.aspx?id=11681 
9 See RESOLVE model here: http://www.cpuc.ca.gov/General.aspx?id=6442457210 
10 The IRP Proposed Decision published March 18, 2019 chose to use a RESOLVE-based portfolio as the Preferred 

System Plan rather than a portfolio based on the aggregation of LSE IRPs 
11 Developed by and commercially licensed through Astrape Consulting. http://www.astrape.com/servm/ 

http://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M176/K948/176948479.PDF
http://www.cpuc.ca.gov/RPS_Calculator/
http://www.cpuc.ca.gov/General.aspx?id=11681
http://www.cpuc.ca.gov/General.aspx?id=6442457210
http://www.astrape.com/servm/
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The remainder of this document is comprised of two major sections.  First, it describes modeling 

conventions and input development for the SERVM model that was used to conduct the various types of 

production cost modeling studies in support of the IRP, RA, and Aliso Canyon proceedings.  Resource 

portfolios modeled in SERVM flow from the IRP Reference System Plan or Preferred System Plan.  The 

last section of the document describes additional guidance and data required for the network reliability 

studies typical of the CAISO’s TPP. 

1.1.1 Acronyms 

Acronym Definition 

1-in-10 1-in-10 year weather peak demand forecast 

1-in-2 1-in-2 year weather peak demand forecast 

AAEE Additional Achievable Energy Efficiency 

AAPV Additional Achievable Photovoltaics (behind-the-meter solar PV) 

ADS Anchor Data Set 

BTM  Behind-the-meter  

CAISO California Independent System Operator 

CARB California Air Resources Board 

CEC California Energy Commission 

CED California Energy Demand Forecast 

CHP Combined Heat and Power 

CPUC California Public Utilities Commission 

DCPP Diablo Canyon Power Plant 

DR Demand Response 

ELCC Effective Load Carrying Capability 

EO Energy-Only (deliverability status) 

EV Electric Vehicle 

FCDS Full Capacity Deliverability Status 

IEPR Integrated Energy Policy Report  

IOU Investor Owned Utility 

LCR Local Capacity Requirement 

LOLE Loss of Load Expectation 

LSE Load Serving Entity 

LTPP Long Term Procurement Plan  

NQC Net Qualifying Capacity 

OTC Once-through-cooling 

PG&E Pacific Gas & Electric 

POU Publicly Owned Utility 

PV Photovoltaic 

RPS Renewables Portfolio Standard 
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SCE Southern California Edison 

SDG&E San Diego Gas & Electric 

SERVM Strategic Energy Risk Valuation Model 

TEPPC Transmission Expansion Planning Policy Committee 

TPP Transmission Planning Process  

WECC Western Electricity Coordinating Council 

 

2 Production Cost Modeling – Inputs, Assumptions, and Methods 

2.1 Scope 
This section describes the assumptions and input sources that CPUC’s Energy Division staff used for 

Production Cost Modeling (PCM) to support the Resource Adequacy (RA) proceeding, the Integrated 

Resource Planning (IRP) proceeding, and the Aliso Canyon proceeding through 2018.12  Proceeding-

specific documents in each proceeding defined the higher-level modeling steps and activities to support 

each respective proceeding.  For example, the higher-level modeling steps and activities done for the 

IRP proceeding in 2018 are described in Attachment B of the IRP Decision D.18-02-01813 and Attachment 

A of the November 15, 2018 ruling in the proceeding.14 

This section includes the following key components: 

• Review of SERVM, software which is being used by Energy Division Staff to conduct LOLE and 

ELCC analysis 

• Primary data sources and assumptions 

• Interagency coordination 

• Foundational definitions and assumptions for RA and IRP modeling 

• Fundamental description of the order of studies needed to perform monthly LOLE and monthly 

ELCC studies 

• Gathering and use of weather data for development of synthetic load shapes using weather 

normalization and regression analysis 

• Sources of and use of weather data and weather region definitions to create hourly profiles for 

wind and solar production 

• Description of different resource portfolios used in 2018 modeling activities 

• Data related to conventional (fossil fuel) generators 

                                                           
12 The previous RA proceeding is R.14-10-010.  The current RA proceeding is R.17-09-020.  The current IRP 

proceeding is R.16-02-007.  The Aliso Canyon Investigation proceeding is I.17-02-002. 
13 http://docs.cpuc.ca.gov/SearchRes.aspx?docformat=ALL&DocID=209771632 
14 

http://www.cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPo
werProcurementGeneration/DemandModeling/R1602007_PCM%20ruling%2011-14-
18%20Attachment%20A%20PDF.pdf 

http://docs.cpuc.ca.gov/SearchRes.aspx?docformat=ALL&DocID=209771632
http://www.cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPowerProcurementGeneration/DemandModeling/R1602007_PCM%20ruling%2011-14-18%20Attachment%20A%20PDF.pdf
http://www.cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPowerProcurementGeneration/DemandModeling/R1602007_PCM%20ruling%2011-14-18%20Attachment%20A%20PDF.pdf
http://www.cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPowerProcurementGeneration/DemandModeling/R1602007_PCM%20ruling%2011-14-18%20Attachment%20A%20PDF.pdf
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• Burner-tip natural gas price forecasts 

• Development of data inputs and hourly profiles for hydro generators 

• Data for demand response and storage resources 

Study results will be separately documented and driven by the respective needs of the IRP, RA, and Aliso 

Canyon proceedings. 

2.2 Review of SERVM Software 
Energy Division staff use SERVM to calculate numerous reliability, operational, and cost metrics for a 

given study year in light of expected weather, overall economic growth, and unit performance. For each 

of these factors, variability and forecasting uncertainties are also taken into account. 

As with all probabilistic models, SERVM attempts to simulate the study year many thousands of times 

over, with each simulation reflecting a slightly different set of weather, economic, and unit performance 

conditions. Iteration conditions are selected probabilistically, based on how likely they are to occur. In 

SERVM, a given future study year is modeled by simulating the operation of a fleet of power plants in 

that future year to meet hourly electric demand that reflects a wide variety of actual historical weather 

patterns. For each of thirty-five possible weather years, six to eight points of load forecast error can be 

simulated, creating roughly 210 to 280 scenarios. Each of these scenarios is in turn run with a hundred 

or more unit outage draws, creating thousands of iterations for the simulation. Results are expressed as 

the probability-weighted expected average metrics across the whole range of variability studied.  The 

results provide a comprehensive distribution of loss-of-load events, unserved energy, and other 

reliability metrics. Expected values and confidence intervals are calculated based on these distributions. 

2.3 Primary Data Sources and Assumptions 

2.3.1 Interagency Coordination and Data Sources 

Foundational to the task of coordinating the RA and IRP modeling efforts is coordination between the 

key California agencies that cooperatively plan for the future of electric service, including the CEC, 

CAISO, and CPUC. Without close integration and coordination, the complicated work described in this 

document would be impaired. Chief among the modeling data utilized by Energy Division are the CEC’s 

Integrated Energy Policy Report (IEPR) and “California Energy Demand” forecast which includes electric 

demand and fuel price forecasts, the CAISO’s datasets which catalog the generating facilities and 

transmission topology that operate to provide electricity to customers, and the CPUC’s IRP and other 

resource programs datasets which lay out plans for new investment in generation and demand side 

alternatives. 

California annual peak and energy demand forecasts including projections of demand-side resources 

such as energy efficiency and rooftop solar are sourced from the most recently adopted CEC IEPR 

California Energy Demand (CED) forecast.  According to agreement between leadership at the CAISO, 

CEC, and the CPUC, planning processes at each agency will use the Single Forecast Set specified by the 

most recent IEPR CED forecast. 
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Energy Division staff sourced existing CAISO generating unit information from the CAISO MasterFile. In 

order to participate in the CAISO energy market and ensure cost effective dispatch of their plants, 

generator owners maintain a wide array of information in the MasterFile database. The MasterFile is 

used by the CAISO in order to optimize dispatch in light of an array of unit-specific characteristics such as 

start-up costs and start-up time, ramp rate, heat rate, and forbidden operating ranges. A number of the 

data fields in the MasterFile are confidential and are accessible to Energy Division staff via an annual 

subpoena. Definitions of all the fields in the MasterFile are public and are posted on the CAISO 

website.15 

In addition to the CAISO, the Western Electric Coordinating Council (WECC) also compiles a base case 

dataset for the WECC and its members to use as a common basis for their modeling. Each Balancing 

Authority may have unique access to accurate and confidential data for generators and other market 

participants within its footprint, but since the WECC is so interconnected, it is difficult to accurately 

model reliability and economic conditions in one Balancing Authority without attention to generators 

and loads in the surrounding Balancing Authorities. To facilitate consistent modeling by all Balancing 

Authorities in WECC, every two years WECC produces a Common Case dataset containing generic 

information for all load and supply data across WECC.16  Produced by a subcommittee of WECC 

members called the Transmission Expansion Planning Policy Committee (TEPPC), this dataset is 

generated for both the immediate next year and for a year ten years into the future.  For modeling 

activities during 2018, Energy Division staff imported the TEPPC 2026 Common Case v2.0 into the 

SERVM dataset in order to model generating units outside of the CAISO, as well as units in most of the 

rest of the Western Interconnect.  The peak and energy demand forecasts for regions outside of 

California are also sourced from the TEPPC 2026 Common Case. 

The TEPPC 2026 Common Case represents the final Common Case dataset that will be produced by 

TEPPC.  WECC is transitioning to a new organizational model and a new group called the Reliability 

Assurance Committee will produce a new dataset called the Anchor Data Set (ADS).  It is anticipated that 

the ADS will take the place of the Common Case and will additionally incorporate modeling inputs for 

power flow modeling.  Energy Division will transition to ADS data for the next IRP cycle (expected to be 

2019-20). 

The CAISO MasterFile and the WECC TEPPC Common Case dataset each have their advantages and 

disadvantages. For generators that supply information to the CAISO MasterFile, there is a larger range of 

information available to Energy Division for modeling purposes but some of it is confidential and/or not 

directly applicable to production cost modeling. 

The WECC TEPPC Common Case dataset, being public data, is often generic and aggregated by class 

average.  The 2026 TEPPC Common Case has created unit specific heat rate curves and minimum 

                                                           
15 MasterFile field definitions can be downloaded from 

http://www.caiso.com/Documents/GRDTandIRDTDefinitions.xls. CAISO MasterFile data are confidential, and not 
able to be posted; however, it may be possible to aggregate portions of these data for stakeholder review. 
16 WECC TEPPC 2026 Common Case v2.0 datasets are available for download here: 

https://www.wecc.biz/Reliability/Forms/AllItems.aspx 

http://www.caiso.com/Documents/GRDTandIRDTDefinitions.xls
http://www.caiso.com/Documents/GRDTandIRDTDefinitions.xls
http://www.caiso.com/Documents/GRDTandIRDTDefinitions.xls
https://www.wecc.biz/Reliability/Forms/AllItems.aspx
https://www.wecc.biz/Reliability/Forms/AllItems.aspx
https://www.wecc.biz/Reliability/Forms/AllItems.aspx
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operating levels based on public data available from the Continuous Emission Monitoring System 

database, and this represents a significant improvement in data quality, but there are other areas where 

there are challenges to being as precise as possible.  For this reason, it is common for particular 

Balancing Authorities within the WECC to substitute their own confidential, internal data for the TEPPC 

Common Case inputs related to their own specific balancing authority. Energy Division staff will use the 

TEPPC 2026 Common Case for regions external to the CAISO balancing area. For regions internal to the 

CAISO area, staff will use the generator-specific information obtained via subpoena from the CAISO 

MasterFile. 

The CEC provides capacity supply forms for all LSEs within California, listing for all LSEs (including SMUD 

and LADWP) the unit specific sources of capacity that the LSE is relying on to meet energy needs.  These 

Utility Capacity Supply Forms are updated annually, public, and posted to the CEC website.17  Staff used 

these forms to supplement and/or cross-check with information from the CAISO Masterfile and the 

TEPPC 2026 Common Case. 

Assumptions for new resources projected to come online by a future study year are sourced from the 

IRP proceeding’s Reference System Plan adopted in February 2018 and developed by the RESOLVE 

capacity expansion model,18 or the aggregation of individual LSE Plans that were filed in the IRP 

proceeding in August 2018. 

All cost data (including generator operation and maintenance (O&M), startup costs, and fuel handling 

costs) were adjusted to 2016 dollars using a deflator series developed by the CEC in the IEPR process19 

and which equals approximately 2% inflation, year over year.  This is consistent with the convention in 

the RESOLVE model to report all costs in 2016 dollars. 

Other datasets used by Energy Division staff include the Generator Availability Data System (for 

generator forced and scheduled outage statistics), the National Oceanic and Atmospheric 

Administration (NOAA) for weather data to generate solar and wind production profiles, the National 

Renewable Energy Laboratory (NREL), and data specifically gathered from the utilities. These data and 

their use in SERVM will be described in further detail in the sections that follow. 

2.3.2 Key Definitions and Reliability Metrics 

Before the development of today’s advanced computing, planners calculated probability of loss-of-load 

for the peak hour of each day, and only on weekdays, equating to about 260 data points for a study 

year.  Today’s computers perform simulations, not simple calculations, and perform simulations of each 

hour of the year thousands of times with multiple stochastic variables.  Thus a LOLE value of 0.1, which 

is a direct translation of the decades old industry “one day in ten years” standard, may warrant 

reconsideration in light of the sophisticated hourly models and advanced computing available now. 

                                                           
17 These forms are posted to the CEC website here: http://energyalmanac.ca.gov/electricity/s-

1_supply_forms_2013/ 
18 http://www.cpuc.ca.gov/General.aspx?id=6442457210 
19 The deflator series is posted here.  It is derived from the April 2018 version of the CEC’s NAMgas model posted 

here. 

http://energyalmanac.ca.gov/electricity/s-1_supply_forms_2013/
http://energyalmanac.ca.gov/electricity/s-1_supply_forms_2013/
http://www.cpuc.ca.gov/General.aspx?id=6442457210
http://cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPowerProcurementGeneration/irp/2018/IEPR_dollar_deflator_series_2018-04.xlsx
http://www.energy.ca.gov/assessments/ng_burner_tip.html
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LOLE and ELCC studies, particularly those done to meet the needs of the IRP and RA proceedings, 

require a number of foundational assumptions and modeling conventions in order for the studies to 

proceed.  Staff made assumptions about what probabilistic reliability standard at which to calibrate the 

CAISO system for both monthly and annual studies, and the definition of a loss-of-load event.  Staff also 

performed a convergence analysis to evaluate the optimal number of iterations to run for each case.  

In LOLE and ELCC studies for the RA and IRP proceedings, staff will use the following foundational 

conventions: 

• The LOLE reliability target range for calibrating the CAISO system in annual studies will be 0.095 

to 0.105 LOLE. 

• The LOLE reliability target range for calibrating the CAISO system in monthly studies will be 0.02 

to 0.03 LOLE for each month.20 

• Multiple loss-of-load events occurring within one day shall count as one event for purposes of 

counting events towards a reliability target.  The loss-of-load event occurs when the frequency 

response constraint21 is fully relaxed and when regulation up (1.5% of hourly forecast load) and 

spinning reserves (3.0% of hourly forecast load) cannot be maintained, i.e. firm load is assumed 

to be curtailed when available capacity is less than 104.5% of load. 

2.3.3 General Order of Studies in ELCC Modeling 

The current scope and sequence of ELCC studies are defined by proceeding specific documents.  The 

scope and sequence of ELCC studies that were done to support the IRP proceeding in 2018 were defined 

within Attachment B of the IRP Decision D.18-02-018.22  The most recent ruling describing ELCC studies 

in support of the RA proceeding is February 13, 2019.23   

Because of the complexity of the ELCC concept, the remainder of this subsection explains a generalized 

application of the ELCC framework to calculate monthly capacity value.  As stated above, the specific 

scope and sequence of ELCC studies are captured in proceeding specific documents. 

ELCC methods can be used to assign capacity value to particular resources or sets of resources within a 

larger electric system.  The calibration and sequence of these studies is critical.  The process is illustrated 

in the following chart: 

                                                           
20 Specifically, the monthly LOLE target was created by first taking the industry standard 0.1 LOLE annual target 

and assuming that most of those events map to the four peak months of June through September, or one third of 
the year.  Assuming a similar target reliability for the rest of the year would mean that total LOLE over the entire 
year should have a target of 0.1x3=0.3.  Thus, monthly LOLE studies would have a monthly target LOLE of 
0.3/12=0.025, i.e. a target range of 0.02 to 0.03. 
21 Ancillary services and frequency response requirements are described later in this document in the System 

Inputs section 2.10. 
22 http://docs.cpuc.ca.gov/SearchRes.aspx?docformat=ALL&DocID=209771632 
23 

http://www.cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPo
werProcurementGeneration/DemandModeling/ELCC_2_13_19.PDF 

http://docs.cpuc.ca.gov/SearchRes.aspx?docformat=ALL&DocID=209771632
http://www.cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPowerProcurementGeneration/DemandModeling/ELCC_2_13_19.PDF
http://www.cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPowerProcurementGeneration/DemandModeling/ELCC_2_13_19.PDF
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Figure 1: Order of RA ELCC Studies 

 

ELCC studies rely first on LOLE studies, and monthly ELCC studies require monthly LOLE studies. A Level 1 

study is to calibrate the LOLE level of the overall electric system to the desired reliability level. Staff will 

add or remove electric capacity on a monthly basis in a predetermined order in order to result in a LOLE 

that is levelized and within the desired range, i.e. between 0.02 and 0.03.  

Once LOLE level is calibrated on a month specific basis, staff will move on to Level 2.  Staff will remove 

all wind and solar generators from the fleet of generators, in all months, then on a month specific basis, 

reinsert Perfect Capacity in increments until LOLE again is between 0.02 and 0.03 in each month.  

Level 2 analysis in effect sets a control total meant to represent the total ELCC of the generators in 

question. Since there are often interaction and diversity effects between wind and solar generation in 

the way they contribute to reliability, this Portfolio ELCC study determines their total ELCC value.  

In Level 3 analysis, staff performs individual technology specific ELCC studies, which are studies of a 

subset of the Portfolio ELCC studied in Level 2. All wind or all solar generators are removed from the 

fleet and Perfect Capacity is added back until LOLE is gain between 0.02 and 0.03 on a month specific 

basis. When the ELCC of wind and solar individually are determined, they are totaled and compared to 

the Portfolio ELCC results from Level 2.  Technology specific ELCC values are adjusted either up or down 

so that their total is equal to the Portfolio ELCC value.  

When each technology specific ELCC is determined, they become control totals for subsequent Level 4 

ELCC analysis. For example, all tracking solar would then be removed, and Perfect Capacity would be 

added to return the system to LOLE in the desired range. Then the same with fixed tilt solar, and the 
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resulting ELCC values of fixed and tracking solar would be totaled and compared to the solar technology 

ELCC values from Level 3 to see if they would be adjusted upwards or downwards to arrive at their 

individual ELCC values. 

ELCC values are either expressed as MW equivalent of perfect capacity to a MW total of other 

generation, or as a percentage. The percentage ELCC represents the ratio of MWs of Perfect Capacity to 

MWs of generation removed. The ELCC percentage factor is applied to the nameplate MW of a 

particular generation type to derate its value and demonstrate the amount of “effective capacity” it 

provides. 

The order of studies above references the steps of removing or adding units to calibrate a system to a 

target reliability level.  Staff used the following conventions for those steps: 

• Removal of generation to surface LOLE events in overbuilt systems shall be according to the 

following order:24 Conventional thermal generators that have announced their retirement will 

be removed first.  If LOLE remains below the target level, additional conventional thermal 

generation will be removed from CAISO areas in amounts proportional to service area load in 

each area.  The oldest generation in each area will be removed first.  No hydro generation or 

renewable generation will be removed.   

• Addition of generation to reduce LOLE events in underbuilt systems shall use perfect capacity as 

additions. Perfect capacity is a modeling proxy for generation with no operating constraints, e.g. 

always available, starts instantly, infinite ramp rate, no minimum operating level. 

• Although the calibration step alters the system under study, this is a typical way of performing 

ELCC calculations and is not expected to significantly affect the ELCC measurement. 

2.4 Weather Data and Regions 
Weather is an integral input into probabilistic reliability modeling. It is used both in the development of 

synthetic load shapes, which are highly correlated to temperature and humidity, and in the 

development of generation profiles for weather-sensitive resources such as wind and solar. In order to 

balance the need to model the wide range of weather across the state at any given time and the need to 

keep modeling times feasible, a set of representative weather stations are selected and grouped to 

create regions that are modeled as homogeneous areas. This section details the weather data utilized, 

the sources for this data, the regions modeled, and the process by which these regions were created. 

2.4.1 Region Designations 

Load, wind, and solar shapes are developed to correspond to regions modeled in SERVM.  Staff has 

currently organized inputs in SERVM into eight distinct regions within California and sixteen outside of 

California based on utility service areas. While most utility service areas are modeled individually, some 

are aggregated, as specified in the table below.  These regions are utilized throughout SERVM to 

associate groups of generation facilities with common weather, load, weather-related generation 

                                                           
24 Note that the order specified here is simply a modeling convention picking one systematic way to remove 
capacity for the sole purpose of calibrating a system to a target reliability level in order to perform ELCC 
calculations.  The choice and order of removing units does not imply the units are likely to retire or should retire. 
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profiles, transmission constraints, and utility service territories. The regions (zones) modeled are listed 

in Table 1, below. The regions below do not correspond to transmission-constrained Local Areas, and 

are not granular enough for transmission planning. In the future, higher geographic granularity could be 

achieved by splitting the regions into smaller areas.  However, it is unlikely a production cost model will 

ever approach the fidelity required for network reliability (power flow) studies.  Such studies are not in 

scope for Energy Division staff at this time. 
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Table 1: Assignment of WECC regions to modeled SERVM zones 

SERVM Region Description 

California Regions 

IID Imperial Irrigation District 

LADWP Los Angeles Department of Water and Power, Burbank, Glendale 

PGE_Bay Pacific Gas & Electric (Greater Bay Area) 25 

PGE_Valley Pacific Gas & Electric (Valley) 26 

SCE Southern California Edison, Valley Electric Association 

SDGE San Diego Gas & Electric 

SMUD Balancing Authority of Northern California 

TID Turlock Irrigation District 

Non-California Regions 

AZPS Arizona Public Service Co 

BCHA_AESO British Columbia Hydro Authority, Alberta Electric System Operator 

BPAT Bonneville Power Adminstration, Avista Corporation, Chelan County PUD, 
Douglas County PUD, Grant County PUD, Puget Sound Energy, Seattle City 
Light, Tacoma Power 

CFE Comision Federal de Electricidad 

IPCO Idaho Power Co 

NEVP Nevada Power Co, Sierra Pacific Power 

NWMT_WAUW Northwestern Energy, WAPA Upper Wyoming 

PACE Pacificorp East 

PACW Pacificorp West 

PNM_EPE Public Service Co of New Mexico, El Paso Electric Co 

PortlandGE Portland General Electric Co 

PSCO Public Service Co of Colorado 

SRP Salt River Project 

TEPC Tuscon Electric Power Co 

WACM WAPA Colorado Missouri 

WALC WAPA Lower Colorado 

 

Figure 2 below is an illustrative map of Western Interconnection Balancing Authorities and is generally 

consistent with the region definitions used in SERVM. 

                                                           
25 Includes these lines from IEPR demand forecast Form 1.5a: CCSF, NCPA-Greater Bay Area, Other NP15 LSEs-Bay 

Area, PG&E Service Area-Greater Bay Area, Silicon Valley Power, CDWR-N, CDWR-ZP26 
26 Includes these lines from IEPR demand forecast Form 1.5a: NCPA-Non Bay Area, Other NP15 LSEs-Non Bay Area, 

PG&E Service Area-Non Bay Area, WAPA, PG&E Service Area-ZP26 
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Figure 2: Balancing Authorities in WECC 

 

Source: WECC website, downloaded January 30, 2018 

https://www.wecc.biz/Administrative/Balancing_Authorities_JAN17.pdf 

https://www.wecc.biz/Administrative/Balancing_Authorities_JAN17.pdf
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2.5 Weather Normalization Process: Development of Hourly Synthetic Load 

Profiles 
The objective of weather normalization is to create synthetic load profiles that accurately represent the 

relationship of hourly customer electricity demand to historical weather patterns, over as wide a range 

of historic weather patterns as possible. Of particular importance is the accurate preservation of both 

spatial and temporal correlations occurring between historical load and weather patterns. There is also 

the need to establish the relationship of recent weather patterns to recent electricity demand.  In other 

words, relationships between weather and electricity demand are changing as customers use more 

efficient lighting and cooling equipment, and as the weather changes due to climate change, so the 

relationship between load and weather should be established for a set of recent, representative years.  

Staff’s weather normalization is informed by 35 years of historical hourly weather data across the years 

1980 through 2014, and is used to develop 35 years of hourly synthetic load shapes for 24 geographical 

regions across the western United States. Hourly historical load profiles across the same geographical 

regions for the last 5 years of the time series (2010 through 2014) are used to train the model. The 

model is described in more detail below.  

The relationship between weather and electricity demand should focus on the relationship of weather 

on a granular locational level to customer electricity consumption, where consumption refers to actual 

demand, independent of any self generation. See Table 2 for definitions of the various load types 

referred to in this document.  

Whereas meter data is available that captures actual energy delivered, or sales, to the customer by the 

utility, consumption data is typically not measured directly. However, attempting to model the 

relationship between weather and sales, defined as consumption less any self generation, does not 

capture a meaningful physical relationship. This is because sales depends, for example, on the number 

of solar panels installed on a customer’s roof, which has no relationship to the weather effects 

experienced by the electricity customer.  

In the absence of customer self generation, consumption and sales are identical, but with increasing 

levels of customer self generation, consumption becomes counterfactual. Therefore customer electricity 

consumption must be reconstituted from the utility sales values by simulating behind the meter 

generation values, based on installed photovoltaic capacity and hourly insolation profiles. 
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Table 2: Load type definitions - consumption, sales, system and net load  

Note that SERVM models behavior at the system level, and does not explicitly model both retail sales and system 

load.  Said another way, the analysis grosses up retail sales to system level load, accounting for losses. 

Load Type Relation to Other Terms Rationale Measurement 

Consumption Sum of electrical energy 

used to operate end-use 

devices excluding 

charge/discharge of 

storage 

Consumption is the 

term used in CEC 

forms to capture 

onsite energy usage. 

With increased self generation, and 

when relying on net energy metering 

to apply cost responsibility to end-

users, consumption becomes 

counterfactual. 

Sales Consumption less BTM 

onsite generation 

including storage 

charge/discharge 

Sales is the energy 

term to indicate the 

net energy delivered 

through the meter to 

the end-use customer 

Metered by the utility on a short 

interval basis if the utility has 

deployed interval metering systems 

for end-users; otherwise could be 

estimated using load research 

practices 

System Sales load plus T&D 

losses plus theft and 

unaccounted for 

Standard electricity 

industry term. CEC 

defines “hourly 

system load” in its 

data collection 

regulations 

Generally measured by power plant 

output and import flows, e.g. a top 

down measurement inferring loads 

rather than a bottom up summation 

of individual customer loads 

Net Load System load less system 

intermittent renewable 

generation 

This is the same 

definition as being 

used by CAISO 

BAA estimation of system load less 

measured output of wind and solar 

supply-side renewables 

2.5.1 Data Collection and Scrubbing 

Data used in this process includes hourly historical weather data (35 years), and hourly historical load 

data (5 years of sales data) along with any hourly self generation or demand response needed to 

calculate consumption from sales values. This section describes the data collection and data scrubbing 

process required to perform the regression analysis used in the weather normalization process. 
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2.5.1.1 Weather Data 

Hourly historical weather data is obtained from the National Climate Data Center (NCDC) for years 1979 

through 2014.27,28 Hourly temperature and dew point data are downloaded for nearly 60 weather 

stations across the western United States corresponding to the western electrical grid footprint, 

including contiguous parts of Canada and Mexico. For California, where the finest available spatial 

resolution is desired, staff used over 20 weather stations to inform the model. In several cases, weather 

station data needs to be stitched together from geographically adjacent weather stations when a given 

station lacks a contiguous history across the full range of years. Note that all hourly weather station data 

from the NCDC ISD-Lite dataset are provided in a manner that is corrected for daylight savings, that is, 

all hours correspond to standard time in the local time zone. 

SERVM uses 24 geographic zones, 8 of which are located in California. Weighted temperature and dew 

point values are determined for each of the 24 SERVM zones using the 60 NCDC weather stations. A set 

of normalized weighting factors mapping the NCDC weather station data to SERVM zones is developed 

for each zone by season. The weighting factors are determined by season from the best fit of a 

logarithm of consumption load versus linear temperature model. 

The raw hourly weather data profiles as obtained from the NCDC contain missing data segments. Staff 

analyzed the distribution of missing data and found the mode length for missing temperature data is 

about 10 days, coincidentally roughly the length of time of a typical employee vacation. It may be that 

weather station data is captured by a single employee, so that when they are on vacation, missing data 

segments occur.  Likewise, dew point data also has missing data segments. Staff filled in missing 

observations in both temperature and dew point data using linear interpolation to ensure complete 

hourly coverage across the full 35 year time span. 

Additionally, hourly solar insolation, wind speed, and cloud cover data was obtained from the NCDC 

dataset and developed for use in calculating self generation and system renewable energy production 

for use by the SERVM model. 

2.5.1.2 Load Data 

Developing hourly consumption data requires collecting metered sales data and reconstituting 

consumption by adding back the hourly effects of BTM generation or demand response that was not 

metered separately.  While some hourly BTM self generation and demand response data29 can be 

obtained for some geographic regions within California and used to develop hourly consumption profiles 

                                                           
27 National Climate Data Center (NCDC): https://www1.ncdc.noaa.gov/pub/data/noaa/isd-lite/  
28 While the weather normalization spans 1980 through 2014, 1979 is used to remove boundary issues that arise 
when calculating lagged temperature and dew point values at the beginning of the time series, as discussed below. 
29 The hourly impacts of demand response are difficult to recreate; for areas internal to CAISO, Energy Division 
staff issued a data request for the actual hourly impacts from the three IOUs that manage the demand response 
programs from the 2010 to 2016 program years.  We collected data for the years 2011 through 2016 to ensure 
that the trends were reasonable past 2014, but only hourly data for 2011 through 2014 was used for reconstituting 
consumption. 

https://www1.ncdc.noaa.gov/pub/data/noaa/isd-lite/
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from sales,30 it is difficult to obtain this information for all types of BTM effects and for all regions inside 

or outside of California. For regions outside California where BTM self generation and demand response 

profiles are not available, staff simply used hourly sales profiles in lieu of hourly consumption profiles. 

While this introduces some error into the weather normalization process, staff believes the impacts are 

minimal because (a) where BTM self generation and demand response is not available outside of 

California over the time frame we are modeling, those quantities are expected to be minimal, and (b) 

the focus is on the behavior of the electric grid within California, so small discrepancies between 

consumption and sales outside California should have minimal impact on results. As BTM self generation 

and demand response profiles outside California become available, staff will incorporate them into the 

analysis. 

Hourly sales data for years 2010 through 2014 is obtained from multiple sources. For California regions 

within the CAISO footprint, staff used hourly CAISO Energy Management System (EMS) sales data.31 For 

the remainder of the WECC footprint, staff obtained hourly sales data from FERC Form 714.32 Hourly 

sales data for Pacificorp East and West regions needs to be obtained independently, since it is provided 

as a single region in Form 714, whereas staff has elected to model them as two separate zones.33 Sales 

data for Canadian regions are also obtained independently.34 Loads for all these regions are mapped into 

the zones used in SERVM. 

All load data used in the weather normalization analysis is corrected for daylight savings time shifts, 

resulting in a consistent dataset in standard time in the local time zone. This is an important step that is 

required in order to accurately align hourly load profiles with hourly weather profiles. In many cases, 

FERC Form 714 data is not corrected for daylight savings. However, FERC Form 714 is provided in a 25-

hour format that enables the user to unambiguously correct for daylight savings.35 In contrast, CAISO 

EMS data does not appear to consistently and clearly indicate if and when daylight savings is in effect. 

Therefore, CPUC staff performed a separate daylight savings correction to the CAISO EMS data in order 

to consistently align it with the CPUC weather normalization process. 

2.5.1.3 Behind-the-Meter Photovoltaic (BTM PV) Data 

Since BTM PV generation is not individually metered or consistently accessible to CPUC staff, hourly 

historical BTM PV generation is simulated. This requires a tabulation of cumulative BTM PV installed 

                                                           
30 Actual hourly demand response impacts (taken from utility reports of historical demand response events) are 
added back into historical load figures to represent historical loads as if the demand response events had not 
occurred. Thus, when demand response events are modeled for the study year in SERVM, there is no double 
counting of demand response impacts (triggering modeled events on top of or in addition to historical events). 
31 CAISO EMS data is proprietary, and is obtained via subpoena 
32 Federal Energy Regulatory Commission (FERC) Form 714: https://www.ferc.gov/docs-filing/forms/form-
714/overview.asp  
33 Pacificorp data was obtained via subpoena 
34 British Columbia (BC) hydro data: http://www.bchydro.com/energy-in-
bc/our_system/transmission/transmission-system/balancing-authority-load-data/historical-transmission-data.html   
35 FERC Form 714 instructions for participating Load Serving Entities instruct that a zero load should be placed in 
the March skip ahead day to indicate when daylight savings goes into effect, and a 25th hour load should be 
provided in the November fall back day when reverting back to standard time. This unambiguously allows for 
adjustment to standard time in the local time zone. 

https://www.ferc.gov/docs-filing/forms/form-714/overview.asp
https://www.ferc.gov/docs-filing/forms/form-714/overview.asp
http://www.bchydro.com/energy-in-bc/our_system/transmission/transmission-system/balancing-authority-load-data/historical-transmission-data.html
http://www.bchydro.com/energy-in-bc/our_system/transmission/transmission-system/balancing-authority-load-data/historical-transmission-data.html
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capacity by month and SERVM region, and the hourly production profile of PV generators by SERVM 

region, from January 1, 2010 to December 31, 2014. The source of BTM PV installed MW per month for 

areas within the CAISO area is CaliforniaDGStats.ca.gov.36 The source of BTM PV MW for Balancing 

Authorities (BAA) and utilities outside of CAISO is Energy Information Administration (EIA) form 861 Net 

Metering data.37 Staff obtained EIA data for 2011-2016 and filtered the “Utility Level-States” tab to 

retain the BAAs within the WECC. Staff extracted data for the years 2011 through 2016 just to ensure 

that the trends were reasonable past 2014, but only hourly data for 2011 through 2014 was used for the 

weather normalization work. 2010 data was not available from EIA information, so staff had to assume 

that the effect could be ignored. As mentioned above, California information was available from a 

different source, which had data for the full 2010 to 2014 timeframe so modeling of California areas 

should be more accurate. 

To detect anomalies in the data, staff created filled line charts showing total installed BTM PV MW by 

BAA and utility, by year and month for the 6 year period. The EIA Form 861 data consists of total 

installed BTM PV MW, so the curves are expected to increase and include some flat sections when BTM 

PV installations slow. The charts created with EIA Form 861 data revealed some dips and steep 

increases, indicating incomplete data. For months in which the dips or steep increases were more than 4 

MW, staff calculated reasonability adjustments. Staff made adjustments to less than 1% of the data 

lines, for nine utilities in five states outside of California.  Using the installed MW values by month and 

SERVM region with the hourly production profiles for solar generation, staff simulated hourly BTM PV 

effects which were added back to hourly sales data to reconstitute consumption. 

2.5.2 Weather Normalization Model 

Staff’s weather normalization approach is based on the Monash Electricity Forecasting Model,38 and is 

consistent with the approach taken by the California Energy Commission’s weather normalization 

process.39 In this approach, each hour of the day is modeled separately, and reconstituted at the end of 

the process. This allows development of different regression relationships between hourly load and the 

driver variables (e.g. temperature and dew point) for different hours of the day. For example, during 

peak load hours, the relationship between the weather driver variables and consumption is more tightly 

constrained than during off peak hours, and one would expect a better fit to the regression relationship 

for these model hours. Furthermore, the model also separates out the impacts of the average annual 

load, a scalar quantity defined by year, from the corresponding normalized hourly load profile shape. 

This feature of staff’s approach essentially separates the scalar magnitude from a normalized load 

shape.  

In production cost modeling (PCM), staff relied on the CEC IEPR forecasts as the basis for the magnitude 

of the average annual and peak load characterizing load profiles in the target year. Both average annual 

                                                           
36 These data are available for download at https://www.californiadgstats.ca.gov/ 
37 These data are available for download at https://www.eia.gov/electricity/data/eia861/ 
38 Monash Electricity Forecasting Model, see: https://robjhyndman.com/papers/MEFMR1.pdf  
39 CEC Demand Analysis Working Group, Friday, March 17, 2017, Forecasting Hourly Loads, see: 
http://www.dawg.info/sites/default/files/meetings/2.2017%2003-
17%20DAWG%20Long%20Term%20Hourly%20Elec%20Model%20Vaid.pdf  

https://www.californiadgstats.ca.gov/
https://www.eia.gov/electricity/data/eia861/
https://robjhyndman.com/papers/MEFMR1.pdf
http://www.dawg.info/sites/default/files/meetings/2.2017%2003-17%20DAWG%20Long%20Term%20Hourly%20Elec%20Model%20Vaid.pdf
http://www.dawg.info/sites/default/files/meetings/2.2017%2003-17%20DAWG%20Long%20Term%20Hourly%20Elec%20Model%20Vaid.pdf
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and peak load are scalar quantities defined for each target year in the CEC’s 10 year IEPR forecast. Staff 

linearly scaled the normalized load profiles generated by the regression analysis in a manner that 

preserves the average annual and peak load for each target year modeled in the PCM (see Section 2.6.3 

for more information on the load stretching algorithm). This approach separates impacts of the 

magnitude of the (CEC IEPR-based) average annual and peak load from the corresponding normalized 

load profile development process.  In other words, the weather normalization process is only concerned 

with developing a regression relationship between weather and normalized hourly load profiles, for 

each geographic region in question. 

In this weather normalization approach, 𝑝 denotes the model hour, where 𝑝 ranges from 1 to 24. If t 

denotes the hour in our time series data corresponding to the most recent 5 years over which the 

regression relationship is derived, then t ranges from 1 to approximately 𝑡𝑚𝑎𝑥 ~ 24 × 365.25 × 5 , 

where the approximation depends on where the leap year falls. 𝑝 can be written as 𝑝 = [(𝑡 −

1)𝑚𝑜𝑑24] + 1. 

As mentioned above, the model used to create a relationship between hourly load and the driver 

variables separates average annual load from a normalized peak load profile, and for each region can be 

written as:40 

𝐥𝐨𝐠 (𝒚𝒕,𝒑) =  𝐥𝐨𝐠 (𝒚𝒕,𝒑 
∗ ) + 𝐥𝐨𝐠(𝒚�̅�)          ( 1 ) 

Where: 

• 𝑦𝑡,𝑝 is the hourly load for model 𝑝 and hour t 

• 𝑦𝑡,𝑝 
∗  is the normalized load profile 

• 𝑦�̅� is the average annual load corresponding to year i 

 Then the Monash approach can be used to model the normalized peak load profile as: 

𝐥𝐨𝐠 (𝒚𝒕,𝒑 
∗ ) = 𝒇𝒑(𝑾𝑻𝒕) + 𝒈𝒑(𝑫𝑷𝒕)  + 𝒉𝒑(𝒕) + 𝐑𝐞𝐬𝐑𝐚𝐭𝐞𝒕,𝒑 + 𝝐𝒕        ( 2 ) 

Where: 

• 𝑓𝑝(𝑊𝑇𝑡) models the effects of the weighted temperature WT 

• 𝑔𝑝(𝐷𝑃𝑡) models the effects of the weighted dew points DP 

• ℎ𝑝(𝑡) models all calendar effects, including dummy variables for month, day of week, and 

holidays 

• ℎ𝑝(𝑡) models all calendar effects, including dummy variables for month, day of week, and 

holidays 

• ResRate𝑡,𝑝 models the effects of the residential retail rate, which serves to balance energy 

consumption across the model regions, in which a relatively higher retail rate should lead to 

lower consumption 

                                                           
40 Recall log(ab) = log(a) + log(b) 
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• 𝜖𝑡 is an error term which is serially correlated, reflecting the fact that there are other 

environmental conditions not captured by this model. 

Apart from the logarithm of the normalized load term, the regression model is essentially linear. 

However both the temperature and the dew point terms are able to capture the nonlinearity embedded 

within these physical parameters. The nonlinearity in the load-temperature relationship can most easily 

be understood by realizing that the load versus temperature relationship tends to have a ‘U’ shape, with 

the minimum of the ‘U’ at about 70° F, the temperature at which most people do not require heating or 

cooling. Below this temperature, load increases due to heating loads, and above this temperature, loads 

increase due to cooling loads. Figure 3 illustrates this relationship corresponding to Hour 20 (8pm) for 

the Pacific Gas and Electric service region in the bay area. The relationship in this figure is for 

temperature (T0, where the 0 represent 0 lag, see below). Similar nonlinear relationships exist for dew 

point, as well as for all lagged variables, discussed below. The nonlinear relationship is most easily 

observed during peak hours, which is when the relationship between load and temperature, or dew 

point and temperature, is most well defined. 

Figure 3: Example of the nonlinear relationship between normalized load and temperature for a 
particular region used in the CPUC PCM model. Historical normalized load (red points) versus 
temperature for PGE_Bay (corresponding to Pacific Gas and Electric, bay area) for the 5 year model 
training period. Only data for the model with hour ending 20 are shown. Temperatures are in 
Fahrenheit.  

 

Temperature effects are modeled in such a way as to incorporate previous day effects, and additional 

lagged terms, which correspond to the same hour of the model (i.e. same value of p), as well as cross 
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model terms (i.e. different values of p). An identical approach is taken to modeling dew point effects, so 

the equation below for temperature effects can be used for dew point effects also. The temperature 

effects term can be represented as: 

𝒇𝒑(𝑾𝑻𝒕) =  ∑ 𝑭𝒌,𝒑

𝟔

𝒌=𝟎

(𝑾𝑻𝒕−𝒌)  + ∑ 𝑮𝒋,𝒑

𝟔

𝒋=𝟏

(𝑾𝑻𝒕−𝟐𝟒𝒋) +   𝑯𝒑
𝒂𝒗𝒈

(𝒙𝒕
𝒂𝒗𝒈

)  +   𝑯𝒑
𝒎𝒊𝒏(𝒙𝒕

𝒎𝒊𝒏)  

+   𝑯𝒑
𝒎𝒂𝒙(𝒙𝒕

𝒎𝒂𝒙) 

( 3 ) 

Where the functions below represents the nonlinear relationship between load and temperature: 

•  𝐹𝑘,𝑝(𝑊𝑇𝑡−𝑘) for the primary term (k = 0, corresponding to no lag) as well as cross model terms 

(k = 1 to 6) corresponding to different hourly models 

• 𝐺𝑗,𝑝(𝑊𝑇𝑡−24𝑗) for the within model lagged terms (j = 1 to 6) corresponding to the same hourly 

model, but lagged from one to six days prior 

• 𝐻𝑝
𝑡𝑦𝑝𝑒

(𝑥𝑡
𝑡𝑦𝑝𝑒

) representing additional cross model terms for, respectively, the average values 

across the past 7 days, the minimum value across the past 24 hours, and the maximum value 

across the past 24 hours  

Nonlinear relationships for temperature and dew point are fit using cubic splines. Staff has empirically 

found that nonlinear cubic splines with 2 degrees of freedom, corresponding to a single knot, best fit 

historical data for temperature and dew point, and for all lag, average, minima and maxima terms. This 

is consistent with staff’s understanding of the ‘U’ shape relationship, since a single knot positioned at or 

near the minima of the ‘U’ will allow for a reasonable fit to the nonlinear relationship. All cubic spline 

terms, including the location of the knot, are determined from least squares fits. 

This quasi log-linear relationship is then used to determine linear coefficients for each term in the 

model, including dummy variables. As discussed previously, the most recent 5 years, for which both load 

and weather data is available, is used to train the model. The results of the training is the complete 

determination of this quasi nonlinear relationship between load and weather variables, which is then 

used to create a set of 35 yearly load profiles from the 35 years of weather data available. The final 

result of this analysis is 35 synthetic yearly normalized load (consumption) profiles for each geographic 

region in the SERVM model. 

Goodness of fit is determined by examining how well the synthetic load profiles fit the historical load 

profiles during the 5 year period comprising the training data. Staff calculated R squared41 for each hour 

of the model, for each geographic zone, as shown in Figure 4. Most values for R squared lie around 0.9, a 

reasonable value.42 For some regions, like Pacific Gas and Electric, bay area, for which there is relatively 

small load, the regression is not well defined, and values of R squared are significantly less than one. 

Generally, values for R squared tend to be closer to one for daylight hours, when loads are significantly 

                                                           
41 R squared: See https://en.wikipedia.org/wiki/Coefficient_of_determination  
42 Recall a value of R squared equal to one corresponds to a perfect fit. 

https://en.wikipedia.org/wiki/Coefficient_of_determination
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greater than during night time. Staff also considered whether potential bias exists in this approach by 

examining the distribution of residuals by geographic region, as well as by month and time of day (day or 

night).  No significant systematic bias was found. 

Figure 4: R squared versus hour from weather normalization regression analysis for all geographical 
zones used in the CPUC production cost model. A dashed line at 0.9 is drawn for clarity. 

 

 

2.6 Forecasts of Total Electricity Peak and Total Energy throughout Study 

Years 
 

2.6.1 Use of IEPR Forecasts and Hourly Shapes 

As stated in the 2017 IEPR final report adopted by the CEC in February 2018,43 the managed Single 

Forecast Set specifies that the California Energy Demand (CED) 2017 adopted baseline “mid demand” 

case with 1 in 2 weather conditions shall be used for system-wide studies along with the mid-mid 

Additional Achievable Energy Efficiency (AAEE) and Additional Achievable Photo-Voltaics (AAPV) forecast 

scenarios.  CPUC staff has used this managed Single Forecast Set along with corresponding supplemental 

data provided by the CEC that supplies the necessary temporal and geographic granularity required for 

the modeling of load and demand-side resources in SERVM. 

                                                           
43 https://efiling.energy.ca.gov/getdocument.aspx?tn=223205 

https://efiling.energy.ca.gov/getdocument.aspx?tn=223205
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The 2017 IEPR CED forecast for the first time also includes hourly forecasts for both load and demand-

side resources.44  This is a major improvement in the fidelity of the IEPR forecast.  CPUC staff has used 

the IEPR CED forecast’s hourly shapes for the demand-side resources that SERVM represents as non-

dispatchable and non-weather-dependent resources. 

For modeling activities in 2019, including Reference System Plan development for the 2019-20 IRP cycle, 

staff expects to use the 2018 IEPR Update CED forecast, recently adopted by the CEC in January 2019.  

As discussed later in Section 3 of this document, staff also expects the CAISO’s 2019-20 TPP to use the 

2018 IEPR Update CED forecast. 

In summary, the IEPR CED forecast is used to: 

• Linearly scale up the 35 weather years of system level synthetic hourly load shapes described in 

the previous section to match the annual peak demand and energy of the IEPR forecast baseline 

with baseline (committed) BTM PV reductions backed out.  (The IEPR baseline is already without 

AAEE and AAPV.) 

• Create non-dispatchable resources in SERVM to represent each of the following: sum of baseline 

(committed) BTM PV and AAPV, AAEE, electric vehicles (EV) load, and Time-Of-Use (TOU) rate 

impacts. 

The following table itemizes key forms and workbooks that CPUC analytical work relies on. 

                                                           
44 For each forecast year, hourly data were developed for load and demand-side resources for the three large IOU 

TAC areas, i.e. the CAISO control area.  Hourly data were not developed for areas outside the CAISO control area. 
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Table 3: IEPR Forms and Workbooks and Uses 

IEPR Form or Workbook Geography Data component How used 

Form 1.1c:  Electricity 
Deliveries to End Users by 
Agency (Retail Sales) 

LSE Sales load by LSE 
IRP load and 
emissions 
accounting 

Form 1.5a:  Total Energy to 
Serve Load by Agency and 
BA (Sales plus Line Losses) 

Agency/BA 
System load without AAEE & 
AAPV (committed BTM PV 
must be removed) 

Scale energy of 
synthetic shapes 

Form 1.5b:  1 in 2 Net 
Electricity Peak Demand by 
Agency and BA 

Agency/BA 
System peak without AAEE & 
AAPV (committed BTM PV 
must be removed) 

Scale peak of 
synthetic shapes 

Form 1.2:  Total Energy to 
Serve Load (equals sales 
plus line losses) 

Planning 
Areas 

Individual load and load 
modifier components 

Cross-checking 
totals 

Form 1.4:  Net Peak 
Demand (equals total end 
use load plus losses minus 
self-generation) 

Planning 
Areas 

Individual load, load modifier 
components, and peak shift 
factor 

Remove committed 
BTM PV reductions 
and peak shift from 
system load 

CAISO Hourly Loads and 
Modifiers 

IOU TAC 
areas 

Individual load and load 
modifier components hourly 
and annually 

Build EV, TOU, and 
AAEE hourly shapes 

All AAEE Savings by Utility 
and Sector End Use 

Large IOUs 
& POUs 

AAEE including SB350 savings 
by IOU and POU 

Use AAEE totals by 
area to scale AAEE 
hourly shapes 

All Committed PV and 
AAPV by Agency and BA 

Agency/BA 
Installed capacity, energy, and 
peak impacts 

Remove committed 
BTM PV reductions 
from system load; 
Build total BTM PV 
hourly shapes 

CAISO Load and Modifiers 
Mid Baseline-Mid AAEE-
Mid AAPV 

IOU TAC 
areas 

Individual load and load 
modifier components and 
underlying assumptions (T&D 
factors, coincidence factors, EV 
and other electrification) 

Remove EV 
additions from 
system load and 
cross-checking 
totals 

 

2.6.2 Reconstituting forecasts of peak and total consumption 

The system level synthetic hourly load shapes were developed based on historical consumption load, 

specifically, metered sales load but with load reductions from historical BTM PV self generation and 

demand response events removed, including accounting for T&D losses since all SERVM modeling is at 
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the system level.45  As such, staff must use the same type of annual peak demand and energy value from 

the IEPR CED forecast in order to correctly scale up the synthetic load shapes.  Specifically, staff used the 

IEPR Form 1.5b “1 in 2 net peak demand (non-coincident) no AAEE AAPV” and Form 1.5a “net energy for 

load no AAEE AAPV”46 but added back the respective peak and energy reduction from BTM PV self 

generation including avoided losses for both sets of data.47  Staff “backed out” the BTM PV load 

reduction using raw self-generation forecast data (includes installed capacity, energy, and peak impact, 

by agency/BA and year) provided by CEC Demand Analysis staff.  Staff also backed out future impacts 

from Electric Vehicles and TOU rates from the IEPR CED forecast since those effects are modeled as 

separate shapes from the load shapes in SERVM.  In the case of peak demand data, staff also backed out 

the IEPR’s peak shift adjustment for IOU planning areas since essentially the consumption peak was 

needed.  The resulting IEPR peak and energy values after the adjustments described above were then 

used to scale up the synthetic load shapes to produce a final system level consumption shape for a 

future study year. 

2.6.3 Linear Stretching of Consumption Shapes to Forecast Years 

The mathematical process for scaling the 35 normalized synthetic hourly load shapes to match a target 

IEPR study year forecast peak and energy is explained in this subsection.  Peak loads in each synthetic 

load shape varied based on the relevant historical weather patterns.  The peak loads can range from 

around 7% higher than normal peak in hot years to around 10% below normal peak in mild years.  A 

single scaling factor was calculated by dividing the target peak for the study year by the average of the 

peak loads from the raw 35 synthetic load shapes.  The synthetic load shapes must also be scaled such 

that total energy matches the study year forecast total energy, by SERVM zone, using an algorithm that 

maintains the peak values.   

The algorithm takes the normalized hourly load forecast shape for a given year, 𝑋𝑡, (developed in the 

weather normalization process described in section 2.5.2), and creates a linear transformation 𝑎𝑋𝑡 +

 𝑏 =  𝑌𝑡 such that max
𝑡

𝑌𝑡 = 𝑞 and meant 𝑌𝑡 = 𝑝. That is, one can transform all 35 shapes such that the 

average peak and total energy of the load shapes matches the annual average (mean) and peak load 

(max) corresponding to the target year forecast. 

The justification for this linear transformation is as follows: If you take the peak for the original load 

forecast to be max
𝑡

𝑋𝑡 = 𝑠 and the energy to be meant 𝑋𝑡 = 𝑟, then  

𝑎 =
𝑞−𝑝

𝑠−𝑟
  and  𝑏 =

𝑝𝑠−𝑞𝑟

𝑠−𝑟
 

This comes from some basic substitution: 
                                                           
45 Note that historical non-PV self generation was left embedded during the development of synthetic load shapes.  

Staff felt that this simplifying convention was fine since non-PV self generation generally has a flat profile and is 
not weather-dependent. 
46 http://energy.ca.gov/2017_energypolicy/documents/#02212018 
47 Note that we are backing out the “committed PV self generation” impacts only and leaving non-PV self 

generation impacts embedded in the baseline.  The AAPV is already removed from the load forecast by virtue of 
using the IEPR Form 1.5 version with “NO AAEE AAPV.” 

http://energy.ca.gov/2017_energypolicy/documents/#02212018
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max
𝑡

𝑌𝑡 = 𝑞 ⟹ max
𝑡

(𝑎𝑋𝑡 +  𝑏) = 𝑞 ⇒ 𝑎 =
𝑞 − 𝑏

max
𝑡

𝑋𝑡
=

𝑞 − 𝑏

𝑠
 

And 

meant 𝑌𝑡 = 𝑝 ⇒ meant(𝑎𝑋𝑡 +  𝑏)  = 𝑝 ⟹ 𝑏 = 𝑝 − 𝑎(meant𝑋𝑡) ⟹ 𝑏 = 𝑝 − 𝑎𝑟 

Substituting for 𝑎 in the second equation gives the result for 𝑏: 

𝑏 = 𝑝 − (
𝑞 − 𝑏

𝑠
) 𝑟 ⇒ 𝑏 −  

𝑏𝑟

𝑠
= 𝑏 (1 −  

𝑟

𝑠
) = 𝑏 (

𝑠 − 𝑟

𝑠
) =  

𝑝𝑠 − 𝑞𝑟

𝑠
⇒ 𝑏 =

𝑝𝑠 − 𝑞𝑟

𝑠
(

𝑠

𝑠 − 𝑟
) =

𝒑𝒔 − 𝒒𝒓

𝒔 − 𝒓
 

Substituting for 𝑏 in the first equation gives the result for 𝑎: 

𝑎 =
𝑞 −  

𝑝𝑠 − 𝑞𝑟
𝑠 − 𝑟
𝑠

=

𝑞𝑠 − 𝑞𝑟 − 𝑝𝑠 + 𝑞𝑟
𝑠 − 𝑟

𝑠
=

𝑞𝑠 − 𝑝𝑠

𝑠(𝑠 − 𝑟)
=

𝑞 − 𝑝

𝑠 − 𝑟
 

This approach is the basis for a linear transformation that takes the original load shape, characterized by 

a mean and peak energy, to a transformed load shape, characterized by the mean and peak energy of 

the target year.48  Adjusted scaled load shapes are posted to the CPUC website.49  Each of the 35 

normalized synthetic hourly load shapes uses the 1990 calendar, meaning the first day of the year is a 

Monday, and all holidays and weekends correspond to 1990 dates.  1990 is not a leap year, so all 

synthetic load shapes are uniformly 365 days, or 8760 hours, in length. 

The SERVM model can be configured to apply probabilities to each of the 35 weather years used as 

input.  Currently, Energy Division’s model is setup with the 35 weather years 1980-2014 and each year 

has equal weight, i.e. probability of 1/35.  If data becomes available that indicate more recent years’ 

weather patterns should be more heavily weighted, e.g. due to climate change projections, Energy 

Division could consider updating the weighting of SERVM’s weather years. 

2.6.4 Economic and Demographic Forecasting Uncertainty 

Load uncertainty is driven not only by year-to-year volatility in weather patterns, but also by long-term 

uncertainty in economic and demographic growth forecasts. Unanticipated economic growth or 

downturns can result in peak loads that are substantially higher or lower than forecast. 

SERVM accounts for this potential error by incorporating a “load forecast multiplier” into each model 

run. A range of load multipliers can be entered into the model, along with the probability of selecting 

each value. Collectively, they intend to represent the distribution of load forecasting error due to non-

weather causes (economics, demographics, etc.). At the beginning of each case, a particular weather 

year and its corresponding load shapes are selected. A load forecast multiplier is selected 

independently, and all hourly load values are adjusted upwards or downwards by that same value. For 

                                                           
48 The load stretching algorithm comes from Ben Kujala of the Northwest Power and Conservation Council 

(http://www.nwcouncil.org/) 
49 http://www.cpuc.ca.gov/General.aspx?id=6442451973 

http://www.nwcouncil.org/
http://www.cpuc.ca.gov/General.aspx?id=6442451973
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example, if a load forecast multiplier of 0.95 is selected (simulating an unexpected economic downturn), 

then a region with a peak load of 1000 MW in the given weather year would be adjusted to have a peak 

load of 950 MW. A new weather year and a new load forecast multiplier would be selected for the next 

case.  Number of weather years multiplied by number of load forecast multipliers equals the number of 

total cases that are run as part of a study. 

The load forecast multipliers used in Energy Division modeling are based on analysis of near term 

forecasting that was available from the OECD Journal.50  Staff evaluated projections of 1 year ahead and 

2 year ahead GDP growth, noting the magnitudes of GDP uncertainty and their probabilities.  These 

figures were entered as a basis for the load forecast uncertainty variables in SERVM.  The values are 

summarized in the table below. 

Table 4: Economic/Demographic Forecast Error Probabilities 

Magnitude of forecast error 

(percentage) 

Probability of error occurring 

(percentage) 

2.5% error 6.68% probability 

1.5% error 24.17% probability 

0% error 38.29% probability 

-1.5% error 24.17% probability 

-2.5% error 6.68% probability 

Source: OECD Journal: Journal of Business Cycle Measurement and Analysis, Volume 2010 Issue 2.  “An 

Evaluation of the Growth and Unemployment Forecasts in the ECB Survey of Professional Forecasters” 

2.6.5 Hourly Shapes for BTM PV, AAEE, EV, TOU Rate Impacts 

The sum of baseline (committed) BTM PV and AAPV, AAEE, electric vehicles (EV) load, and Time-Of-Use 

(TOU) rate impacts were each modeled as non-dispatchable resources in SERVM.  As explained above, 

their effects were removed from the load forecasts used to develop the hourly load shapes used by 

SERVM.  The installed capacity and annual energy of total BTM PV, by year and agency/BA, was sourced 

from the 2017 IEPR CED forecast, mid “committed PV self generation” plus mid “AAPV” scenarios.  The 

explanation of how this data was used to create solar generation profiles is provided later in this 

document under the section describing how renewable resource units are modeled in SERVM (i.e. type 

R resources in SERVM nomenclature). 

The 2017 IEPR CED forecast included annual hourly shapes for AAEE, EV load, and TOU rate impacts.  

The hourly data were sourced directly from the CEC Demand Analysis staff.  The hourly data by large IOU 

TAC area and by forecast year, was matched to the corresponding SERVM zone and target study year.  

                                                           
50 Link here: http://www.keepeek.com/Digital-Asset-Management/oecd/economics/an-evaluation-of-the-growth-

and-unemployment-forecasts-in-the-ecb-survey-of-professional-forecasters_jbcma-2010-5km33sg210kk#page9 

http://www.keepeek.com/Digital-Asset-Management/oecd/economics/an-evaluation-of-the-growth-and-unemployment-forecasts-in-the-ecb-survey-of-professional-forecasters_jbcma-2010-5km33sg210kk#page9
http://www.keepeek.com/Digital-Asset-Management/oecd/economics/an-evaluation-of-the-growth-and-unemployment-forecasts-in-the-ecb-survey-of-professional-forecasters_jbcma-2010-5km33sg210kk#page9
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The AAEE and TOU shapes were directly used to build non-dispatchable resources in the SERVM model.  

For EV shapes, two options were available: IEPR-provided EV hourly shapes vs. month-hour normalized 

EV shapes in the RESOLVE model.  Staff elected to directly use the IEPR-provided EV hourly shapes.  Each 

of the SERVM annual shapes for AAEE, TOU, and EV load do not vary based on which of the 35 weather 

years is being used as the basis for the load shape in a given SERVM model study year.  In other words, 

staff assumed AAEE, TOU, and EV charging patterns are generally weather independent. 

2.7 Existing and New Resource Portfolios 
As described earlier in this document, Energy Division staff sourced data on the existing fleet of 

generating units dispatched within the CAISO control area from the CAISO MasterFile.  For existing non-

CAISO generating units (includes most of the rest of the Western Interconnect), staff sourced data from 

the TEPPC 2026 Common Case v2.0. 

To support the RA and IRP proceedings, SERVM was used to study the years 2020, 2022, 2026, and 2030.  

Studying these years required a projection of the mix of generating units that will come online or retire 

by the target study year.  The projected generation mix coming online or retiring can be broadly 

categorized as follows: 

• Contracted Additions: Projects not yet online that have an ownership or contractual relationship 

with a LSE and have or are undergoing regulatory approval or LSE-board approval, as applicable 

(e.g. projects in the CPUC’s RPS database and projects undergoing approval in a CPUC 

Application) 

• Planned Retirements: Units that have announced retirement (e.g. Diablo Canyon Power Plant 

and units subject to Once Through Cooling (OTC) phase-out policy51) 

• New Additions: New (generic) resources selected or assumed by an exogenous analysis, usually 

a capacity expansion model (e.g. the RPS Calculator or the RESOLVE model) 

• New Retirements: Retirements of existing units assumed by an exogenous analysis, usually a 

capacity expansion model (e.g. the RPS Calculator or the RESOLVE model) 

SERVM unit-level inputs for contracted additions and planned retirements were drawn directly from the 

sources described above.  Assumptions for new additions and new retirements were drawn from the 

RESOLVE capacity expansion model used in the IRP proceeding to develop the Reference System Plan 

that was adopted in February 2018.  SERVM results using these assumptions were published in 

September 2018.  During the latter half of 2018, the assumptions for new additions and new 

retirements were updated to reflect the aggregation of individual LSE Plans that were filed in the IRP 

proceeding in August 2018.  SERVM results using these assumptions were published in January 2019. 

2.7.1 Baseline Units and IRP Reference System Plan Units Tables 

The aggregated by class baseline (baseline represents existing and contracted, as defined above) and 

new resources for the CAISO balancing area as represented by the RESOLVE model are shown in the 

tables below.  The complete workbooks translating aggregate capacities in the RESOLVE model to 

                                                           
51 http://www.energy.ca.gov/renewables/tracking_progress/documents/once_through_cooling.pdf 

http://www.cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPowerProcurementGeneration/DemandModeling/IRP_RSP_2017IEPR_SERVM_results_20180913.pdf
http://www.cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPowerProcurementGeneration/irp/2018/Attachment%20A_Proposed%20Preferred%20System%20Portfolio%20for%20IRP%202018_final.pdf
http://www.energy.ca.gov/renewables/tracking_progress/documents/once_through_cooling.pdf
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available unit level data are posted to the Data section of CPUC Energy Division’s Energy Resource 

Modeling landing page.52  This identifies units and locations for baseline (i.e. existing and contracted) 

resources assumed in the 50% RPS Default Core Case and the 42 MMT Core Case that are part of the IRP 

Reference System Plan adopted in February 2018. 

One important amendment to the contracted units assumed by the RESOLVE model is that the Puente 

Power Project53 should no longer be included.  SERVM modeling in 2018 did not include this power plant 

and Table 5 reflects that amendment (to the CAISO_Peaker1 line item). 

Table 5: Baseline Non-Renewables in RESOLVE (MW) 

 Resource Class 2018 2022 2026 2030 

CAISO_CHP 
           

1,685  
           

1,685  
           

1,685  
           

1,685  

CAISO_Nuclear 
           

2,922  
           

2,922  
               

622  
               

622  

CAISO_CCGT1 
         

12,419  
         

13,703  
         

13,703  
         

13,703  

CAISO_CCGT2 
           

2,974  
           

2,974  
           

2,974  
           

2,974  

CAISO_Peaker1 
           

5,195  
           

5,293  
           

5,293  
           

5,293  

CAISO_Peaker2 
           

2,859  
           

2,729  
           

2,729  
           

2,729  

CAISO_Reciprocating_Engine 
               

263  
               

263  
               

263  
               

263  

CAISO_ST 
           

6,416  
               

652  
               

652  
               

652  

CAISO_Hydro 
           

7,064  
           

7,064  
           

7,064  
           

7,064  

CAISO_PS 
           

1,833  
           

1,833  
           

1,833  
           

1,833  

CAISO_Storage_Mandate 
               

690  
           

1,113  
           

1,325  
           

1,325  

CAISO_Shed_DR_Existing 
           

1,752  
           

1,752  
           

1,752  
           

1,752  

 

                                                           
52 http://www.cpuc.ca.gov/energy_modeling/ 
53 http://www.energy.ca.gov/sitingcases/puente/ 

http://www.cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPowerProcurementGeneration/irp/2018/RESOLVE_Unit_Map_50Defaultcase.xlsx
http://www.cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPowerProcurementGeneration/irp/2018/RESOLVE_Unit_Map_42MMTcase.xlsx
http://www.cpuc.ca.gov/energy_modeling/
http://www.energy.ca.gov/sitingcases/puente/
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Table 6: Baseline Renewables in RESOLVE (MW) 

Zone54 Contract55 Technology 2018 2022 2026 2030 

BANC CAISO Small_Hydro 
                   

6  
                   

6  
                   

6  
                   

6  

CAISO CAISO Biomass 
           

1,046  
           

1,046  
           

1,046  
           

1,046  

CAISO CAISO Geothermal 
           

1,182  
           

1,232  
           

1,232  
           

1,232  

CAISO CAISO Small_Hydro 
           

1,040  
           

1,039  
           

1,039  
           

1,039  

CAISO CAISO Solar 
         

10,927  
         

13,318  
         

13,318  
         

13,318  

CAISO CAISO Wind 
           

6,082  
           

6,215  
           

6,215  
           

6,215  

IID CAISO Geothermal 
               

455  
               

271  
               

235  
               

235  

IID CAISO Solar 
                 

20  
                 

70  
                 

70  
                 

70  

LDWP CAISO Wind 
                   

5  
                   

5  
                   

5  
                   

5  

NW CAISO Biomass 
                 

32  
                 

32  
                 

32  
                 

32  

NW CAISO Geothermal 
                 

15  
                 

15  
                 

15  
                 

15  

NW CAISO Small_Hydro 
                 

29  
                 

29  
                 

29  
                 

29  

NW CAISO Wind 
           

1,646  
           

1,646  
           

1,646  
           

1,646  

SW CAISO Solar 
               

127  
               

127  
               

127  
               

127  

SW CAISO Wind 
               

622  
               

622  
               

622  
               

622  

Other CAISO Wind 
               

849  
               

849  
               

849  
               

849  

 

                                                           
54 In RESOLVE, “zone” designates where a resource’s energy is balanced and delivered to meet load.  A resource’s 

zone does not necessarily have to be the same as its physical location. 
55 In RESOLVE, “contract” designates which “zone” has contracted for the resource and thus “owns” its energy 

production and, if applicable, its renewable attribute (REC).  If a resource’s zone and contract match, it means the 
resource will deliver energy and RECs (if applicable) to that zone.  However, a resource’s contract does not 
necessarily have to match its zone.  For instance, a solar resource in the SW (zone = SW) with a contract to CAISO 
(contract = CAISO) will deliver its energy to meet SW loads, but will provide RECs that count towards the CAISO RPS 
target.  These resources are typically referred to as out-of-state RECs (bucket 3).  The table above does not include 
units that are tagged as zone = CAISO and contract = other area. 
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Table 7: New Build in RESOLVE for 50% RPS Default Core Case 

Renewable Resource Build by Location (MW)         

RESOLVE Resource Tx Zone 2018 2022 2026 2030 

Tehachapi_Solar Tehachapi 
 

- 
 

1,013 
 

1,013 
 

1,013 

Kramer_Inyokern_Solar Kramer_Inyokern 
             

-    
         

978  
         

978  
         

978  

Mountain_Pass_El_Dorado_Solar Mountain_Pass_El_Dorado 
             

-    
            

62  
            

62  
            

62  

Southern_Nevada_Solar Mountain_Pass_El_Dorado 
             

-    
      

1,024  
      

1,024  
      

1,024  
Central_Valley_North_Los_Bano
s_Wind 

Central_Valley_North_Los_
Banos 

         
146  

         
146  

         
146  

         
146  

Tehachapi_Wind Tehachapi 
         

153  
         

153  
         

153  
         

153  

In-State   
         

299  
      

2,353  
      

2,353  
      

2,353  

Out-Of-State   
             

-    
      

1,024  
      

1,024  
      

1,024  

           

New Energy Storage Unit 2018 2022 2026 2030 

Li_Battery MW 
             

-    
             

-    
             

-    
         

807  

Li_Battery MWh 
             

-    
             

-    
             

-    
         

807  

Li_Battery Duration hr 
             

-    
             

-    
             

-    
              

1  
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Table 8: New Build in RESOLVE for 42 MMT Core Case 

Renewable Resource Build by Location (MW)         

RESOLVE Resource Tx Zone 2018 2022 2026 2030 

Tehachapi_Solar Tehachapi 
             

-    
      

1,013  
      

1,013  
      

1,013  

Kramer_Inyokern_Solar Kramer_Inyokern 
             

-    
         

978  
         

978  
         

978  
Riverside_East_Palm_Springs_So
lar 

Riverside_East_Palm_Sprin
gs 

             
-    

      
3,831  

      
3,831  

      
3,831  

Southern_Nevada_Solar Mountain_Pass_El_Dorado 
             

-    
      

3,006  
      

3,006  
      

3,006  

Solano_Wind Solano 
         

643  
         

643  
         

643  
         

643  
Central_Valley_North_Los_Bano
s_Wind 

Central_Valley_North_Los_
Banos 

         
146  

         
146  

         
146  

         
146  

Greater_Carrizo_Wind Greater_Carrizo 
         

160  
         

160  
         

160  
         

160  

Tehachapi_Wind Tehachapi 
         

153  
         

153  
         

153  
         

153  
Riverside_East_Palm_Springs_Wi
nd 

Riverside_East_Palm_Sprin
gs 

            
42  

            
42  

            
42  

            
42  

Northern_California_Geothermal Northern_California 
             

-    
             

-    
             

-    
         

202  

In-State   
      

1,145  
      

6,967  
      

6,967  
      

7,169  

Out-Of-State   
             

-    
      

3,006  
      

3,006  
      

3,006  

            

New Energy Storage Unit 2018 2022 2026 2030 

Li_Battery MW 
             

-    
             

-    
         

162  
      

1,992  

Li_Battery MWh 
             

-    
             

-    
         

162  
      

2,243  

Li_Battery Duration hr 
             

-    
             

-    
              

1  
              

1  

 

The PCM calibration and vetting activities described in Attachment B to D.18-02-018 state that SERVM 

studies will be done based on a version of RESOLVE updated to use the 2017 IEPR demand forecast.  This 

version of RESOLVE using the 2017 IEPR, along with results from rerunning the 42 MMT core case, is 

posted on the CPUC website.56  The baseline resources in RESOLVE remain the same but the new 

resources selected by RESOLVE changed due to updated assumptions based on the 2017 IEPR.  A 

summary of the new resources selected is presented in the table below.  The workbook translating 

                                                           
56 http://cpuc.ca.gov/General.aspx?id=6442457210 

http://cpuc.ca.gov/General.aspx?id=6442457210
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aggregate capacities in RESOLVE using the 2017 IEPR to available unit level data for the 42 MMT core 

case is also posted to the CPUC website. 

Table 9: New Build in 2017 IEPR version of RESOLVE for 42 MMT Core Case 

Renewable Resource Build by Location (MW)         

RESOLVE Resource Tx Zone 2018 2022 2026 2030 

Tehachapi_Solar Tehachapi 
              

-    
       

1,013  
       

1,013  
       

1,013  

Kramer_Inyokern_Solar Kramer_Inyokern 
              

-    
          

978  
          

978  
          

978  
Riverside_East_Palm_Springs_Sol
ar 

Riverside_East_Palm_Spri
ngs 

              
-    

          
854  

          
854  

          
918  

Southern_Nevada_Solar 
Mountain_Pass_El_Dorad
o 

              
-    

       
3,006  

       
3,006  

       
3,006  

Solano_Wind Solano 
          

643  
          

643  
          

643  
          

643  
Central_Valley_North_Los_Banos
_Wind 

Central_Valley_North_Los
_Banos 

          
146  

          
146  

          
146  

          
146  

Greater_Carrizo_Wind Greater_Carrizo 
          

160  
          

160  
          

160  
          

160  

Tehachapi_Wind Tehachapi 
          

153  
          

153  
          

153  
          

153  
Riverside_East_Palm_Springs_Wi
nd 

Riverside_East_Palm_Spri
ngs 

            
42  

            
42  

            
42  

            
42  

NW_Ext_Tx_Wind Northern_California 
              

-    
              

-    
              

-    
          

601  

SW_Ext_Tx_Wind 
Riverside_East_Palm_Spri
ngs 

              
-    

              
-    

              
-    

          
500  

Greater_Imperial_Geothermal Greater_Imperial 
              

-    
              

-    
              

-    
       

1,276  

Northern_California_Geothermal Northern_California 
              

-    
              

-    
              

-    
          

424  

In-State   
       

1,145  
       

3,990  
       

3,990  
       

5,754  

Out-Of-State   
              

-    
       

3,006  
       

3,006  
       

4,107  

New Energy Storage Unit 2018 2022 2026 2030 

Li_Battery MW 
              

-    
              

-    
          

187  
       

2,104  

Li_Battery MWh 
              

-    
              

-    
          

187  
       

2,734  

Li_Battery Duration hr 
              

-    
              

-    
           

1.0  
           

1.3  

 

http://www.cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPowerProcurementGeneration/DemandModeling/RESOLVE_Unit_Map_42MMTcase_2017IEPR_post.xlsx
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SERVM modeling was also conducted to reflect the aggregation of individual LSE Plans that were filed in 

the IRP proceeding in August 2018.  This means a different mix of new resources than Table 9 was 

modeled in SERVM.  This portfolio was termed the “Hybrid Conforming Portfolio,” defined in the 

November 15, 2018 IRP ruling.  For details see SERVM Model Input Data for Hybrid Conforming 

Aggregated LSE Portfolio 2030 Studies and Attachment A:  IRP Proposed Preferred System Portfolio of 

the January 11, 2019 IRP ruling. 

2.7.2 Aligning the modeled generation fleets in RESOLVE and SERVM 

Both SERVM and RESOLVE model the commitment and dispatch of resources to balance load and 

generation across most of the Western Interconnect.  As such, certain outputs from the two models can 

be compared, e.g. emissions, operating cost, and capacity factors by unit class.  To make the comparison 

valid, it is important to align the inputs of both models as much as possible.  However, SERVM models at 

the unit-level with finer representation of the transmission system (24 zones), while RESOLVE models 

with aggregated unit classes and coarse representation of the transmission system (6 zones).  These 

differences plus a number of other differences in modeling conventions and design make it challenging 

to completely align the generation fleets modeled in RESOLVE and SERVM.  For example, the SERVM 

database is regularly updated and was built up from multiple sources over time, including the CAISO 

Masterfile, the TEPPC Common Case, the RPS contracts database, and individual data requests to 

utilities. In contrast, RESOLVE primarily draws from the preliminary 2017 CAISO NQC List posted August 

2016, supplemented with additional information from the CAISO Master Generating Capability List 

posted November 2016, the TEPPC 2026 Common Case, and the CARB Scoping Plan. 

Energy Division staff attempted to reconcile and align the generation mix of existing units, contracted 

additions, and planned retirements from both models.  For new additions and new retirements, the 

assumptions from RESOLVE were directly translated into the SERVM model, so the differences primarily 

lie within the assumed baseline of each model.  A comparison of the total baseline and new resources in 

the RESOLVE model and the SERVM model was presented to the IRP Modeling Advisory Group process 

on July 13, 2018,57 and updated in Attachment B of the September 24, 2018 Ruling Seeking Comment on 

Production Cost Modeling58 in the IRP proceeding.  The summary comparison table of generation 

nameplate capacity for the CAISO area that was in Attachment B is repeated in the table below.  See 

Attachment B for further details describing this table. 

                                                           
57 

http://cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPowerPr
ocurementGeneration/irp/2018/IRP_MAG_webinar_2018-07-13_SERVM_2017IEPR_RSP_posted.pdf 
58 September 24, 2018 Ruling: http://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M229/K725/229725945.PDF   

Attachment B: 
http://www.cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPo
werProcurementGeneration/DemandModeling/IRP_RSP_2017IEPR_SERVM_results_20180913.pdf 

http://www.cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPowerProcurementGeneration/DemandModeling/R1602007%20Fitch%20Ruling%2011-15-2018%20final%20PDF.pdf
http://www.cpuc.ca.gov/General.aspx?id=6442459406
http://www.cpuc.ca.gov/General.aspx?id=6442459406
http://www.cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPowerProcurementGeneration/irp/2018/Attachment%20A_Proposed%20Preferred%20System%20Portfolio%20for%20IRP%202018_final.pdf
http://www.cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPowerProcurementGeneration/irp/2018/R1602007%20Fitch%20Ruling%20Seeking%20Comment%20PSP%20and%20TPP.pdf
http://cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPowerProcurementGeneration/irp/2018/IRP_MAG_webinar_2018-07-13_SERVM_2017IEPR_RSP_posted.pdf
http://cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPowerProcurementGeneration/irp/2018/IRP_MAG_webinar_2018-07-13_SERVM_2017IEPR_RSP_posted.pdf
http://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M229/K725/229725945.PDF
http://www.cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPowerProcurementGeneration/DemandModeling/IRP_RSP_2017IEPR_SERVM_results_20180913.pdf
http://www.cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPowerProcurementGeneration/DemandModeling/IRP_RSP_2017IEPR_SERVM_results_20180913.pdf
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Table 10: Comparison of CAISO nameplate capacity in RESOLVE and SERVM model datasets 

  
 TOTAL SERVM 

RESOURCES, MW 

TOTAL RESOLVE 

RESOURCES, MW 

SERVM minus RESOLVE, 

MW 

Resource Type 2022 2026 2030 2022 2026 2030 2022 2026 2030 

Battery Storage 1,115 1,514 3,431 1,113 1,512 3,429 2 2 2 

Biomass 676 676 676 1,107 1,107 1,107 -431 -431 -431 

Geothermal 1,728 1,728 3,428 1,487 1,487 3,187 241 241 242 

Nuclear 2,923 623 623 2,922 622 622 1 1 1 

Utility-scale Solar PV 19,637 19,637 19,701 19,211 19,211 19,276 426 426 425 

Thermal 26,539 26,539 26,539 27,561 27,561 27,561 -1,023 -1,023 -1,023 

Wind 10,522 10,522 11,325 7,816 7,816 8,917 2,707 2,707 2,409 

BTMPV 12,301 16,727 20,759 12,758 17,454 21,573 -457 -727 -814 

DR 1,754 1,754 1,754 1,752 1,752 1,752 1 1 1 

Hydro 7,402 7,402 7,402 9,163 9,163 9,163 -1,761 -1,761 -1,761 

 

The comparison above is between the 2017 IEPR version of RESOLVE results from the 42 MMT core case, 

and the SERVM dataset.  The capacity totals for SERVM include all units serving CAISO load including 

must-take but not dynamically-scheduled specified imports.  The capacity totals for RESOLVE include all 

units modeled as within the CAISO footprint, whether contracted to a CAISO LSE or not.  The “thermal” 

category includes CHP, CCGT, CT, reciprocating engine, and steam.  Capacity from existing renewables 

are based on the contracted capacity reported in the RPS Contracts Database maintained by CPUC staff 

and the three major IOUs.  The SERVM BTMPV value is based directly on the installed capacity in the 

2017 IEPR (mid case with mid-mid AAPV).  The RESOLVE BTMPV value is based on a calculated capacity 

from the 2017 IEPR BTMPV annual energy (mid case with mid-mid AAPV) and RESOLVE’s assumed 

BTMPV capacity factor (which is slightly lower than the capacity factor assumed in the 2017 IEPR).  Both 

model’s BTMPV values are grossed up for T&D losses.  The “hydro” category comparison excludes 

Hoover and includes pumped storage hydro.  Hoover is modeled in both models but was left out of this 

input comparison in order to simplify the hydro comparison. 
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2.8 Resource Inputs and Use Limitations 

2.8.1 Generic Resource Information 

There are a number of inputs that are common to all supply side resources (including demand response, 

intermittent renewables, thermal facilities, and storage) in order to identify and characterize their 

capabilities for the model. For example, the model requires each resource to be identified with a unique 

ID number, a region in which the resource is located, and the first and last year of expected service. 

Additionally, there are numerous input fields that are specific to particular unit types. The following 

table summarizes the resource categories in the SERVM database. 

Table 11: Resource types modeled in SERVM 

Resource Type Description of Category 

(T)hermal Combustion turbine 

(F)ossil Fossil steam generators 

(N)uclear Nuclear generators 

(R)enewable Renewable generators whose output is dependent on weather patterns – 

non-dispatchable and not economically triggered 

(C)urtailable Demand response with constraints such as hours per day or month 

(P)umped Storage 

(used to model all 

storage facilities) 

Storage resources that can either consume or generate electricity; 

available energy and round-trip efficiency are essential modeling inputs 

for this resource type 

(H)ydropower Hydropower facilities that are not pumped storage; they are modeled as 

one of three subtypes – emergency, scheduled, or run of river 

 

For modeling activities in 2018, data sources used for generic facility inputs are summarized in Table 12, 

below. The table does not list specific variable names in SERVM, but instead gives a less specialized 

narrative name. These data fields are common to all types of resources. For some data fields, it is easy 

to process existing data into SERVM data formats, but data reconciliation is difficult. For example, some 

plants with more than one unit are modeled as a single combined unit in one source dataset, but as two 

separate units in another dataset. Combined cycle plant configurations are often challenging, and 
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judgment calls are needed. Energy Division staff will evaluate all judgment calls with other parties to 

ensure the accuracy and reasonableness of decisions. It is also important to note that these values can 

vary by month and by year – meaning a generator can have a heat rate, ramp rate, maximum capacity, 

or any other variable that changes across different months and different years in the model.  

Table 12: Generic data inputs common to most resource types (T, F, N, R, C, P, and H) 

Variable Applicable 

Gen Types 

Sources/Comments 

Resource name All CAISO MasterFile for resources located in CAISO; TEPPC 2026 

Common Case dataset for resources outside of CAISO 

(including resources in LADWP or SMUD territories) 

In service and 

retirement dates 

All CAISO MasterFile for resources located in CAISO; TEPPC 2026 

Common Case dataset for resources outside of CAISO 

(including resources in LADWP or SMUD territories) 

Region location All CAISO MasterFile for resources located in CAISO; TEPPC 2026 

Common Case dataset for resources outside of CAISO 

(including resources in LADWP or SMUD territories) 

Minimum and 

maximum MW 

production level 

(Pmin and Pmax) 

All CAISO MasterFile for resources located in CAISO; TEPPC 2026 

Common Case dataset for resources outside of CAISO 

(including resources in LADWP or SMUD territories). Values 

can be month-specific. 

Fuel type (i.e., 

natural gas, 

biogas, nuclear, 

etc.) 

T, F, N, R CAISO MasterFile for resources located in CAISO; TEPPC 2026 

Common Case dataset for resources outside of CAISO 

(including resources in LADWP or SMUD territories). Price 

curves for natural gas are discussed in the thermal resources 

section, below. 

 

Each type of resource has some inputs that are unique to it. The following sections give more detail 

regarding specific resource types in SERVM and the data sources used to populate the database for 

modeling. 
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2.8.1.1 Disaggregating Aggregate Units Into Child Units 

Staff generated unit inputs from CAISO MasterFile data and the TEPPC 2026 Common Case as specified 

above.  Staff did some amount of disaggregation on the two data sources, however, when it was 

apparent that between databases a combination of units were listed as one aggregated unit.  Staff 

believed that in the case of peakers and combustion turbines, the model would produce more accurate 

results when aggregated units were modeled individually.  This presented the challenge of generating 

unit inputs for individual “child” units derived from one “parent” aggregate unit.  Table 13 summarizes 

how individual unit inputs were generated. 

Table 13: Generation of Inputs for Child Units from Aggregate Units 

Input Field Disaggregation Process 

Inservice date List same inservice date for each child unit as the aggregate unit – in 

effect all child units came online at same time and will retire at same 

time 

capmax Assume capmax of aggregate unit is total of all child units and divide 

capmax equally among child units unless there is a reason to do 

otherwise 

capmin Assume capmin is the capmin of one child unit and use that value for 

all child units, assuming each child unit has the same capmin 

Minimum on time and 

minimum down time 

Assume value is equal for all child units 

Fuel type Assume all child units consume same fuel as aggregate – use same 

value for all child units 

Ramp rate Assume ramp rate is total of all ramp rates of all child units, and divide 

equally among child units 

Start up time Assume start up time is the same for all child units, and use the value 

for the aggregate unit as the value for all child units 

Start up costs Assume value is equal for all child units 
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2.8.2 Thermal Resources – Types T, F, and N 

The following discussion covers several types of information that are specific to thermal resources and 

are not common across other types of generators. They include heat rate, ramp rate, and forced and 

planned outage information. Because Energy Division staff conducted its reliability modeling utilizing a 

blend of both aggregate heat rate and ramp rate data from the TEPPC Common Case (consistent with 

similar production cost modeling work done by the CAISO and SCE) and unit-specific heat rate and ramp 

rate values based on the CAISO MasterFile, there are some inputs that can be posted publicly and some 

that cannot.  

2.8.2.1 Heat Rates 

SERVM can model the heat rate of a given generator over its operating range in one of two ways. It can 

either:  

● Calculate an average heat rate curve based on a quadratic equation. To create this 

curve, staff takes data on the unit’s operation at different levels of MW output (known 

as “segments”), and fits a quadratic curve to these segments. This quadratic curve is 

defined by three coefficients, which are then input into SERVM.  

● Use a constant average heat rate (i.e. a single value across the generator’s entire 

operating range). 

There are tradeoffs between these two approaches. Although the first method is more precise, the 

segment data required to implement it is not always available. In addition, segment data is confidential 

and cannot be available to the public. The second is simple and transparent, and avoids the 

confidentiality concerns associated with using plant-specific heat rate segment information. However, 

this approach does not fully reflect the nuances of economic dispatch. Thus, it would be impossible to 

accurately project the actual dispatch of the facility in a real economic dispatch scenario (where the heat 

rate of an individual unit is essential for determining its position in the supply stack). As a result, the 

generator might be dispatched unrealistically throughout its operating range. 

Because of the crucial importance of accuracy in calculating heat rates, staff decided to use the first 

method as much as possible. Staff used CAISO segment data (for units in the CAISO) and TEPPC 2026 

segment data (for units outside the CAISO) to calculate quadratic average heat rate curves, where this 

data was available. Where this data was not available, staff assumed constant average heat rates. 

The table below summarizes average heat rates by dispatchable thermal resource type in the CAISO 

area.  The averages include units within the CAISO and certain units located outside CAISO that have the 

ability to be dynamically scheduled in the CAISO market.  Data for years 2022 and 2030 are shown 

because the thermal fleet that is online differs slightly between the two years.  These average heat rates 

are calculated from SERVM model results completed in July, 2018, as total fuel burn divided by total 

MWh generated by unit type for the selected study year. 
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Table 14: Average output heatrate by resource type in CAISO area 

Unit Type Average heat rate 
MMBtu/MWh 
(2022) 

Average heat rate 
MMBtu/MWh 
(2030) 

CCGT 7.54 7.57 

CT 10.98 10.71 

CHP (dispatchable) 9.13 9.21 

 

In the SERVM model, CHP heat rates were derived from the CAISO Masterfile which does not separate 

fuel for useful heat vs. electricity production.  This results in higher heat rates as some of the fuel goes 

towards useful heat.  Other models such as RESOLVE used a lower heat rate based on only the portion of 

fuel used for electricity production.  Energy Division staff will work with the CEC and CHP stakeholders to 

improve the heat rate assumption in SERVM for future modeling activities. 

2.8.2.2 Ramp Rates  

SERVM allows for the entry of a set of ramp rate segments for each facility, both in the upwards and 

downwards direction. Similar to its approach on heat rates, staff used the following “loading order” logic 

to assign each generating unit a ramp rate (or multiple ramp rates, where data on multiple segments 

across the plant’s operating range was available): 

● If the unit had segment data from the CAISO, use that data as-is, as it is the most precise. 

● If that dataset was not available for the unit, use ramp rates from the 2026 TEPPC Common 

Case. 

● If neither of the above datasets were available, use class average ramp rates from the 2022 

TEPPC Common Case (the class average ramp rates have not been updated since 2022). 

2.8.2.3 Minimum Up and Down Times  

The table below summarizes capacity-weighted average minimum up and down hours parameters by 

dispatchable thermal resource type in the CAISO area.  This does not include units located outside CAISO 

but with the ability to be dynamically scheduled in the CAISO market, as minimum up and downtime 

data is unavailable for these units.  Data for years 2022 and 2030 are shown because the thermal fleet 

that is online differs slightly between the two years.   
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Table 15: Average minimum up and down times by resource type in CAISO area 

Unit Type Average 
minimum up 
hours (2022) 

Average 
minimum 
down hours 
(2022) 

Average 
minimum up 
hours (2030) 

Average 
minimum 
down hours 
(2030) 

CCGT 7.2 4.8 7.2 4.8 

CT 1.8 1.6 1.8 1.6 

CHP (dispatchable) 1.9 1.8 1.9 1.8 

 

2.8.2.4 Generator Forced Outage and Planned Maintenance 

To model generators properly, some data regarding the chances of outages on those generators are 

needed. SERVM makes use of outage data by modeling generators with a distribution of time to fail, 

time to repair, and partial outage states. Table 16 lists the variables in SERVM that relate to forced or 

maintenance outages on generating units. The table does not list specific variable names in SERVM, but 

instead gives a less specialized narrative name. 
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Table 16: Inputs related to forced and planned outage hours and statistics for SERVM 

Variable description Comments Sources/Comments 

Availability Percentage factor (1- percent of time unit is 

unavailable) 

At this time, Energy 

Division staff will 

source all of these 

inputs from GADS 

data, using class 

averages.  

Time to fail User can specify a distribution of hourly values 

for how long a resource will run before it fails. 

SERVM draws a value from this distribution to 

draw outages on resources - user can specify 

either high values (making generators more 

reliable) or low values (making generators less 

reliable). 

Time to repair Given in hours, this variable is how long a 

resource is out when it is on outage. Users can 

specify a number of hours for planned and forced 

outages separately. 

Partial outage derate User can specify partial outage states 

Maintenance periods Unit specific variable users can use to specify 

more than one maintenance period for each year 

Start up probability Users can specify what the probability is for 

resources to fail upon startup 

 

Since 2010, generator owners operating in North America have been required to electronically submit 

outage data that describes each event that occurs at their generator to the North American Electric 

Reliability Council (NERC) in a standard format. Before that, the data submission was voluntary and non-

electronic. Generator Availability Data Systems or (GADS) data is commonly used for purposes of 

modeling generator outages in production cost models.  This data is available to CPUC staff via license 

from NERC.  GADS data is reported to NERC by individual generators.  Thus unit specific data is available, 

although unit specific data would be confidential.   For the RA and IRP modeling, Energy Division staff 
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has generated class averages for these variables, using the following categories to differentiate 

generators: 

● Steam Turbines in California 

● All Steam Turbines including those in California 

● Combustion turbines within California 

● All Combustion Turbines including those in California 

● Combined Cycle plants within California 

● All Combined Cycle plants including those in California 

● All cogeneration facilities including those in California (there were insufficient facilities to 

generate averages solely for California plants) 

CPUC staff use of GADS data is in contrast with the modeling that the CAISO completed in support of the 

CPUC’s Long Term Procurement Plan (LTPP) during 2012; for that modeling, the CAISO generated outage 

statistics based on its internal outage logging system. The CAISO uses data it gathers from generators via 

the Scheduling and Logging Interface for California (SLIC) database to generate class average summary 

statistics. The SLIC system however is due to be retired in December 2014, and the new Outage 

Management System (OMS) will replace it.59  While having the advantage of being public, class average 

values fail to meaningfully differentiate between generators that in reality perform quite differently. 

Considering the retirement of the San Onofre Nuclear Generating Station (SONGS) and other units that 

use OTC technology, there is a particularly significant need to accurately differentiate between 

individual generators (some of which are scheduled to come into compliance with OTC requirements) in 

order to measure how reliability will be affected by forthcoming retirements and retrofits. Moreover, as 

the generating fleet moves from fossil-based resources that largely operate in baseload orientation to 

fewer fossil generators seeking to balance an ever increasing ratio of energy generated by intermittent 

resources, differentiating between generators with regards to outage rates is important to gauge the 

reliability effects of this transition. This level of granularity is needed to accurately assess how much 

reliability and flexibility is served by those generators that retire (even differentiating between 

individual OTC generators) and how the new generators recently brought online and those in planning 

provide more, less, or equivalent reliability and flexibility. 

2.8.2.5 Startup Information 

SERVM requires that the user specify each generator’s startup time, startup cost, and startup fuel, for 

three types of starts: hot, warm, and cold. Staff used segment data from the CAISO Masterfile to 

calculate this startup information for generators in the CAISO. For generators outside of the CAISO, staff 

                                                           
59 The CAISO OMS project page is linked here:  

http://www.caiso.com/informed/Pages/StakeholderProcesses/OutageManagementSystemProject.aspx 

http://www.caiso.com/informed/Pages/StakeholderProcesses/OutageManagementSystemProject.aspx
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used the TEPPC 2026 Common Case dataset, although this data only had cost, and not startup time or 

fuel information. To fill in data gaps such as these, staff derived class averages from the CAISO data and 

used this to fill in the missing data for both inside and outside CAISO. 

The table below summarizes capacity-weighted average startup parameters by dispatchable thermal 

resource type in the CAISO area.  Data for years 2022 and 2030 are shown because the thermal fleet 

that is online differs slightly between the two years.  The start cost does not include the cost of burning 

fuel during the start.  Fuel burn from starts is separately calculated for each unit based on the unit’s 

startup profile obtained from the CAISO Masterfile. 

Table 17: Average hours per start by resource type in CAISO area 

Unit Type Average 
start cost $ 
(2022) 

Average 
hours per 
start (2022) 

Average 
start cost $ 
(2030) 

Average 
hours per 
start (2030) 

CCGT 
        11,191  

                                                           
2.48  

                                                       
11,162  

                                                      
2.47  

CT                                                          
3,178  

                                                           
0.96  

                                                         
3,174  

                                                      
0.96  

CHP (dispatchable)                                                          
421.0  

                                                           
1.02  

                                                         
421.1  

                                                      
1.02  

 

2.8.2.6 Attributes of “Perfect Capacity” used for ELCC studies 

Effective Load Carrying Capability (ELCC) studies require a relative comparison to a perfectly 

dispatchable unit.  SERVM models this construct with “perfect capacity.”  This subsection describes the 

attributes of “perfect capacity” as modeled in SERVM. 

ELCC is calculated by measuring the reliability of the system (staff chooses to use the LOLE metric to 

measure reliability), and achieving the desired LOLE.  Then, the target generator is removed, a substitute 

generator is added in, and LOLE is recalculated.  The LOLE results are calibrated such that the right 

amount of substitute capacity is added to achieve the same LOLE as the system with the target 

generator included.  The ratio of the substitute capacity MW to the target generator MW is referred to 

as the ELCC of the target generator (relative to the substitute capacity).  

It is important to specify exactly what the substitute capacity is in terms of performance, outage rate, 

and other characteristics.  One could choose an existing plant to compare against, or one could compare 

against “perfect capacity”.  A perfect generator is one with operational and performance characteristics 

that ensure optimal ability of that generator to contribute to reliability.  In essence, a “perfect” 

generator contributes reliability to the system equivalent to the size of the generator – there is no 

derate for performance. It is an impossible standard of course, since no generator operates perfectly, 

without any equipment failures or with no time to start up.  No generators are “perfect” and it is just a 

theoretical modeling convention, but comparison against “perfect capacity” allows all generators to be 

rated against each other.  Even new peaker plants will not have an ELCC of 100%.  
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Staff created generic “perfect capacity” peaker generators in the SERVM database such that they would 

be available for use in ELCC studies.  Table 18 lists the characteristics of the “perfect capacity.”  

Table 18: Resource Characteristics of Perfect Capacity 

Variable description Description Value of Variable 

Capmax Maximum generation level 200 or 100 MW 

CapMin Minimum capacity level (PMin) 1 MW 

Availability Percentage factor (1- percent of time unit is 

unavailable) 

1 (indicating perfect 

availability)  

Time to fail User can specify a distribution hourly values for 

how long a resource will run before it fails. 

SERVM draws a value from this distribution to 

draw outages on resources - user can specify 

either high values (making generators more 

reliable) or low values (making generators less 

reliable). 

90000 (never fail) 

Time to repair Given in hours, this variable is how long a 

resource is out when it is on outage. Users can 

specify a number of hours for planned and forced 

outages separately. 

0 (Repairs instantly) 

Startminutes How long in minutes for the plant to start up 2 minutes 

Maintenance periods Unit specific variable users can use to specify 

more than one maintenance period for each year 

None 

Start up probability Users can specify what the probability is for 

resources to fail upon startup 

1 (Never fails on 

startup) 
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2.8.2.7 Natural Gas Price Forecasts 

The natural gas price forecasts utilized by SERVM were developed by the CEC, consistent with the 2017 

Integrated Energy Policy Report (IEPR).60 CEC staff ran the NAMGas model to produce a forecast of 

burner tip prices composed of prices at the natural gas hub and transportation prices to delivery point. 

Staff deflated nominal prices to 2016 dollars using a series of deflators also produced by the CEC as part 

of the NAMGas model. NAMGas results were also provided to WECC for use in the WECC-wide Anchor 

Data Set. 

Energy Division staff used the CEC NAMGas data to create both annual fuel price projections for each 

hub, but also fuel handling inputs (the “csthnd” variable in SERVM).  Each individual generating unit was 

linked to a particular fuel price curve as well as given a fuel handling variable.  These values are in 

addition to other economic variables that SERVM uses to simulate economic operation of a particular 

unit.  In addition to fuel price and fuel handling charge, a unit would also have cost variables for startup 

cost and variable operations and maintenance (“strtup” and “cstvar” variables in SERVM respectively) as 

well as a profile of fuel used during startup. 

2.8.2.8 Carbon Price Forecasts 

The carbon allowance price forecasts utilized by SERVM were developed by the CEC, consistent with the 

2017 Integrated Energy Policy Report (IEPR).61  The carbon allowance price was used in SERVM as a 

carbon adder on fuel burn of in-state generation and thus affected dispatch decisions for in-state gas 

generation.  The carbon allowance price was also used in SERVM as a carbon adder on California import 

hurdle rates and thus affected the decision to import energy into California.  In 2030, the carbon 

allowance price is $27.37 per metric ton of CO2.  This equates to $11.71 per MWh as a California 

unspecified import hurdle rate adder, assuming the unspecified import emissions factor 0.428 metric 

tons per MWh (same as assumed in the RESOLVE model).  Costs are in 2016 dollars. 

2.8.2.9 Variable Operating and Maintenance Cost 

In addition to fuel costs, variable operating and maintenance (O&M) costs add to the cost to a particular 

generator of generating electricity.  Variable O&M costs are expressed in $/MWh and factor into 

dispatch order.  Facilities with higher variable O&M costs are less likely to be dispatched than those with 

lower costs, all else being equal. 

The actual variable O&M costs of each facility are both confidential and difficult to arrive at.  Analysis of 

each individual contract would determine the cost values for each particular facility, and this value is 

likely impossible to publish.  It is important to note that this value, though generally reflective of 

technical specifications of generating equipment, is also influenced by subjective contracting realities, 

such as labor costs.  Staff used the values in Table 19 below in all SERVM studies conducted in 2018.  In 

the future staff will collaborate with the CAISO to refine these values.  Possible values can be drawn 

from the CAISO Generator Resource Data Template for resource modeling, posted to the CAISO website.  

                                                           
60 The April 2018 version of the NAMGas model posted here: 

http://www.energy.ca.gov/assessments/ng_burner_tip.html 
61 http://docketpublic.energy.ca.gov/PublicDocuments/17-IEPR-

03/TN222145_20180116T123231_2017_IEPR_Revised_Carbon_Allowance_Price_Projections.xlsx 

http://www.cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPowerProcurementGeneration/DemandModeling/Fuel%20Price%20Curves%20IEPR%20April%202018%20corrected.xlsx
http://cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPowerProcurementGeneration/irp/2018/IEPR_dollar_deflator_series_2018-04.xlsx
http://cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPowerProcurementGeneration/irp/2018/IEPR_dollar_deflator_series_2018-04.xlsx
http://www.caiso.com/market/Pages/NetworkandResourceModeling/Default.aspx
http://www.energy.ca.gov/assessments/ng_burner_tip.html
http://docketpublic.energy.ca.gov/PublicDocuments/17-IEPR-03/TN222145_20180116T123231_2017_IEPR_Revised_Carbon_Allowance_Price_Projections.xlsx
http://docketpublic.energy.ca.gov/PublicDocuments/17-IEPR-03/TN222145_20180116T123231_2017_IEPR_Revised_Carbon_Allowance_Price_Projections.xlsx
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Table 19: Variable Operations and Maintenance Costs 

Type of resource Weighted average VOM 

for CAISO, $/MWh 

Battery Storage $0.31 

Biogas and Landfill Gas $3.28 

Biomass and Wood $2.86 

CC $2.65 

Coal $2.84 

Cogen $3.50 

CT $4.08 

DR $0.86 

Geothermal $2.78 

ICE $3.44 

Nuclear $1.00 

PSH $2.00 

Solar PV $0.00 

Steam $3.01 

Wind $1.96 

 

2.8.2.10 Specified Imports, Dynamically scheduled resources, and Direct Purchases 

The WECC interconnect is a very complicated region, with power flowing over numerous transmission 

interfaces.  Several large plants provide energy to multiple regions, and provide valuable reliability 

service across WECC.  Some regions are more dependent on direct purchases from outside the region 

than others, and it is very important to link regions with the generating plants that supply them with 

power.  For example, Southern California Edison relies on specified imported power from among other 

facilities, the Palo Verde Nuclear Station in Arizona and Hoover Dam in Nevada.  LSEs within the CAISO 

also directly purchase specified power from certain out-of-state renewable generators.  Certain out-of-

state dispatchable generators can also be dynamically-scheduled into the CAISO day-ahead market.  

Each of these cases must be modeled in SERVM. 
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Generally speaking, SERVM accounts for the production, exports, and emissions of a given generation 

unit in the area in which that unit serves load (which does not necessarily match the area where the 

generator is physically located, e.g. Hoover). There are two different ways that the user of SERVM can 

specify this load area: through the normal Region variable, and through the Remote Generator tab of 

the model.  The use of these two concepts is explained below. 

• All units in SERVM must have a Region. A Region roughly corresponds to a balancing authority.62 

Optionally, in addition to its Region, the user can declare a unit as a Remote Generator. If a unit 

is declared as a Remote Generator, it has a “Source Region” and one or more “Remote 

Regions.”  

• If a unit has only a Region declared, but is not declared a remote generator, the model treats the 

unit as having ALL of the following characteristics: 

o The unit is considered physically located in that Region (usually a balancing authority).63   

o The unit primarily serves the load of that Region (usually a balancing authority).  

o If at any point this unit exports to another region, its production counts as unspecified 

exports (which the model calls “Energy Sales”). This is because the unit is not dedicated 

to serving any particular region except its home region, and is exporting 

“opportunistically” because that is an economically better option than ramping down. 

• If a unit is declared as a Remote Generator, the following applies: 

o The unit is physically located in the “Source Region,” but primarily serves the load in the 

Remote Region(s). This information supersedes the unit’s “Region.” 

o The unit’s costs, generation, and carbon emissions, if any, accrue to the “Remote 

Region(s)” because it is serving that region’s load. 

o The unit’s production is counted as specified gross imports (to the Remote Region) or 

gross exports (from the Source Region), which the model calls Direct Purchases or Direct 

Sales, respectively. A later section explains these terms in more detail. 

o Remote generators in SERVM are modeled as “must run” and are NOT economically 

dispatched. 

A drawback with the Remote Generator designation is that the specified import generator is dispatched 

as a must run facility, without economic dispatch considerations.  Thus there is the possibility of 

unrealistic dispatch patterns.  For those external facilities that are specified imports into a region and 

are dispatched economically, i.e. dynamically scheduled in the CAISO day-ahead market, those facilities 

were listed as being within the regions they are imported into.  This preserved the economic dispatch 

function.   

                                                           
62 The CAISO balancing area is an exception to this rule. It is broken out into four regions: PGE_Bay, PGE_Valley, 

SCE, and SDGE. However, these are “co-regions” with zero transmission costs between co-regions but transmission 
constraints between them to reflect possible congestion.  
63 Even though in reality some units are not physically in that Region, e.g. Hoover and certain CAISO market 

dynamically-scheduled OOS dispatchable units.  Such OOS units are “modeled” as within the CAISO region so that 
the model can economically dispatch them in CAISO.  They cannot be modeled as “Remote Generator” because in 
SERVM such remote generators are restricted to being modeled as must-run only. 
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The table below summarizes how SERVM modeled different types of specified imports into the region 

where it serves load.  Note there was an input update between the IRP Reference System Plan with 

2017 IEPR studies and the IRP Hybrid Conforming Portfolio studies due to better information on whether 

a generator primarily serves load where it is located or exports to a remote region.  See Attachment B to 

the September 24, 2018 IRP ruling for a presentation of inputs and results for Reference System Plan 

with 2017 IEPR studies and see Attachment A to the January 11, 2019 IRP ruling for a presentation of 

inputs and results for Hybrid Conforming Portfolio studies. 

Table 20: How SERVM modeled different types of specified imports 

Unit 
Modeled 

as remote 
generator? 

Reference System Plan w/ 
2017 IEPR model: Capacity 
to load “Region” mapping 

in 2030 

Hybrid Conforming 
Portfolio model: Capacity 
to load “Region” mapping 

in 2030 

Palo Verde Yes 
SRP (3180 MW), 

LADWP (407 MW), 
SCE (623 MW) 

SRP (3180 MW), 
LADWP (407 MW), 

SCE (623 MW) 

Out-of-CAISO renewables 
that serve CAISO load, 

including RESOLVE selected 
resources 

Yes 
CAISO, (7553 MW) 
LADWP, (301 MW) 
SMUD (260 MW) 

CAISO, (2247 MW) 
SMUD (230 MW) 

Out-of-CAISO thermal 
resources that dynamically 
schedule into CAISO market 
(tagged “DYN”): Arlington, 
Griffith, Mesquite, Yuma 

No SCE (1799 MW) None 

Hoover No 
LADWP (393 MW), 

SCE (764 MW) 
LADWP (393 MW), 

SCE (764 MW) 

Intermountain CC Repower No 
SCE (322 MW), 

LADWP (878 MW) 
SCE (322 MW), 

LADWP (878 MW) 

 

Because Palo Verde and the out-of-CAISO renewables are must-run (first two rows of the table), they 

can be modeled as remote generators. However, certain out-of-CAISO dynamically-scheduled resources, 

for example Hoover and Intermountain, are economically dispatched by the CAISO in reality. Thus, these 

units are “moved into” CAISO and LADWP for modeling purposes, with no remote generator variables 

specified.   

To account for the remote generators’ usage of the transmission system, transmission path capacities 

from outside CAISO are decremented by the resources’ usage of that path. 

2.8.3 Energy Storage Resources - Type P 

While there are numerous different energy storage technologies, most can be described according to 

several key variables such as available energy, maximum output, maximum draw, and efficiency. This 

section describes these modeling inputs. However, because very little energy storage has been deployed 

http://www.cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPowerProcurementGeneration/DemandModeling/IRP_RSP_2017IEPR_SERVM_results_20180913.pdf
http://www.cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPowerProcurementGeneration/DemandModeling/IRP_RSP_2017IEPR_SERVM_results_20180913.pdf
http://www.cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPowerProcurementGeneration/irp/2018/Attachment%20A_Proposed%20Preferred%20System%20Portfolio%20for%20IRP%202018_final.pdf
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to date, the testing protocols and sources that would normally determine how storage operations 

should be modeled will need to be developed over time.  The table below shows the available inputs to 

model a storage device in the SERVM model.  Below, staff further identifies specific numerical 

assumptions for energy storage the SERVM model used to align with assumptions used in the IRP 

Reference System Plan. 

Table 21: Input parameters for storage in the SERVM model 

Input Units Source 

Maximum rated discharge MW CAISO MasterFile 

Total usable storage 

volume (given allowable 

depth of discharge) 

MWh Calculated based on testing: 

Maximum rated discharge * 

(discharge test duration) 

Maximum rated charge MW CAISO MasterFile 

Round trip efficiency % efficiency Calculated based on testing submitted 

to the CAISO: (discharge 

MW*duration) ÷ (charge 

MW*duration) 

Capable of supplying non-

spinning reserves 

Y/N Start time testing submitted to the 

CAISO demonstrating < 10 minute 

startup 

Facility in-service dates mm/dd/yyyy – 

mm/dd/yyyy 

CAISO MasterFile, unless utilities have 

more current information 

Scheduled maintenance 

and maintenance outage 

periods 

% of month/year, date 

range, and/or hours to 

repair 

Historical data from the CAISO, to be 

collected over time for new facilities 

Able to provide regulation Y/N Ability to provide regulation, from 

CAISO MF 
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2.8.3.1 Numerical Assumptions for Committed and New Energy Storage 

SERVM was used to model future study years and must therefore make assumptions about the future 

amounts and operational attributes of storage despite the lack of current operational history. 

CPUC Decision (D).13-10-040 established a 2020 procurement target64 of 1,325 MW of newly installed 

energy storage capacity within the CAISO planning area.  Of that amount, 700 MW needs to be 

transmission-connected, 425 MW needs to be distribution-connected, and 200 MW needs to be 

customer-side-connected.  D.13-10-040 allocated a portion of the 1,325 MW energy storage 

procurement target to each of the three major IOUs.65  Energy storage resources that are procured to 

satisfy a local capacity requirement are assumed to count towards satisfying the 1,325 MW energy 

storage target.  Since procurement directives specify this amount of energy storage, the storage can be 

described as “committed,” in order to distinguish it from candidate “new” storage selected in the IRP 

process. 

CPUC staff assumed that the full 1,325 MW is online by 2024 and has an average duration of 4 hours, 

meaning the full 1,325 MW counts towards RA obligations, is dispatchable, and can be used to provide 

ancillary services, regardless of interconnection domain (transmission-connected, distribution-

connected, BTM).  This was consistent with the assumptions used in the RESOLVE model and the IRP 

Reference System Plan.  Staff used the same round-trip efficiency assumptions as used in the RESOLVE 

model, 85% for lithium-ion battery storage and 81% for pumped hydro storage, in the absence of 

historical operational data. 

For new storage beyond the 1,325 MW target, SERVM used the assumptions specified by the RESOLVE 

model and the IRP Reference System Plan.  Refer to section 2.7.1 and the referenced workbooks for the 

amounts of new storage.  Refer to section 3.2.3 for guidance on locating new storage to transmission 

substations. 

Note that the CEC’s IEPR demand forecast includes a projection of peak demand reduction due to BTM 

energy storage impacts.  This projection does not overlap with the assumed energy storage 

procurement due to the 1,325 MW target. 

CPUC staff is aware that the IOUs have recently procured battery storage that in aggregate exceeds the 

1,325 MW target.  However, that amount is still far less than the candidate “new” battery storage 

selected in the IRP process.  Thus, it is reasonable to assume that the sum of 1,325 MW and the “new” 

battery storage selected in the IRP process is inclusive of the existing online and recently procured (but 

not yet online) battery storage. 

                                                           
64 The Decision specifies that resources must be online by 2024 so in the planning assumptions, target amounts are 
reached in 2024. 

65 The CPUC also established an additional procurement target of 1% of load for ESPs and CCAs.  Staff did not 
assume this amount of ESP or CCA storage procurement as part of the baseline in the RESOLVE model.  Instead, 
staff let the RESOLVE model optimize the amount of new storage to build and assumed that this amount of storage 
more than covers the 1% of load procurement target for ESPs and CCAs.     
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For modeling how storage contributes towards RA obligations, staff used the RESOLVE model 

convention: “To align with resource adequacy accounting protocols, RESOLVE assumes a resource with 

four hours of duration may count its full capacity towards the planning reserve margin. For resources 

with durations under four hours, the capacity contribution is derated in proportion to the duration 

relative to a four-hour storage device (e.g. a 2-hour energy storage resource receives half the capacity 

credit of a 4-hour resource). This logic is applied to all committed and candidate storage resources.”66 

2.8.4 Renewable Resources – Type R 

The major distinction in SERVM between Type R resources and other types (such as F, T, or N) is in how 

resources are dispatched. Type R facilities (whether renewable or not) are modeled with production that 

is dependent on weather, and not dependent on economic dispatch logic. Type R facilities (loosely here 

called renewable) include wind and solar photovoltaic (PV) facilities.  Other renewable resources, such 

as geothermal, biomass, and biogas generation facilities, are more accurately modeled economically via 

production cost dispatch; thus, the term “renewable” is really shorthand for weather-dependent 

intermittent must-take resources. Thus facilities that are going to be modeled with prices and startup 

costs, including solar thermal facilities, will be modeled as Type F or T units. 

This section details the inputs and assumptions utilized in modeling type R resources, including the 

methodology for creating weather-based wind and solar photovoltaic generation profiles. 

For work to support the IRP proceeding SERVM used the renewables portfolios specified by the 

RESOLVE-based IRP Reference System Plan with the 2017 IEPR.  Refer to section 2.7.1 and the 

referenced workbooks for the amounts of new renewables.  Refer to section 3.1.4 for guidance on 

locating new renewables to transmission substations. 

2.8.4.1 Wind and Solar Generation Profiles 

Wind and solar facilities have significant dependence on ambient weather conditions, which must be 

taken into account to correctly predict their output. Their output is a function not just of wind speed and 

solar irradiance, respectively, but also of other weather parameters such as cloud cover and 

temperature. Complicating this correlation is the fact that publicly available weather data is restricted to 

standardized locations (generally airports), and is not specific to the exact location (including 

altitude/height and orientation) of individual renewable energy facilities. 

Additionally, renewable energy projects employ a multitude of different technologies, each of which 

may have a different response to the same weather conditions. For example, tracking and non-tracking 

PV will generate different amounts of electricity under the same weather conditions. Panel orientation 

also contributes to significant differences between non-tracking facilities. Solar thermal technology has 

an even more divergent weather response, relative to solar photovoltaic technologies. 

To accurately reflect the variability in wind and solar production profiles, modeling of solar and wind 

facilities requires mapping of the power output of existing and new facilities utilizing various technology 

                                                           
66 See section 6.1.5 of Attachment B to the Proposed Reference System Plan Ruling, September 2017, RESOLVE 

Documentation: CPUC 2017 IRP Inputs and Assumptions, found here: http://cpuc.ca.gov/irp/proposedrsp/ 

http://cpuc.ca.gov/irp/proposedrsp/
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types to the 35 years of historical weather that are modeled in SERVM. This mapping results in hourly 

performance profiles for each year of weather data, representing the overall variability of wind and solar 

production related to weather. 

There are multiple possible approaches to developing such hourly performance profiles. One approach 

is to utilize generation profiles created by key stakeholders who are already conducting similar facility 

performance modeling. For example, developers need to forecast the generation profiles of their 

facilities in order to predict potential energy revenues and inform bids into RFOs or energy markets. 

Thus they could be helpful in developing similar production profiles for use in SERVM. Utilities also have 

an interest in predicting potential generation for resources that they are considering for contracting, 

operation, or management. Both developers and utilities may be able to create annual synthetic 

production profiles based on the same publicly available NOAA weather data utilized in SERVM synthetic 

load profile generation. Thus, there are several potential sources of wind and solar generation profiles 

that could be used. 

However, there could be drawbacks to utilizing manufacturer, developer, or utility-supplied data for 

reliability modeling. It might be difficult to match potential production to load profiles or weather 

profiles, as the manufacturer curves or utility information may predict performance based on other 

factors, or may be based on single-year weather projections that cannot be extrapolated to the entire 

35 years of weather history required for consistency with other weather-based SERVM inputs and 

algorithms. Data for performance of wind and solar facilities external to California may also be much 

more difficult to access, complicated by different utility service areas, regulatory jurisdictions, and 

information access guidelines. 

For 2018 modeling activities, staff pursued an approach of mapping standard, publicly available weather 

information to the power output of wind and solar facilities using either normalized profiles based on 

output from the NREL PVWatts67 calculator (for PV facilities) or off-the-shelf neural network modeling 

software (for wind facilities). Neural network modeling software can be used to determine relationships 

between weather/facility input variables and wind facility production, and produce a predictor file. With 

this predictor file, Energy Division staff, together with Astrape Consulting, constructed synthetic wind 

production profiles for existing and new facilities that correspond to the 35 years of weather history and 

associated synthetic load shapes utilized by SERVM. The large sample of weather years will enable 

SERVM to capture realistic variability in generation from wind and solar facilities. However, creating 

these wind and solar facility profiles required extensive performance, technology, and weather data. 

It is expected that the synthetic production profiles (and the predictor file, for wind facilities) will be 

reconstructed at least every two years to reflect the evolving relationships between weather and 

production (considering such issues as technology improvement and locational clustering of installed 

capacity). The section below describes: 

1. the sources for performance data, 

                                                           
67 http://pvwatts.nrel.gov/ 

http://pvwatts.nrel.gov/
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2. the weather data and regions modeled, 

3. the development of technology categories to group similar responses to weather inputs, 

4. neural network modeling or PVWatts-based calculation to be utilized to create weather 

response predictions for each technology category, and 

5. how these predictions are input into and used by the SERVM software. 

6. staff expects variability in production of wind and solar facilities to be one of the more 

important drivers of reliability risk in the future, as wind and solar resources continue to account 

for an increasing share of the California generation mix. Thus, while this area of data 

development has required significant effort, the current generation profiles and any future 

refinements will also pay off in greater modeling accuracy. 

2.8.4.2 Performance Data Sources and Assumptions 

Energy Division staff receives hourly settlement data (in hour-ending or “HE” format, representing 

average output over the hour) from all facilities represented by scheduling resource IDs on the CAISO 

Master Generating Capability Data List. These data have been supplied for facilities since 2008 for use in 

Qualifying Capacity calculations, and were used to validate the synthetic shapes that were developed. 

For the construction of synthetic wind profiles for facilities both inside and outside of the CAISO service 

territory, 2004-2006 hourly wind speed and generation profiles were taken from the NREL Western 

Wind Resources Dataset.68  The dataset includes over 30,000 potential wind sites nationwide, with 

generation profiles for each site assuming a 100-meter hub height and 100-meter rotor diameter. In 

modeling facility performance, wind facilities within each SERVM region were assumed to have the same 

geographic distribution as RPS-certified wind facilities in that region, as reported by the CEC.69 

Solar PV profiles were calculated based on several performance assumptions, as shown in Table 22, 

below. 

Table 22: Solar PV Facility Performance Inputs 

Performance Input Assumption 

Reference Efficiency 14.94% 

Nominal Operating Cell Temperature (NOCT) 45°C 

                                                           
68 http://wind.nrel.gov/Web_nrel/ 
69 http://www.energy.ca.gov/portfolio/documents/List_RPS_CERT.xls 

http://wind.nrel.gov/Web_nrel/
http://www.energy.ca.gov/portfolio/documents/List_RPS_CERT.xls
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Temperature Coefficient 0.0045 

Short Circuit Coefficient 0.000545 

Solar Radiation Coefficient 0.12 

Reference Temperature 25°C 

Inverter Efficiency 97% 

 

2.8.4.3 Technology and Locational Granularity 

All solar PV weather data are sourced from the NREL National Solar Radiation Database (NSRDB).70  Solar 

data is a combination of three data streams, the 1980-1991 information for 237 sites in the United 

States, the 1991-1997 information from 1,454 sites in the United States, and the 1998 to 2014 

information from rom 1980-1990 come from 58 unique sites, while 1991-2010 data come from 225 

unique sites. These are referred to as the TMY2 and TMY3 datasets.  These data are comprised of the 

following inputs: 

● Local solar time (calculated based on latitude, longitude, day of year, and other variables) 

● Direct radiation 

● Diffuse radiation 

● Air temperature 

● Wind speed 

Because NSRDB data extends only to 2010, previous years’ weather is used to determine the 2011 and 

2012 generation profiles. The modeled solar profile for 2011 is identical to the pattern seen in 2008 and 

the modeled solar profile for 2012 is identical to the pattern seen in 2009 for all regions. A more 

rigorous approach to developing solar profiles for 2011 and 2012 may be used in the future. 

Wind weather inputs are sourced from 33 years of NOAA data. Specific weather inputs are: hour of day, 

wind speed, temperature, dew point, and cloud cover. 

Because weather data are available at limited locations, and because modeling time increases 

dramatically as granularity increases, one weather profile was compiled per wind or solar technology for 

each modeling region, for each historical weather year being modeled. To create each region’s weather 

                                                           
70 http://rredc.nrel.gov/solar/old_data/nsrdb/ 

http://rredc.nrel.gov/solar/old_data/nsrdb/
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profile, staff calculates a weighted average hourly weather profile based on one to three weather 

stations that are selected as indicative of a given renewable technology’s generation capacity in the 

region. In other words, if capacity of a particular technology type is primarily located in the northern 

part of a region, the weather modeled for that region in SERVM will be more heavily weighted towards 

the northern weather station(s) selected for that region. The location of each facility is sourced from it’s 

the CEC RPS Certification Report.71  Alternative approaches to weather station weightings may be 

considered if SERVM is utilized for longer-term modeling in the future; sensitivity to weather station 

selection will also be tested. 

An important exception to the above methodology is the treatment of wind in the SCE TAC Area 

modeling region. Because most wind resources are in either the San Gorgonio or the Tehachapi areas, 

and because these areas have very distinct weather, wind in the SCE TAC Area is modeled with two 

separate weather profiles, one for each of these two sub-regions. Individual wind facilities in the SCE 

region are also separated into San Gorgonio and Tehachapi sub-regions, with facilities located in the Big 

Creek/Ventura Local Area assumed to be in Tehachapi and all others assumed to be in San Gorgonio. 

Wind and solar resources outside of the United States are treated differently, due to data limitations. 

Neural network modeling and PVWatts calculations are not being conducted for Canadian and Mexican 

wind and solar resources. Rather, the results from similar US regions – the Pacific Northwest and the 

average of IID and New Mexico, respectively – are applied to the Canadian and Mexican weather shapes 

in order to develop weather-based wind and solar production profiles for these regions.  In addition, 

Wyoming wind was ascribed weather from Colorado, as there were no production profiles developed 

for Wyoming. 

In developing wind technology and weather response relationships in the neural network software, the 

representative regional weather was input. In the future, the model performance will be tested using 

more local weather for individual facility locations, where available; however, neural networks generally 

yield better predictive capability when developed with a more limited set of parameters. Too many 

variables involved in the creation of the predictor file can create muddied correlations that lead to bad 

predictions of weather and generation relationships.  

2.8.4.4 Technology Categories 

Solar resources are differentiated by fixed or tracking categories, inverter loading ratio, and utility-scale 

vs. BTM.  All wind facilities are considered equivalent technologies.  Solar facilities are assigned to one of 

three categories: utility-scale fixed tilt PV, utility-scale tracking (single axis) PV, or BTM PV.  The inverter 

loading ration is assumed to be 1.3 for utility-scale solar and 1.1 for BTM PV.  This is consistent with 

assumptions used in the RESOLVE model and the IRP Reference System Plan.  Although better modeling 

methods will be developed for solar thermal facilities in the next phase of the modeling project, for the 

time being they are included in the category of tracking solar facilities.  Additional possible categories 

that could be explored in the future include PV with storage, wind with storage, or south facing versus 

west facing PV. 

                                                           
71 http://www.energy.ca.gov/portfolio/documents/List_RPS_CERT.xls 

http://www.energy.ca.gov/portfolio/documents/List_RPS_CERT.xls
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Each technology category and region (or sub-region, in the case of wind in the SCE region) is evaluated 

separately to develop weather response predictions within that region, and across that category type. 

SERVM models each facility’s generation based on both its technology category (indicative of response 

to weather) and weather region (the relevant weather input). 

However, data are limited. The CAISO Generating Capability Data List places units in Local Areas, which 

are translatable to regions in the SERVM database, while for facilities outside of the CAISO area, the  

WECC TEPPC database provides the primary reference for location, generation type (solar, wind, 

tracking, fixed, etc.), and date of commercial operation.72 

Regardless, direct category assignment (rather than imputing technology category based on vintage) will 

be possible for facilities in California either from the monthly RPS Project Development Status Reports 

(PDSRs) or via data gathered from the CEC Wind Performance Reporting System.  Information for 

facilities outside of California will continue to be derived from TEPPC 2026 Common Case information.  

Existing and contracted utility-scale solar facilities were assigned to either fixed or tracking PV 

generation profiles. For facilities with CAISO settlement data, this was  determined by analyzing late-

afternoon generation on a sunny day and assessing whether generation levels (normalized for facility 

capacity) were indicative of fixed PV (lower generation in the late afternoon) or tracking PV (higher 

generation in the late afternoon). To ensure accuracy, facilities with known technology types (as 

submitted by the CPUC-jurisdictional IOUs) were analyzed to develop an appropriate cut-off point in 

assigning those facilities with unknown technology to one of the two possible categories. For facilities 

outside of the CAISO service territory, the TEPPC 2026 common case specified which of the two 

categories is more appropriate for modeling individual PV facilities. 

For new solar units selected as part of the IRP Reference System Plan, staff will use the same assumption 

as used in the RESOLVE model, 25% fixed tilt and 75% single axis tracking. 

2.8.4.5 PV Production Profile Development 

Energy Division calculated hourly generating profiles for each of the 24 regions in the model, for three 

generation categories – utility-scale fixed tilt, utility-scale single axis tracking, and BTM PV types. These 

profiles were generated from weather data spanning 1980 through 2014.  PV production profiles were 

developed by inputting the weather and facility data discussed above into the NREL PVWatts73 

calculator. The calculator output a facility-specific hourly generation factor ranging from 0 to 1, which 

are then multiplied by the total facility’s capacity (sized in MW) in each study year. Different sites were 

available for 1980 - 1990 and 1991 - 2014, so some calibration of the datasets was required to ensure 

continuity. To ensure consistency, the range in output duration curves of the 1980 - 1990 was shaped to 

match the range in duration curves seen in 1991 - 2014 data. This entailed calibrating the number of 

hours at max output, moderate output, low output and every point in between.  

                                                           
72 More information on TEPPC, see https://www.wecc.biz/committees/BOD/TEPPC/Pages/TEPPC_Home.aspx 
73 http://pvwatts.nrel.gov/ and  http://www.nrel.gov/docs/fy14osti/60272.pdf 

https://www.wecc.biz/committees/BOD/TEPPC/Pages/TEPPC_Home.aspx
http://pvwatts.nrel.gov/
http://www.nrel.gov/docs/fy14osti/60272.pdf
http://www.nrel.gov/docs/fy14osti/60272.pdf
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The result of the above exercise is 35 years of regional generation profiles for the three solar PV 

technology types. With 24 regions modeled in SERVM, this yields 2520 hourly generation profiles for 

solar PV facilities. 

2.8.4.6 Wind Production Profile Development 

2.8.4.6.1 Neural Network Modeling 

Staff has updated the wind generation profiles since previous studies were performed in 2015.  Data is 

now available through 2014, and Energy Division used the recent data to revise all profiles generated 

from 1980 now through 2014.  Generation depends on many aspects of weather. The fact that SERVM 

weather region inputs are not specific to the precise resource location further obscures the relationship 

between weather and generation output. To create a reasonably accurate prediction of generation 

output in response to weather, a neural network can be used to map weather to output and create a 

relationship file that can be used for new facilities and weather years. This process is similar to the use 

of a neural network to create synthetic load shapes, which are used elsewhere in the SERVM model. 

First, the regional weather data are placed into a spreadsheet for a given technology category.74  One 

variable is chosen as the primary predictor of generation output, and is placed in the left-hand column. 

In the case of wind technologies this is the region’s wind speed (from NOAA). The other key weather 

inputs (from NOAA, as discussed previously) are included as additional columns. These data are paired 

with actual facility and potential generation data from facilities of the given technology type, sourced 

from the Western Wind Resources Dataset, as previously discussed. The hourly generation data from 

the Western Wind Resources Dataset (WWRD) were first scaled by a ratio of each facility’s nameplate 

capacity in MW to the facilities modeled in the WWRD, and then summed to create a single aggregate 

generation profile for a given region and year. It was this aggregate profile that was utilized in neural 

network modeling. 

This neural network model trained itself to see the underlying relationships between the hourly 

generation data and the other columns of input data (much like a dynamic iterative regression model). It 

developed predictive relationships between the columns of data (the variables mentioned previously 

such as temperature and humidity), and produced an algorithm that was able to predict relationships 

between regional wind speed, secondary weather variables, and generation facility output.75  Once that 

was completed, the algorithm predictor model could then produce a generation forecast from any set of 

NOAA weather data, for any facility that falls under the given technology category (including new 

facilities). 

However, because of significant volatility and randomness in wind data, neural network models tend to 

predict average values more frequently than they actually occur. For this reason, there was some 

adjustment to the distribution of wind predictions after the initial neural network modeling. Staff 

                                                           
74 As previously mentioned, wind resources in the SCE TAC Area region are modeled separately, by San 

Gorgonio/Tehachapi sub-region. 
75 The algorithm was trained until the distribution of peaks and valleys was adequate.  Further calibration was 

performed in a later step. 
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performed validation on the resulting performance shapes to ensure accuracy, by comparing the 

resulting shapes for the CAISO regions to actual historical generation patterns and normalizing to ensure 

that the predictor files output similar generation magnitudes and duration curves, compared to 

historical generation. Staff also checked that the capacity factors output by the predictor files were 

reasonable. Once the predictor files and additional processing were finalized, regional production 

profiles were created for all wind facilities in each weather year, using hourly NOAA weather data from 

1980 to 2014. 

After the wind profiles were created and validated to history, they were sent to Energy Division for input 

into the model.  Unlike previous work performed by Energy Division, at this time no distinction was 

made based on hub height.  All wind facilities were given one production profile only distinguished by 

location.  

2.8.4.6.2 Category Normalization 

In order to compare across wind facilities of varying sizes, output was normalized relative to sum of all 

the capacity in a particular category currently installed in the region prior to neural net “training”. 

Additionally, because the neural network develops aggregate production profiles for a given technology 

category in a given region, differences in installed capacity over the training years must also be 

accounted for and normalized. One option is to assume that the smaller capacity installed in earlier 

years is representative on average of the larger total capacity in future years regardless of facility 

location or technology installed. However, this may be imprecise due to differences in the generation 

profile shape and volatility as more capacity is installed in new locations. To mitigate this problem, new 

facilities are instead assigned an hourly production profile from one representative existing facility 

determined to be “similar” in location and technology, and scaled to the MW size of the facility being 

modeled. 

2.8.5 Demand Response – Type C 

Demand response (DR) is modeled as a type “C” for “curtailable load” in SERVM.  For work to support 

the IRP proceeding, SERVM used the total DR amounts specified by the IRP Reference System Plan and 

the RESOLVE model.  RESOLVE’s baseline shed DR capacity in 2030 is 1,617 MW (1,752 MW at the 

system-level after accounting for losses).  The IRP Reference System Plan did not include any shed DR 

beyond this baseline amount.   

The following subsection provides a narrative description of how shed DR was modeled in SERVM.   

Section 3.2.4 discusses DR modeling that is specific to network reliability studies, including the methods 

to allocate load impacts to transmission substations for the purposes of power-flow type studies. 

2.8.5.1 Demand Response Parameters in SERVM 

Key inputs available in the SERVM model are listed in Table 23, below. 
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Table 23: Demand Response parameters available in SERVM 

Input (as applicable to the program)76 Units Source 

Maximum capacity MW LIR portfolio-adjusted load 

impacts, 1 in 2 weather 

Maximum dispatch days per week days Program tariff 

Maximum consecutive dispatch days days Program tariff 

Maximum dispatch hours per day hours Program tariff 

Minimum minutes per dispatch minutes Program tariff 

Maximum number of dispatches per day dispatches Program tariff 

Maximum dispatch hours per month hours Program tariff 

Maximum number of dispatches per month dispatches Program tariff 

Maximum dispatch hours per year hours Program tariff 

Maximum number of dispatches per year dispatches Program tariff 

Minimum number of dispatches per year dispatches Program tariff 

Look-Ahead hours Not implemented 

                                                           
76 Different DR programs have different design constraints; as a result, different inputs will apply to different 

programs. If a program lacks a certain constraint (for example, no maximum number of dispatches per week), then 
the associated input will not be included in the specification of that program in SERVM. 
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Notification period Hours/minutes Either DA (10am), HA, 

First month available each year month Program tariff 

Last month available each year month Program tariff 

Period Availability (i.e., weekdays from 2-6 

pm) 

days and hours Program tariff 

Curtail (Dispatch) price $/MWh CAISO Plexos assumptions 

or program tariff77 

Emergency-only dispatch Yes/No Program tariff 

Region78 Region name Program tariff 

Program in-service dates mm/dd/yyyy – 

mm/dd/yyyy 

Program tariff 

Ramp Rate MW/min Program tariff 

Program performance degradation (customer 

fatigue) 

Percent degradation 

factor per day 

Not implemented 

 

2.8.5.1.1 Resource Capacity 

Currently, the maximum capacity for a given DR resource is set to its Load Impact Report79 (LIR) 

portfolio-adjusted monthly system peak values for 1-in-2 weather conditions. However, under more 

extreme weather conditions, performance for weather-dependent resources may exceed the 1-in-2 

                                                           
77 Most DR programs do not have a set price trigger. The assumptions adopted by the CAISO for its Plexos 

modeling are an approximation of a price trigger that corresponds to the actual dispatch criteria. 
78 These regions are used throughout the SERVM model, and are described further in the Weather Data and 

Regions section of this document. 
79 The Load Impact Protocols followed in developing Load Impact Reports were specified by Decision 08-04-050, 

and modified by Decision 10-04-006.  Load Impact Reports are filed by each IOU for the programs they run, 
annually in April. 
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value, potentially reaching the LIR 1-in-10 capacity values. Apart from weather impacts, a DR resource 

may underperform or overperform relative to expectations due to variation in customer load and 

response. 

To address the possibility of DR resources performing beyond the 1-in-2 value, staff plans to ultimately 

incorporate 1-in-10 values into the model as well. This can be accomplished by creating a “technology 

response curve” that maps regional temperature to changes in DR capacity. For 90th percentile 

temperatures (the conditions under which the 1-in-10 LIR is calculated) and above, the LIR portfolio-

adjusted monthly system peak values for 1-in-10 weather conditions can be used. For 50th percentile 

temperatures (the conditions under which the 1-in-2 LIR is calculated) and below, the 1-in-2 LIR capacity 

values can be used. Linear interpolation can be used to approximate DR response between these two 

temperature bounds. 

To address the possibility of over- or underperformance relative to expectations, three years of program 

history could be used to create a likely distribution of responses. The difference relative to expectation 

for a given dispatch can be defined as the percentage difference between the ex-post load impact found 

in the LIR and the daily forecast capacity predicted day-ahead. Each historical dispatch can be weighted 

according to the magnitude of the daily forecast capacity, so that larger dispatches are more heavily 

weighted. When a DR program is dispatched by SERVM, its response magnitude would then be adjusted 

upwards or downwards by selecting one of the historical performance data points. The performance 

point selected would be random, but weighted as previously discussed. While the necessary data for 

such adjustments have not yet been input into the model, the modeling functionality is in place, and 

staff plans to incorporate this performance uncertainty in the future. This could be accomplished with a 

variable that allows for randomly drawn output. For instance, if a DR resource has three performance 

levels of 90%, 100%, and 110%, and each is entered into the database, then one third of the time when 

it is dispatched it will operate at 90% of maximum, one third at 100% of maximum, and one third at 

110% of maximum capacity. 

2.8.5.1.2 Dispatch Notice and Response Time 

DR programs have different dispatch notice requirements (day-ahead, 30-minute-ahead, etc.), which are 

described in their tariffs. Once dispatched, they also have varying response times. These requirements, 

whether a time-of-day cut-off or a minimum advance notice period, could be incorporated into the 

model in the future.   

2.8.5.1.3 Triggers 

Most existing DR programs do not have a set price trigger. The model used approximate price triggers 

that generally correspond to actual dispatch criteria. A number of DR programs are triggered via heat 

rate or emergency stage triggers, which are difficult to translate to price points.  Energy Division staff 

continues to explore alternative approaches to fit the current portfolio of DR programs into the 

economic dispatch model in SERVM. 
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2.8.5.1.4 Customer Fatigue 

The SERVM simulations did not currently consider the impacts of customer fatigue on long-duration or 

consecutive dispatches. With appropriate data, such impacts could be incorporated in the future. 

2.8.5.1.5 Look-Ahead 

For DR programs with dispatch limitations, demand response providers may occasionally refrain from 

dispatching if they believe that the resource could be better dispatched at a later time. For example, if a 

week is expected to have steadily increasing temperatures, a DR resource may not be dispatched earlier 

in the week, even if the price trigger has been reached, in order to preserve the possibility of operating 

later in the week. This “look-ahead” dispatch decision is not incorporated into the SERVM model, but 

could be in the future. 

2.8.6 Hydropower Resources – Type H 

All hydropower (hydro) resources that are not pumped storage80 were modeled as Type H units. SERVM 

classified these hydropower resources according to three subtypes: run of river (ROR), scheduled, and 

emergency hydro. Each of these resources can have capacity and energy levels that vary by month and 

year, in order to reflect the seasonal variability of this resource type. 

Run of river hydro represents the minimum output that is expected to occur regardless of electricity 

system needs or economic dispatch. Scheduled hydro represents the portion of the hydropower fleet 

that can be economically dispatched, in light of monthly resource availability. Emergency hydro 

represents the capacity and energy that can be “borrowed” from scheduled hydro to address occasional, 

short-term electricity system emergencies.  Table 24 lists sources for particular data inputs. 

Table 24: Data Sources for Hydropower Inputs 

Data Source 

Facility generation per month 

(MWh/month), 1980-2012 

Form EIA-923: Power Plant Operations Report81 

Facility locations (model region) TEPPC 2026 Common Case, Form EIA-923, CEC Energy 

Almanac,82 and miscellaneous other sources such as the US 

Bureau of Reclamation83 

                                                           
80 Pumped storage is modeled as Type P, as discussed in the energy storage section of this document, above. 
81 These data are available for download at http://www.eia.gov/electricity/data/eia923/. 
82 Data can be downloaded from http://energyalmanac.ca.gov/renewables/hydro/hydro.xls and 

http://energyalmanac.ca.gov/powerplants/Statewide_PP_8.5X11_hydro.pdf. 
83 Searchable database at: http://www.usbr.gov/projects/. 

http://www.eia.gov/electricity/data/eia923/
http://www.eia.gov/electricity/data/eia923/
http://energyalmanac.ca.gov/renewables/hydro/hydro.xls
http://energyalmanac.ca.gov/renewables/hydro/hydro.xls
http://energyalmanac.ca.gov/powerplants/Statewide_PP_8.5X11_hydro.pdf
http://energyalmanac.ca.gov/powerplants/Statewide_PP_8.5X11_hydro.pdf
http://energyalmanac.ca.gov/powerplants/Statewide_PP_8.5X11_hydro.pdf
http://www.usbr.gov/projects/
http://www.usbr.gov/projects/


 

- 68 - 

Regional maximum capacity (MW) TEPPC 2026 Common Case 

Monthly hydro dispatch Form EIA-923 

Hourly hydro flows within California Historical monitoring data aggregated to mask confidential 

information 

 

Hydro resources were modeled in aggregate, by subtype and modeling region.  For example, all ROR 

hydro facilities in SCE service territory were modeled as one “unit” in SERVM. Before these “units” were 

input into the model, the aggregated energy and capacity for each region was calculated and then 

allocated across the three subtypes. An intuitive visualization of the resulting allocation can be seen in 

the randomized sample hydro generation shape below. The methodology used will be described in more 

detail in the following sections. 
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Figure 5: Sample hydro generation shape and sub-type allocation (based on randomized historical 
data) 

 

For facilities in Canada and Mexico, hydropower generation shapes were based on the closest 

neighboring US region (the Pacific Northwest and Arizona, respectively), and simply scaled to the 

region’s maximum capacity. 

2.8.6.1 Regional Aggregation of Energy 

Monthly hydro generation (MWh/month) for all existing hydro resources in WECC is listed in Form EIA-

923 for the years 1980-2012. This actual historic generation by month is used to determine the energy 

available from ROR, scheduled, and emergency-only hydro profiles generated for each region. However, 

because it is reported to EIA on a facility-specific basis, each facility must first be assigned to its region in 

SERVM based on the particular facility’s location in the TEPPC Common case. The generation from all 

facilities within a given region is then summed to yield the total energy generated in that region, in each 

historical month and year. 
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2.8.6.2 Run of River (ROR) Hydro Resources 

The energy generation and capacity for ROR resources within a region are unique to each month, but 

uniform across all weather years. This is because the ROR unit represents a minimum output that is 

always present, regardless of weather variability and dispatch choices, and because there have been 

very few new hydro facilities developed in WECC over the last 33 years. The available energy is set to be 

the fifth percentile of MWh generated by all hydro resources for a given month and region. In other 

words, the value is set such that in 19 out of 20 years, hydro facilities in that region in that month 

produce more than that number of MWh. 

The capacity of ROR units is calculated as the available energy value in MWh divided by the total 

number of hours in that month. ROR units are assumed to operate at this calculated capacity for all 

hours of the month, meaning there is no hourly or daily variation in output within a given month. In 

other words, ROR production is flat across all hours of a given month, across all years modeled. 

2.8.6.3 Scheduled Hydro Resources 

Once ROR energy and capacity have been subtracted from the total energy and capacity available to a 

region, the remainder must be allocated across the two dispatchable hydro subtypes: scheduled and 

emergency hydro. 

The energy allocated to the scheduled block is equal to the total regional monthly generation less the 

ROR generation. A portion of the scheduled energy is allocated to a minimum daily schedule.  This 

minimum schedule or generation (flow) per day is a variable that is unique to each month and year. This 

value is set to the tenth percentile of daily MWh generation in that month and year, and is sourced from 

CEC historical generation data. Regions outside of California for which data is lacking are modeled data 

generated for the most similar region for which we have sufficient data. In some months, the minimum 

generation per day may be very close to zero; if selecting the tenth percentile results in more generation 

being dispatched than is available, SERVM will flag the issue and the value will be reduced. The 

minimum daily schedule for each scheduled hydro profile is spread across a specified number of hours 

each day in equal amounts. 

The remainder of the energy in the scheduled block is used to shave the peaks off net loads; in other 

words, higher output is scheduled in hours with higher net load. The capacity used to shave the peaks is 

related to the monthly generation.  Available hydro capacity is allocated between emergency, 

scheduled, and run or river hydro based on higher or lower levels of hydro available generation and 

typical historical usage in each month.  Scheduled, run of river and emergency hydro capacity always 

sums to total month specific capmax of the hydro fleet. 

All scheduled hydro is dispatched one week in advance. The minimum generation quantity is scheduled 

to be centered on the anticipated peak load hour of each day. The number of hours over which that 

minimum generation is spread is set with a monthly variable. This variable is determined by observing 

CAISO settlement data and estimating the typical number of hours over which hydro facilities are 

scheduled in a given region and time of year. Non-CAISO regions use values based on the nearest CAISO 
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region. Scheduled hydro above the minimum is economically dispatched, up to the maximum capacity 

calculated for that month. 

2.8.6.4 Emergency Hydro Resources 

Because emergency hydro resources are not intended for regular dispatch, they are triggered only by 

high market prices (currently set to $2,500) or load-shedding contingencies. These units allow a region’s 

fleet to reach full nameplate capacity for approximately twenty hours. When emergency hydro is 

dispatched, the energy must be replaced by lowering scheduled hydro in some future hour. In this way 

the total energy for the month never violates the input energy. If no energy is available to borrow from 

future schedules, the emergency hydro capacity is unavailable.  The sum of total capacity of emergency, 

scheduled, and run of river hydro is equal to the total capacity of the hydro fleet in each area.  

The full nameplate capacity is sourced from the TEPPC 2026 Common Case. The available energy comes 

from the scheduled hydro unit in the region, to which the emergency unit is linked. The emergency unit 

is given the ability to borrow a MWh amount equivalent to a specified number of hours of full operation 

from the scheduled hydro unit.    

2.9 Transmission Inputs 
SERVM uses a transportation representation of the transmission system instead of an AC or DC 

representation. For a given region and a given connected region, the capacity limits in and out of the 

region (with respect to the connected region) are specified. These limits can vary by study year, by 

month, and by percent of peak load.  Energy Division staff sourced transmission limit values from 

Maximum Available Import Capability in the Import Allocation Process.  The Maximum Available Import 

Capability levels are updated annually and available at the CAISO website.84  For areas not represented 

in the CAISO Import Allocation process, TEPPC Common Case 2026 v2.0 information was used.  The 

transfer limits by region and hurdle rates between regions that were modeled in SERVM are posted to 

the Data section of CPUC Energy Division’s Energy Resource Modeling landing page.85   

2.10 System Inputs 

2.10.1 System Periods 

SERVM allows for resources to be available in specific periods of the day or week but not others.  DR 

programs are given specific system periods when they are available.  The system periods are defined 

according to the days of the week and hours of each day that are assigned to each period. Interested 

parties are invited to comment on these periods and suggest additional or alternative periods. 

Table 25: System Periods 

System Period Day Hours (Hour Ending, or HE) 

                                                           
84 http://www.caiso.com/Pages/documentsbygroup.aspx?GroupID=3025C28C-1B60-4262-BEF9-66CF403FF107 
85 http://www.cpuc.ca.gov/energy_modeling/ 

http://www.cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPowerProcurementGeneration/DemandModeling/Servm_Tx_MW_and_Hurdles_20181113.xlsx
http://www.caiso.com/Pages/documentsbygroup.aspx?GroupID=3025C28C-1B60-4262-BEF9-66CF403FF107
http://www.cpuc.ca.gov/energy_modeling/
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OffPeak Friday 23-24 

Saturday-Sunday 1-24 

Monday 1-6 

Weekday Monday-Friday 7-22 

WeekdayOffPeak Monday-Thursday 23-24 

Tuesday-Friday 1-6 

 

2.10.2 Operating Reserves, Ancillary Services, and Frequency Response 

Operating reserves and ancillary service requirements and targets are input as a percentage of hourly 

forecast load, and are assumed to be consistent across all regions, months of the year, and hours of the 

day. Interested parties are invited to suggest alternative or more differentiated reserve requirements, 

along with documentation. Current staff assumptions are shown in Table 26, below. 

Table 26: Operating Reserves and Ancillary Service Requirements and Targets 

Operating Reserve Type Requirement or Target Value (Percent of Load) 

Regulation Up Requirement 1.5% 

Regulation Down Requirement 1.5% 

Spinning Reserves Requirement 3.0% 

Non-Spinning Reserves Target 3.0% 

Load Following Up Target 2.5% 

Load Following Down Target 1.5% 
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2.10.2.1 Frequency Response Requirements 

A frequency response constraint refers to a model constraint to have committed headroom from certain 

types of generation within the CAISO balancing area at all times to ensure the CAISO can meet its 

obligations under the NERC BAL-003-1 standard.  The RESOLVE model used for the IRP proceeding 

assumed a total constraint of 770 MW, that is, 770 MW of certain resources types (those operated 

through governor response) must have committed headroom at all times.  Staff implemented the 

frequency response constraint in SERVM as follows: 

• 50% of the headroom requirement (385 MW) is assumed to be met by hydro resources 

(excluding pumped hydro storage) and is not explicitly modeled.  This is based on CAISO’s 

operational experience that hydro can respond to under-frequency at any time without 

imposing explicit constraints on hydro operations. 

• 50% of the headroom requirement (the remaining 385 MW) is assumed to be met by storage 

(excluding pumped hydro storage) and/or online combined cycle resources. 

o Storage units can satisfy the headroom requirement on a MW-for-MW basis, up to 

available storage headroom. 

o Combined cycle units can provide 0.08 MW toward the headroom requirement for each 

MW of online capacity, up to available combined cycle unit head room. 

• The headroom requirement applies for all 8760 hours of the typical one-year production cost 

simulation model. 

Staff will collaborate with CAISO staff to update this constraint as needed to be consistent with CAISO’s 

projected frequency response obligations.  Staff also intends to seek stakeholder feedback via the IRP’s 

Modeling Advisory Group process on appropriate ways to project and model the ability of other 

resource types to provide frequency response. 

2.10.2.2 Operating Reserve Demand Curves (Scarcity Pricing) 

Regulation up, regulation down, spin, and non-spin scarcity prices are input into SERVM, specified 

according to the applicable remaining hourly reserve margin percentage. While values can vary by 

region, month, and hour, staff is not currently utilizing this feature. Data for reserve demand curves are 

in development. 

2.11 Other Production Cost Models 
Other entities may wish to use other production cost models to conduct studies for comparison to CPUC 

studies or other related analyses.  In this section, staff documents known major differences between 

SERVM and the PLEXOS model used by the CAISO and the CEC. 

The PLEXOS model as generally used by the CAISO and the CEC is used as a deterministic model, that is 

the model simulates commitment and dispatch of a single study year at a time, with a deterministic set 

of inputs.  This is in contrast to the SERVM model which simulates hundreds of years of a target study 

year based on stochastic variation of key inputs such as weather and unit outages. 

The CAISO’s PLEXOS model uses 2009 historical shapes for load, solar, wind and hydro, scaled up to 

match the annualized forecast values of a target study year.  2009 was selected to be consistent with 
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the TEPPC 2026 Common Case.  For modeling intended for comparison with SERVM, the CPUC expects 

the PLEXOS 2009-based shapes to match with the corresponding 2009 weather-year-based shapes in 

SERVM. 

On January 7, 2019 CPUC staff held an IRP workshop where production costs modeling results were 

presented by different parties.  The workshop materials provide further information comparing different 

models that will be used to improve modeling efforts going forward. 

2.12 Next Steps 
Energy Division staff will continue to refine this document, post additional data sets, and work to update 

the datasets used for production cost modeling.  Parties are encouraged to contact Energy Division staff 

with suggestions of better data sources, help in developing and formatting data, or checking for errors in 

datasets. 

3 Network Reliability Modeling – Transmission Planning Study Inputs 

and Assumptions 

The previous section of this document described the detailed inputs and assumptions that were used in 

production cost modeling performed by CPUC staff in 2018 with the SERVM model.  This section 

provides additional inputs, assumptions, and guidance intended to inform the network reliability 

(“power flow”) and production cost modeling studies planned for the CAISO’s 2019-20 Transmission 

Planning Process (TPP).  This additional information includes: 

• Specification of new resource portfolios to be studied in the 2019-20 TPP as the:  

o Reliability Base Case 

o Policy-Driven Base Case 

o Policy-Driven Sensitivity Cases 

• Description of key inputs and assumptions that should be used in the 2019-20 TPP studies to 

leverage the latest available information and maintain alignment and consistency with the 

CPUC’s IRP process 

• Guidance on allocating geographically coarse load and resource data from the IRP process to 

transmission substations in order to facilitate network reliability studies. 

3.1 New Resource Portfolios 
In accordance with a May 2010 MOU between the CAISO and the CPUC, and in coordination with the 

CEC, the CPUC develops the new resource portfolios used by CAISO in its annual Transmission Planning 

Process (TPP).  The CPUC typically transmits to the CAISO multiple distinct portfolios developed in its IRP 

process: 

• The “Reliability Base Case” portfolio is used to assess transmission grid reliability and ensure 

NERC, WECC, and CAISO planning standards are met over a 10-year planning horizon 

o CAISO also uses this portfolio for economic planning studies 

http://www.cpuc.ca.gov/General.aspx?id=6442459930
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• The “Policy-Driven” portfolio(s) may include a base case and one or more sensitivity cases and 

are used to plan for new renewables deliverability, grid integration, and policy goals that may 

drive the need for new transmission over a 10-year planning horizon 

The following subsections describe the portfolios intended for study in the 2019-20 TPP. 

3.1.1 Reliability Base Case 

The Reliability Base Case new resource portfolio is based on the IRP Reference System Plan 42 MMT 

core case developed with the RESOLVE model updated to the 2017 IEPR demand forecast.  This case was 

designed to achieve a 42 MMT GHG emissions target by 2030 statewide.  Staff made minor manual 

adjustments to the RESOLVE-selected new resource portfolio to:  

• Accommodate the most recent available information about available transmission and upgrades 

in different transmission planning areas86 

• Maximize the deliverability of new geothermal and wind resources to the extent possible.87 

Table 27 summarizes the Reliability Base Case new resource portfolio.  See section 3.1.4 for details on 

how these resources are allocated to transmission substations to facilitate network reliability studies. 

Table 27: Reliability Base Case 2030 New Resources, Deliverable and Energy-Only Nameplate Capacity 

Resource Types FCDS+EO MW FCDS MW EO MW 

Li Battery, about 1 hour 2,104 2,104 - 

Solar 5,916 2,709 3,207 

In-State Wind 1,145 341 803 

OOS Wind 1,101 1,101 - 

Total Wind 2,246 1,443 803 

Geothermal 1,700 1,048 652 

Total New Renewables 9,862 5,200 4,662 

Total New Renewables and Storage 11,966 7,304 4,662 

 

This case also assumes retirement of existing fossil units older than 40-years age and without an existing 

contract in the year being studied.  Staff did not include the retirement assumption as part of the 

RESOLVE optimization to build the new resource portfolio.  Refer to section 3.2.2 for further details on 

this retirement assumption and how to apply it to the 2019-20 TPP. 

                                                           
86 In January 2019, CAISO transmission planning engineers provided CPUC staff with updated transmission 

availability and upgrade size and cost data. 
87 New geothermal and wind are higher capacity value resources that would likely bid into resource solicitations as 

fully deliverable and providing RA capacity.  Under current assumptions RESOLVE did not need new system RA 
capacity and thus sometimes selected new geothermal and wind as energy-only resources. 

http://cpuc.ca.gov/General.aspx?id=6442457210
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3.1.2 Policy-Driven Base Case 

The Policy-Driven Base Case new resource portfolio is identical to the Reliability Base Case new resource 

portfolio. 

3.1.3 Policy-Driven Sensitivity Cases 

Two Policy-Driven Sensitivity Case new resource portfolios are described here, one that focuses on in-

state new resource development and one that allows selection of moderate amounts of out-of-state 

(OOS) wind on new transmission when economic.  Staff designed these two portfolios using the 

RESOLVE model updated to the 2017 IEPR demand forecast, but with input assumptions updated to:  

• Achieve a 32 MMT88 GHG emissions target by 2030 statewide 

• Achieve at least a 60% RPS 

• Include moderately higher demand from light-duty vehicle electrification 

• Include a 40-year age-based fossil retirement assumption as part of the RESOLVE optimization 

• Include the option of selecting up to 4,250 MW of New Mexico and Wyoming wind potential on 

new transmission when economic 

• Include the most recent available information about available transmission and upgrades in 

different transmission planning areas 

In addition, the portfolios selected by RESOLVE were manually adjusted to maximize the deliverability of 

new geothermal and wind resources to the extent possible, and to fit the portfolio within the “nested” 

transmission availability constraints specified by CAISO engineers.89 

Both recommended portfolios include substantially larger amounts of new resources than have been 

previously studied by the CAISO.  Both portfolios trigger in-state transmission upgrades in order to 

access greater amounts of renewables potential.  The in-state focused case required up to 1,570 MW of 

upgrade in the Westlands area and up to 654 MW of upgrade in the Greater Carrizo area.  The case 

allowing OOS wind only required the up to 654 MW of upgrade in the Greater Carrizo area.  These 

upgrades also imply a necessary similar sized upgrade to the Southern PG&E area that encompasses 

both Westlands and Greater Carrizo. 

Table 28 summarizes the two Policy-Driven Sensitivity Case new resource portfolios.  See section 3.1.4 

for details on how these resources are allocated to transmission substations to facilitate network 

reliability studies. 

                                                           
88 32 MMT according to the 2017-18 IRP proceeding version of RESOLVE which does not include BTM CHP 

emissions of about 4 MMT. 
89 “Nested” refers to the fact that certain groups of transmission planning areas have individual transmission 

availability constraints and a whole group of areas also has a total transmission availability constraint.  The sum of 
individual area constraints is often greater than the total constraint over a group of areas.  At this time, RESOLVE 
can only handle “flat” transmission availability constraints and does not handle “nested” constraints, hence the 
need to make some manual adjustments either to RESOLVE inputs, outputs, or both to ensure fit within the actual 
“nested” constraints. 

http://cpuc.ca.gov/General.aspx?id=6442457210
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Table 28: Policy-Driven Sensitivity Cases 2030 New Resources, Deliverable and Energy-Only Nameplate 
Capacity 

 Sensitivity #1: In-state focus with 
OOS wind on existing transmission 

only 

Sensitivity #2: Allow up to 4,250 
MW OOS wind on new 

transmission 

Resource Types FCDS+EO 
MW FCDS MW EO MW 

FCDS+EO 
MW FCDS MW EO MW 

Li Battery, about 2 hour - - - 2,602 2,602 - 

Li Battery, about 4 hour 4,347 4,347 - - - - 

Pumped Storage Hydro 1,342 1,342 - - - - 

Solar 11,588 3,952 7,636 6,220 2,004 4,216 

In-State Wind 2,775 2,512 262 2,333 2,070 262 

OOS Wind 2,000 1,466 534 6,250 2,273 3,977 

Total Wind 4,775 3,978 797 8,583 4,344 4,239 

Geothermal 2,020 1,368 652 2,020 1,368 652 

Total New Renewables 18,383 9,298 9,085 16,823 7,716 9,107 

Total New Renewables and 
Storage 

24,071 14,987 9,085 19,425 10,318 9,107 

 

This case also assumes retirement of existing fossil units older than 40-years age and without an existing 

contract in the year being studied.  Staff approximated and included the 40-year age-based fossil 

retirement assumption as part of the RESOLVE optimization to build the new resource portfolios.  

However, the amount retired in RESOLVE is not the same as the amount that should be assumed retired 

to be consistent with the Reliability Base Case (less total existing capacity was assumed retired in the 

Reliability Base Case because some units were assumed to stay online until end of contract if the 

contract was still in place at age 40).  Refer to section 3.2.2 for further details on this retirement 

assumption and how to apply it to the 2019-20 TPP.  When studied in the TPP, the two Policy-Driven 

Sensitivity Cases should implement the 40-year retirement assumption in the same manner as the 

Reliability Base Case, in other words assuming units stay online until end of contract if the contract is 

still in place at age 40. 

3.1.4 Allocation to Transmission Substations 

Each of these TPP study cases must have all resources mapped to transmission substations in order to 

facilitate power flow analysis.  This includes renewable projects under development with approved 

contracts as well as new generic projects.  The CPUC has worked with the CAISO and CEC to identify 

each project and map it to an appropriate substation if it does not already have one assigned.  At the 

request of CPUC staff, CEC staff have allocated each of the new generic resources in the portfolios 

described above to substations.  The workbooks providing details on resource mix by transmission areas 
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and deliverability status are posted to the CPUC website.90  The workbook with substation allocations is 

posted to the CEC website.91 

3.2 Other Key Inputs and Assumptions and Allocations to Substations 
Besides studying the new resource portfolios from the CPUC, the CAISO’s TPP should also align a 

number of its other key inputs and assumptions with those used in the CPUC’s IRP process and other 

resource program areas, and the CEC’s IEPR demand forecast.  These include: 

• Load and load-modifiers 

• Fossil retirement assumptions 

• Energy storage 

• Demand response 

3.2.1 Load and Load-modifiers 

As stated in the 2018 IEPR Update report adopted by the CEC in February 2019,92 the managed Single 

Forecast Set specifies that the California Energy Demand (CED) 2018 adopted baseline “mid demand” 

case paired with the mid-mid Additional Achievable Energy Efficiency (AAEE) and Additional Achievable 

Photo-Voltaics (AAPV)93 forecast scenarios shall be used for bulk system studies, while the mid-low 

AAEE and AAPV scenarios shall be paired with the baseline mid demand case for local reliability studies.  

Accordingly, the 2019-20 TPP should use the managed Single Forecast Set from the 2018 IEPR Update 

California Energy Demand Updated Forecast 2018-2030 as fundamental input. 

Note that the IRP process relied on the previous IEPR vintage (the 2017 IEPR and corresponding CED 

forecast) to develop portfolios for eventual study in the CAISO’s TPP.  The CPUC recognizes that the 

CAISO’s TPP may be based on an IEPR vintage that differs from that which was used to develop the IRP 

proceeding’s Reference or Preferred System Plan portfolios to be studied in the CAISO’s TPP.  This 

mismatch is acknowledged and considered necessary and acceptable. 

The aggregate load and load modifier assumptions from the IEPR CED forecast must be assigned to 

CAISO-controlled transmission substations to facilitate network reliability studies. 

• For load (including committed energy efficiency, committed BTM PV, load-modifying demand 

response (e.g. non-event based or price responsive), and other non-PV self-generation) there 

exists a mature process for the CAISO to work with Participating Transmission Owners (PTOs) to 

allocate IEPR CED forecast load to substations. 

• For the incremental load modifier AAEE, the CEC provides substation allocations of the mid-low 

AAEE forecast scenario directly to the CAISO.  The allocation is generally based on the mix of 

load by economic sector currently at each substation, matched with the energy efficiency 

                                                           
90 http://www.cpuc.ca.gov/General.aspx?id=6442460548 
91 https://efiling.energy.ca.gov/Lists/DocketLog.aspx?docketnumber=17-MISC-03 
92 https://efiling.energy.ca.gov/getdocument.aspx?tn=226392 
93 Incremental BTM PV adoption to reflect 2019 Title 24 residential building standards update in support of Zero 

Net Energy goals for new residential homes, starting in 2020. 

http://www.cpuc.ca.gov/General.aspx?id=6442460548
https://efiling.energy.ca.gov/Lists/DocketLog.aspx?docketnumber=17-MISC-03
https://efiling.energy.ca.gov/getdocument.aspx?tn=226392
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programs targeting those sectors.  The mid-low AAEE forecast is used in power flow studies to 

assess local reliability due to locational uncertainty on which specific locations the energy 

efficiency savings will materialize. 

• For the incremental load modifier AAPV, the CAISO works with staff at the CEC and CPUC to 

leverage analysis such as that developed by the CPUC’s consultant, DNV-GL,94 and with the 

three large IOUs in their capacity as CAISO PTOs, to allocate the forecast AAPV amounts to 

substations. 

3.2.2 Fossil Retirement Assumptions 

All portfolios that the CPUC recommends for study in the 2019-20 TPP include planned or announced 

retirements from existing units (such as Diablo Canyon Power Plant and other once-through-cooled 

units), plus an incremental 40-year age retirement assumption to approximate additional potential for 

existing fossil units to retire within the IRP planning horizon.  Specifically, existing fossil units older than 

40-years age and without an existing contract in the year being studied are assumed retired.  The 

CAISO’s TPP should study the transmission implications of up to this level of retirement to inform the 

question of how much existing generation may need to be retained to cost-effectively maintain not just 

system but also local reliability standards.  The table below shows the additional capacity that could be 

retired by 2030 with the 40-year age-based assumption.  This is incremental to planned or announced 

retirements.  More detailed data itemizing specific existing units and assumed retirement years is 

posted to the CPUC’s website.95 

Table 29: Additional Capacity Assumed Retired by 2030 Due to 40-year Assumption, Nameplate MW 

 CCGT CT Cogeneration Steam ICE Total 

PGE Bay 0 384 131 0 0 514 

PGE Valley 78 25 787 0 0 890 

SCE 0 143 1,064 49 0 1,255 

SDGE 0 0 109 0 0 109 

CAISO 78 552 2,090 49 0 2,768 

 

3.2.3 Energy Storage 

The total energy storage resources that should be considered in the TPP studies include existing pumped 

hydro storage, existing battery storage, contracted and/or committed battery storage to ensure 

achievement of the CPUC 1,325 MW storage target by 2024, and finally new battery storage by 2030 

that is beyond the 1,325 MW target and new pumped hydro storage (i.e. selected by RESOLVE).  In the 

RESOLVE model, existing battery storage (119.5 MW as of early 2018) is subsumed within either the 

                                                           
94 California Public Utilities Commission, Customer Distributed Energy Resources Grid Integration Study: Residential 

Zero Net Energy Building Integration Cost Analysis, October 18, 2017. 
95 Available here: http://www.cpuc.ca.gov/General.aspx?id=6442460548 

http://www.cpuc.ca.gov/General.aspx?id=6442460548


 

- 80 - 

1,325 MW target or the amounts of new battery storage selected by RESOLVE.  Thus, the summary table 

below does not include a line item for existing battery storage. 

Table 30: Total Energy Storage Associated with each TPP Portfolio 

All values are for 2030 Reliability and Policy-
Driven Base Case 

Sensitivity #1: In-
state focus with OOS 
wind on existing 
transmission only 

Sensitivity #2: Allow 
up to 4,250 MW OOS 
wind on new 
transmission 

 MW Hours MW Hours MW Hours 

Existing pumped hydro 
storage 

1,832 na 1,832 na 1,832 na 

Battery storage to achieve 
the 1,325 MW target 

1,325 4 1,325 4 1,325 4 

New battery storage 
selected by RESOLVE 

2,104 1.3 4,347 4 2,602 2 

New pumped hydro storage 
selected by RESOLVE 

- na 1,342 na - na 

 

Note that the CEC’s IEPR demand forecast includes a projection of peak demand reduction due to BTM 

energy storage impacts.  This projection does not overlap with the assumed energy storage 

procurement due to the 1,325 MW target. 

CPUC staff is aware that the IOUs have recently procured battery storage that in aggregate exceeds the 

1,325 MW target.  However, that amount is still far less than the candidate “new” battery storage 

selected in the IRP process.  Thus, it is reasonable to assume that the sum of 1,325 MW and the “new” 

battery storage selected in the IRP process is inclusive of the existing online and recently procured (but 

not yet online) battery storage. 

To be modeled in the TPP base study cases, the CAISO needs to know the locations and operational 

attributes of energy storage resources.  This information is obtainable for all existing online units and 

contracted but not yet online projects.  CPUC staff is in the process of collecting the most recent 

information about procured storage resources.  CPUC staff will provide that information to the CAISO 

when it is finished compiling that data.  The CAISO will then use that information to map storage 

resources to specific locations and model operations, all of which is expected to be documented in the 

CAISO’s study results.  As an example of the data that CPUC staff will be updating, the list of procured 

storage resources that was provided to the CAISO in early 2018 is posted to the CPUC website.96 

                                                           
96 Available here: 

http://www.cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPo
werProcurementGeneration/irp/2018/Combined_IOU_Storage_2017update_public.xlsx 

http://www.cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPowerProcurementGeneration/irp/2018/Combined_IOU_Storage_2017update_public.xlsx
http://www.cpuc.ca.gov/uploadedFiles/CPUCWebsite/Content/UtilitiesIndustries/Energy/EnergyPrograms/ElectPowerProcurementGeneration/irp/2018/Combined_IOU_Storage_2017update_public.xlsx
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The TPP portfolios also include “generic” storage resources that are beyond what is existing and/or 

under contract.  Generic storage resources are any residual amounts yet to be procured to satisfy the 

requirements of the 1,325 MW target, or the candidate “new” storage selected in the IRP process (in the 

Reliability Base Case this is 2,104 MW of battery storage). 

These generic storage resources have unknown locations and operational attributes and the CAISO will 

not include them in the TPP base study cases.  Instead, generic storage will form a pool of resources 

available to mitigate any issues revealed in the TPP base case studies, for example, renewables 

integration or local capacity reliability issues.  The CPUC in coordination with the CAISO and its 2019-20 

TPP study process will jointly develop a framework for siting generic storage to locations that provide 

the highest value to resolving renewables integration and/or local capacity reliability issues that will not 

be apparent until draft TPP base case results become available in early fall, 2019.  This process can 

reveal more valuable locations and use cases for storage that can inform market participants where 

projects should be interconnected and how they should be used. 

3.2.4 Demand Response 

This subsection provides guidance on modeling treatment of demand response (DR) programs in 

network reliability studies including allocating capacity from those programs to transmission 

substations. 

The CPUC’s RA proceeding (R.17-09-020 or its successor) determines what resources can provide system 

and local resource adequacy capacity.  Current RA accounting rules indicate that all existing DR 

programs count to the extent those programs impacts are located within the relevant geographic areas 

being studied for system and local reliability.   

By nature, impacts from DR programs are distributed across large geographies.  To be applied in 

network reliability studies, capacity from DR programs must be allocated to transmission substations in 

order to facilitate power flow analysis. 97  The CPUC requested the IOUs to allocate their existing DR 

programs98 to substations, with the expectation that the IOUs would submit that information to CAISO 

through the CAISO’s annual TPP Study Plan stakeholder process that solicits input on DR 

assumptions.99  The data contains confidential information so the CPUC expects the CAISO and the IOUs 

in their capacity as PTOs to exchange the data using their own NDAs. 

 

                                                           
97 The CAISO noted that DR eligible for inclusion in the TPP must be allocated to CAISO-controlled substations and 
must be a CAISO integrated resource, meaning that resource is mapped to specific “PNodes” 
98 Based on the April 2018 annual Load Impact Reports, using the August portfolio-adjusted 1-in-2 weather year 

condition ex-ante forecast of load impact coincident with CAISO system peak 
99 http://www.caiso.com/Documents/StakeholderInput-2019-2020UnifiedPlanningAssumptions.html 

http://www.caiso.com/Documents/StakeholderInput-2019-2020UnifiedPlanningAssumptions.html
http://www.caiso.com/Documents/StakeholderInput-2019-2020UnifiedPlanningAssumptions.html

