# Proposed Electricity Resource Portfolios for the 2023-2024 Transmission Planning Process

Workshop October 20, 2022



### Introduction

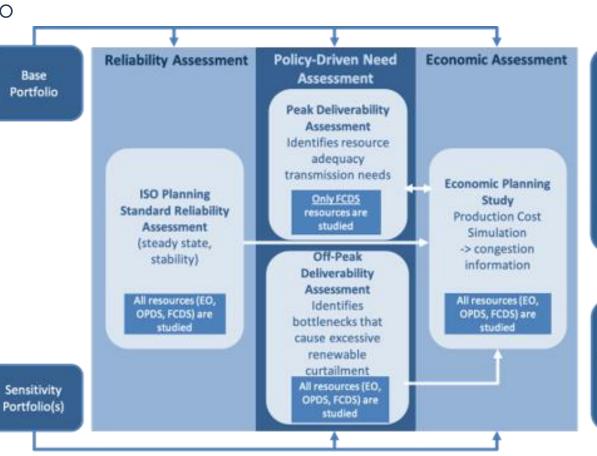
### Logistics & Scope

- Workshop slides will be available on the <u>IRP webpage on the 2023-2024 TPP</u>
- The workshop will be recorded, with the recording posted to the same webpage
- The objectives of this webinar are to:
  - Familiarize stakeholders with the content of the October 7<sup>th</sup> Ruling on the Proposed Portfolios for the 2023-24 Transmission Planning Process which included:
    - The proposed policy and reliability driven base case portfolio and proposed policy driven sensitivity portfolios
    - The busbar mapping methodology
    - Preliminary mapping results for the proposed base case portfolio
  - Give opportunity to stakeholders to ask clarifying questions, in order to support preparation for their Ruling comments.

#### Questions

- We invite clarifying questions using the "Q&A" feature of this Webex
- If time allows, we invite verbal clarifying questions at regular intervals throughout this webinar.
  - All attendees have been muted. To ask questions:
    - In Webex:
      - Please "raise your hand"
      - Webex host will unmute your microphone and you can proceed to ask your question
      - Please "lower your hand" afterwards
    - For those with phone access only:
      - Dial \*3 to "raise your hand". Once you have raised your hand, you'll hear the prompt, "You have raised your hand to ask a question. Please wait to speak until the host calls on you"
      - WebEx host will unmute your microphone and you can proceed to ask your question
      - Dial \*3 to "lower your hand"
- The discussion in this webinar will be recorded and posted online, as well as the written portion of the Q&A transcript
- Stakeholders are encouraged to file formal comments to the <u>Ruling</u>. Comment deadline is October 31, 2022, and reply comment deadline is November 10, 2022.

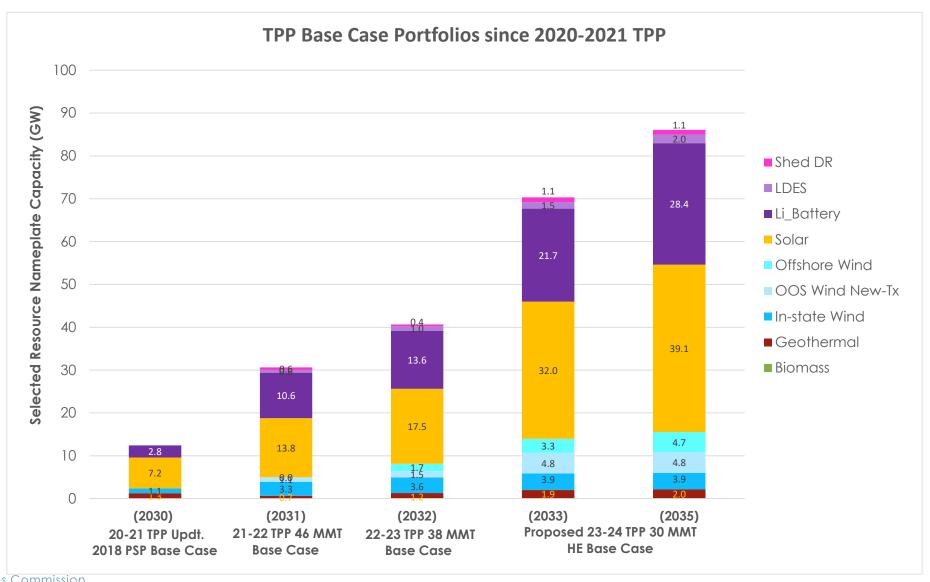
### Agenda


| Timing (PDT) | Topic                                             | Presenter         |
|--------------|---------------------------------------------------|-------------------|
| 9:00 AM      | Introduction                                      | Nathan Barcic     |
| 9:10 AM      | TPP and Busbar Mapping Overview & Background      | Karolina Maslanka |
| 9:20 AM      | Overview of Proposed TPP Portfolios               | Jared Ferguson    |
| 9:25 AM      | RESOLVE Modeling and Results                      | Femi Sawyerr      |
| 9:45 AM      | Busbar Mapping Methodology                        | Jared Ferguson    |
| 10:05 AM     | CEC Mapping & Land-use Analysis                   | Erica Brand       |
|              | Out-of-State Land-use Analysis                    | Emily Leslie      |
| 10:35 AM     | Preliminary Mapped Results for Proposed Base Case | Jared Ferguson    |

### TPP and Busbar Mapping Overview

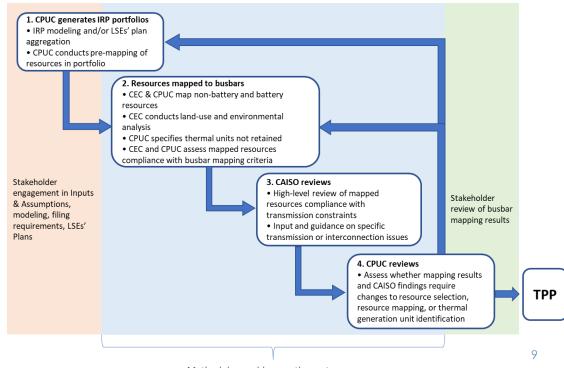
#### IRP Role in the CAISO's Transmission Planning Process

 The CAISO's TPP is an annual comprehensive evaluation of the CAISO's transmission grid to


- 1. Address grid reliability requirements,
- 2. Identify upgrades needed to successfully meet California's policy goals, and
- 3. Explore projects that can bring economic benefits to consumers.
- Historically has focused on grid needs up to 10-years into the future
- In accordance with a May 2010
   MOU between the CAISO and the CPUC, and in coordination with the CEC, the CPUC develops resource portfolios used by the CAISO in the TPP
- The CPUC typically transmits multiple distinct portfolios developed in the IRP process:
  - Reliability and Policy-Driven Base Case portfolio
  - Policy-Driven Sensitivity portfolio(s)



Base Portfolio informs Reliability, Policy and Economic driven transmission solutions for CAISO Board of Governors approval


Sensitivity
Portfolios
typically inform
Category 2
transmission
solutions

#### Base Case Portfolios since the 2020-2021 TPP



#### Role of Busbar Mapping in IRP and TPP

- Resource to Busbar Mapping ("busbar mapping"): The process of refining the geographically coarse portfolios developed through IRP to specific interconnection locations (i.e. substations) for analysis in the CAISO's annual Transmission Planning Process (TPP).
  - First conducted as "proof of concept" for the 2018-2019 TPP portfolio
  - Formalized into a joint effort by a working group comprised of CPUC, CEC, and CAISO staff.
  - Mapping is conducted based on stakeholder vetted methodology.
- **Busbar Mapping Scope:** Mapping focuses on utility-scale generation and storage resources that are not already in baseline.
- Busbar Mapping Methodology: Methodology document states guiding principles, establishes mapping criteria, and outlines the iterative interagency mapping process.
  - Current proposed <u>Methodology</u> makes only minor refinements to previous version used for the 22-23 TPP mapping efforts.



### Overview of Proposed Portfolios

## Proposed Base Case Portfolio – 30 MMT High Electrification Portfolio

- 2023-2024 TPP recommended reliability and policy-driven base case portfolio description:
  - 30 million metric tons (MMT) greenhouse gas (GHG) target in 2030
    - 25 MMT GHG target by 2035
  - CEC's 2021 IEPR Additional Transportation Electrification (ATE) grid planning scenario
    - Reflects higher loads that account for policy and market drivers towards higher levels of transportation electrification.
  - Model study years: 2033 and 2035
    - 2033 is the standard 10-year outlook needed for TPP
    - CPUC staff are proposing to transmit 2035 results as well, which aligns with the extension of CEC's IEPR scenarios out to 2035, to enable analysis of more long-term potential transmission needs
- Proposed base case portfolio will accelerate the State's move toward planning for a higher electrification future and identify incremental infrastructure needs for the increased renewable needs associated with existing and new policy drivers regarding high electrification

#### **Proposed Sensitivity Portfolios**

- CPUC staff recommend two sensitivity portfolios for the 2023-2024 TPP
- Both portfolios still optimize around the 30 MMT by 2030 GHG target and the CEC's 2021 IEPR ATE grid planning scenario and model out to 2035.
- 1. Offshore Wind Sensitivity Portfolio
  - **Purpose:** Refine and update transmission capability and upgrade assumptions relevant to offshore wind resources, including AB 525 planning goals and updated resource potential assumptions,
  - Force in the following offshore wind resources in 2035
    - Morro Bay: 5.4 GW
    - Humboldt: 3 GW
    - Cape Mendocino or Del Norte: 5 GW
- 2. Limited Offshore and Out-of-state Wind Sensitivity Portfolio
  - **Purpose:** Study transmission implications of a significantly different resource mix if key long leadtime resources are slow to develop; and aid in identifying "least regrets" transmission options that would be beneficial under a variety of resource mix futures.
  - Limit Offshore and Out-of-state wind on new transmission to 2 GW each through the 2035 build year.

Prohibited RESOLVE from selecting new gas through 2035

## RESOLVE Modelling Results for Proposed Portfolios

#### Content

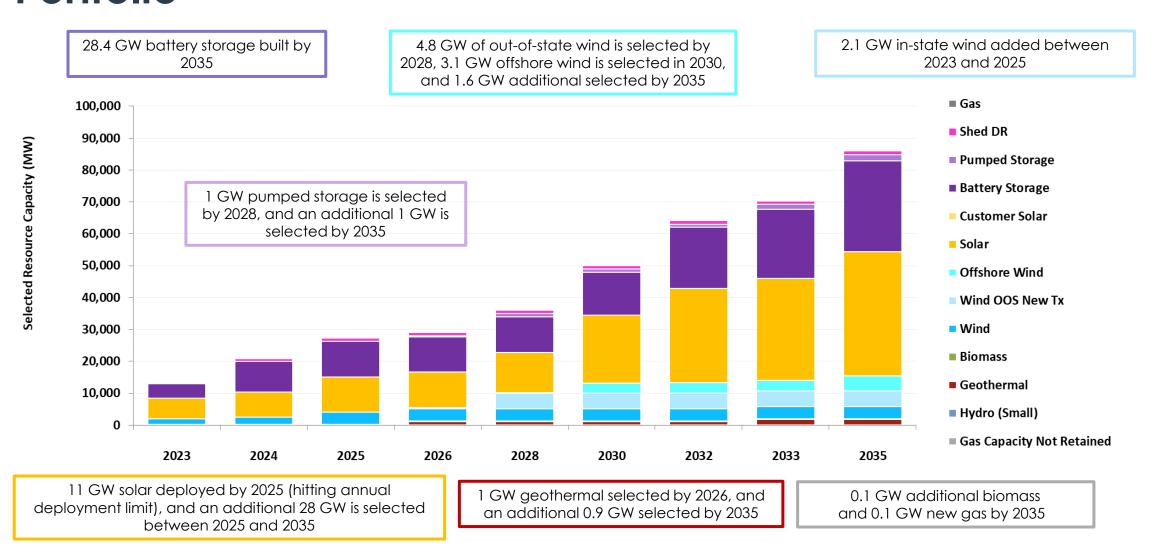
- Model Updates
- Sensitivity Definitions in RESOLVE
- Results for 30 MMT TPP 2023-2024 High Electrification (HE) Base Case
- Results for 30 MMT Additional Offshore Wind Sensitivity
- Results for 30 MMT Limited Offshore and Out-of-State Wind Sensitivity
- Comparison of 30MMT TPP 2023-2024 cases with 38MMT TPP 2022-2023 Base case

## Major updates since the 2022-2023 TPP Base Portfolio

- Updated resource costs to the NREL 2021 ATB and Lazard LCOS v7.0
- Updated the load forecast to the CEC 2021 IEPR
  - The Base and Sensitivities all use the 2021 IEPR Additional Transportation Electrification load forecast
- Refreshed the list of existing and planned resources (aligned with RDT)
- Updated NQC values based on latest NQC list and baseline resources
- Updated transmission deliverability-resource mappings, existing transmission deliverability capacity, and transmission upgrade costs using the CAISO 2021-2022 TPP draft results and the CAISO 20-year Study
- Updated storage secondary system need (SSN) transmission utilization values to be in line with latest CAISO recommendations
  - 50% transmission capacity utilization in SSN hours.

#### **Definition of Sensitivities in RESOLVE**

- Additional offshore wind sensitivity
  - 13.4 GW forced-in capacity for offshore wind by 2035
    - 5.4 GW to Morro Bay offshore wind
      - Assumes the combination of the \$110 million transmission upgrade and the existing Diablo Canyon substation can accommodate all of the expanded capacity limit
    - 3 GW Humboldt offshore wind
      - Maintains the \$2.3 billion cost for 1.6 GW of new transmission capacity but expanded the limit to meet the expanded capacity.
    - 5 GW to Cape Mendocino offshore wind
      - Assumes a \$4 billion cost for 2 GW new transmission capacity, based on the CAISO 20-year study results
- <u>Limited offshore and out-of-state wind sensitivity</u>
  - New Mexico and Wyoming wind are limited to 1 GW each through 2035
  - The capacity limit for offshore wind is set to 2 GW through 2035
  - Northwest wind on existing transmission is limited through 2035
  - No new gas allowed through 2035


## Long-Lead Time MTR Order, LSE plans and online or indevelopment resources – Annual Required Builds

|                     |      |                              |       | rder  |       |      |          |       |      |      |      |
|---------------------|------|------------------------------|-------|-------|-------|------|----------|-------|------|------|------|
| Technology Class    |      | Unit                         | 2023  | 2024  | 2025  | 2026 | 2028     | 2030  | 2032 | 2033 | 2035 |
| Geothermal          |      | MW                           | -     | -     | -     | -    | 1,053    | -     | -    | -    | -    |
| Long Duration Stora | ge   | MW                           | -     | -     | -     | -    | 1,000    | -     | -    | -    | -    |
|                     |      | Online or In-<br>Development |       |       |       | L    | SE Plans |       |      |      |      |
| Technology Class    | Unit | Baseline                     | 2023  | 2024  | 2025  | 2026 | 2028     | 2030  | 2032 | 2033 | 2035 |
| Battery Storage     | MW   | 3,804                        | 799   | 1,131 | 1,441 | 367  | 659      | 700   | -    | -    | -    |
| Pumped Storage      | MW   | -                            | -     | -     | -     | 196  | 40       | 72    | -    | -    | -    |
| Biomass             | MW   | -                            | 65    | 18    | 12    | 12   | 27       | -     | -    | -    | -    |
| Shed DR             | MW   | -                            | 63    | 1     | 1     | -    | (1)      | (0)   | -    | -    | -    |
| Geothermal          | MW   | 61                           | 53    | -     | -     | 70   | 36       | 71    | -    | -    | -    |
| Solar               | MW   | 2,132                        | 4,417 | 1,201 | 905   | 551  | 2,190    | 2,774 | -    | -    | -    |
| Wind                | MW   | 581                          | 1,138 | 330   | 709   | 321  | 341      | 1,612 | -    | -    | -    |
| Offshore Wind       | MW   | -                            | -     | -     | -     | 120  | 75       | -     | -    | -    | -    |
| Wind OOS New Tx     | MW   | -                            | -     | -     | -     | -    | -        | -     | -    | -    | -    |

- These represent the minimum resource build requirements forced into the model.
  - The optimization can build more than these amounts if necessary.

### **Scenario Results**

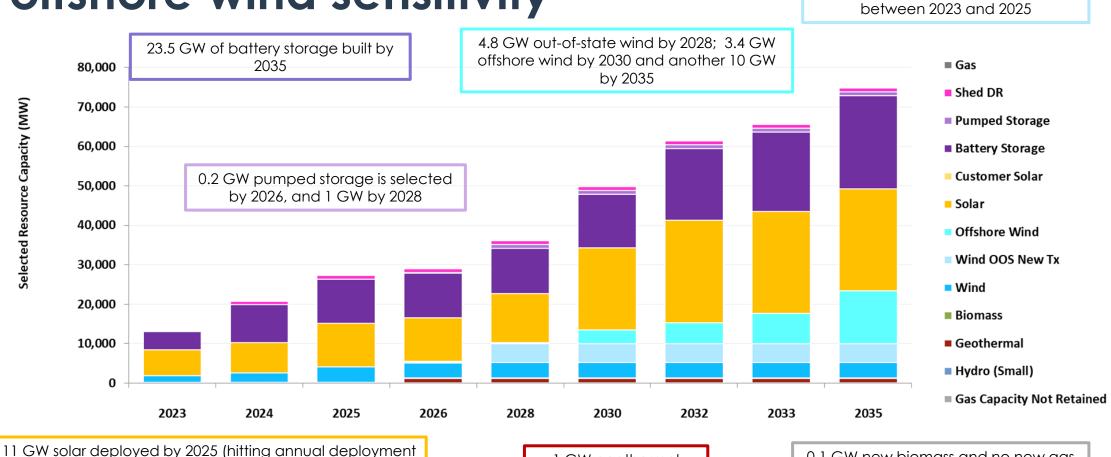
### Selected resources – 30 MMT 2023-2024 TPP HE Base Portfolio



### Total resource additions – 30 MMT 2023-2024 TPP Base Portfolio

|                                             | Unit | 2023   | 2024   | 2025   | 2026   | 2028   | 2030   | 2032   | 2033   | 2035   |
|---------------------------------------------|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Gas                                         | MW   | -      | -      | -      | -      | 0      | 0      | 0      | 0      | 128    |
| Biomass                                     | MW   | 65     | 83     | 107    | 107    | 134    | 134    | 134    | 134    | 134    |
| Geothermal                                  | MW   | 114    | 114    | 114    | 1,095  | 1,151  | 1,151  | 1,151  | 1,863  | 1,863  |
| Hydro (Small)                               | MW   | -      | -      | -      | -      | -      | -      | -      | -      | -      |
| Wind                                        | MW   | 1,719  | 2,319  | 3,864  | 3,864  | 3,864  | 3,864  | 3,864  | 3,864  | 3,864  |
| Wind OOS New Tx                             | MW   | -      | -      | -      | 312    | 4,828  | 4,828  | 4,828  | 4,828  | 4,828  |
| Offshore Wind                               | MW   | -      | -      | -      | 120    | 195    | 3,100  | 3,261  | 3,261  | 4,707  |
| Solar                                       | MW   | 6,549  | 7,750  | 11,000 | 11,073 | 12,516 | 21,367 | 29,553 | 32,025 | 39,072 |
| Customer Solar                              | MW   | -      | -      | -      | -      | -      | -      | -      | -      | -      |
| Battery Storage                             | MW   | 4,603  | 9,648  | 11,145 | 11,145 | 11,301 | 13,529 | 19,205 | 21,738 | 28,381 |
| Pumped Storage                              | MW   | -      | -      | -      | 196    | 1,000  | 1,000  | 1,000  | 1,524  | 2,000  |
| Shed DR                                     | MW   | 63     | 889    | 1,111  | 1,111  | 1,111  | 1,111  | 1,111  | 1,111  | 1,111  |
| Gas Capacity Not Retained                   | MW   | -      | -      | -      | -      | -      | -      | -      | -      | -      |
| Storage + DR                                | MW   | 4,666  | 10,537 | 12,257 | 12,453 | 13,413 | 15,640 | 21,316 | 24,373 | 31,492 |
| Total Resources (Renewables + Storage + DR) | MW   | 13,113 | 20,804 | 27,342 | 29,025 | 36,102 | 50,085 | 64,108 | 70,349 | 86,089 |

- GHG emissions constraint is binding starting in 2025
- PRM needs drive near-term builds in 2024-2025
- PRM is also binding beyond 2028
- CPUC staff chose to replace the 128 MW of new gas selected in 2035 with 174 MW of geothermal in the busbar mapping analysis


## Difference in annual selected capacities relative to forced-in amounts – 30 MMT 2023-2024 TPP Base Portfolio

| <b>Technology Class</b> | Unit | 2023 | 2024  | 2025  | 2026  | 2028    | 2030    | 2032  | 2033  | 2035  |
|-------------------------|------|------|-------|-------|-------|---------|---------|-------|-------|-------|
| Battery Storage         | MW   | 0    | 3,913 | 56    | (367) | (503)   | 1,528   | 5,676 | 2,533 | 6,643 |
| Pumped Storage          | MW   | -    | -     | -     | -     | (236)   | (72)    | -     | 524   | 476   |
| Biomass                 | MW   | (0)  | -     | 12    | (12)  | -       | -       | -     | -     | -     |
| Shed DR                 | MW   | -    | 825   | 221   | -     | 1       | 0       | -     | -     | 0     |
| Geothermal              | MW   | -    | -     | -     | 911   | (1,033) | (71)    | -     | 712   | -     |
| Solar                   | MW   | 0    | (0)   | 2,344 | (477) | (747)   | 6,077   | 8,186 | 2,472 | 7,047 |
| Wind                    | MW   | 0    | 270   | 836   | (321) | (341)   | (1,612) | -     | -     | -     |
| Offshore Wind           | MW   | -    | -     | -     | -     | -       | 2,905   | 161   | -     | 1,446 |
| Wind OOS New Tx         | MW   | -    | -     | -     | 312   | 4,516   | -       | -     | -     | -     |

Note 1: Negative values indicate resources have been selected in RESOLVE in an earlier year than the forced-in capacities from LSE plans and MTR order in that year

Note 2: The values exclude LSE plans, newly developed resources, and MTR-related 1 GW geothermal and 1 GW long-duration storage

## Total resource additions – 30 MMT additional offshore wind sensitivity 2.1 GW in-state wind added between 2023 and 2025



limit), and an additional 14.8 GW is selected between 2025 and 2035.

1 GW geothermal selected by 2026

0.1 GW new biomass and no new gas additions by 2035

## Total resource additions – 30 MMT additional offshore wind sensitivity

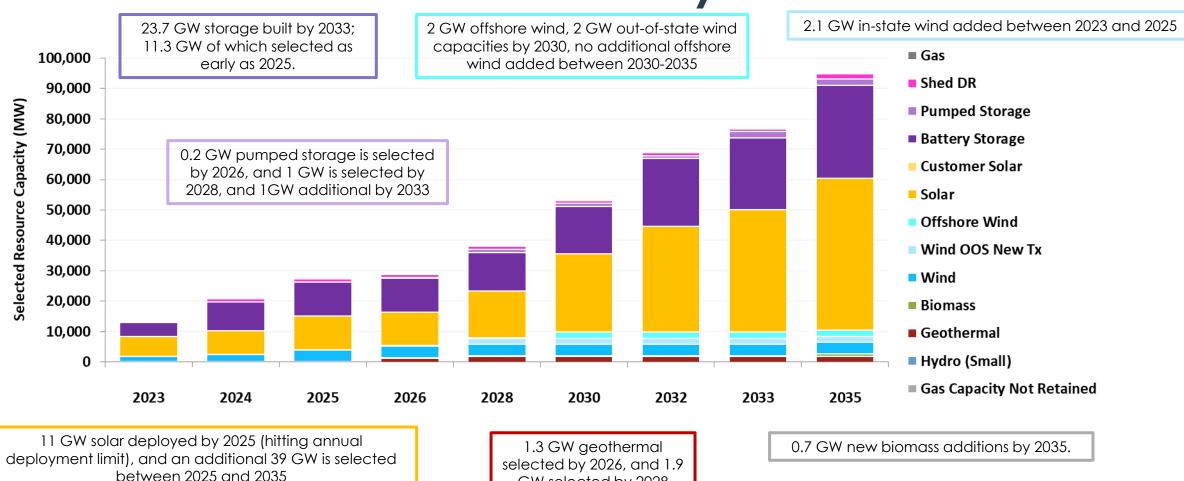
| Geothermal         MW         114         114         114         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,1                                                                                                                                           |                                             | Unit | 2023   | 2024   | 2025   | 2026   | 2028   | 2030   | 2032   | 2033   | 2035   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Geothermal         MW         114         114         114         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,149         1,1                                                                                                                                           | Gas                                         | MW   | -      | -      | -      | -      | -      | -      | -      | -      | -      |
| Hydro (Small)         MW         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                  | Biomass                                     | MW   | 65     | 83     | 107    | 107    | 134    | 134    | 134    | 134    | 134    |
| Wind         MW         1,719         2,319         3,864         3,864         3,864         3,864         3,864         3,864         3,864         3,864         3,864         3,864         3,864         3,864         3,864         3,864         3,864         3,864         3,864         3,864         3,864         3,864         3,864         3,864         3,864         3,864         3,864         3,864         3,864         3,864         3,864         3,864         3,864         3,864         3,864         3,864         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,8                                                                                                                                           | Geothermal                                  | MW   | 114    | 114    | 114    | 1,117  | 1,149  | 1,149  | 1,149  | 1,149  | 1,149  |
| Wind OOS New Tx         MW         -         -         -         283         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828         4,828<                                                                                                                                           | Hydro (Small)                               | MW   | -      | -      | -      | -      | -      | -      | -      | -      | -      |
| Offshore Wind         MW         -         -         -         120         195         3,449         5,355         7,656         13,400           Solar         MW         6,549         7,750         11,000         11,014         12,472         20,895         25,871         25,871         25,871           Customer Solar         MW         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                       | Wind                                        | MW   | 1,719  | 2,319  | 3,864  | 3,864  | 3,864  | 3,864  | 3,864  | 3,864  | 3,864  |
| Solar         MW         6,549         7,750         11,000         11,014         12,472         20,895         25,871         25,871         25,871           Customer Solar         MW         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td>Wind OOS New Tx</td> <td>MW</td> <td>-</td> <td>-</td> <td>-</td> <td>283</td> <td>4,828</td> <td>4,828</td> <td>4,828</td> <td>4,828</td> <td>4,828</td>                                                                                                                               | Wind OOS New Tx                             | MW   | -      | -      | -      | 283    | 4,828  | 4,828  | 4,828  | 4,828  | 4,828  |
| Customer Solar         MW         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                 | Offshore Wind                               | MW   | -      | -      | -      | 120    | 195    | 3,449  | 5,355  | 7,656  | 13,400 |
| Battery Storage       MW       4,603       9,597       11,279       11,279       11,452       13,543       18,221       20,072       23,553         Pumped Storage       MW       -       -       -       196       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000       1,000                                                                                                                                                                                                                                     | Solar                                       | MW   | 6,549  | 7,750  | 11,000 | 11,014 | 12,472 | 20,895 | 25,871 | 25,871 | 25,871 |
| Pumped Storage         MW         -         -         -         196         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000         1,000 </td <td>Customer Solar</td> <td>MW</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> | Customer Solar                              | MW   | -      | -      | -      | -      | -      | -      | -      | -      | -      |
| Shed DR       MW       63       889       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977       977 <th< td=""><td>Battery Storage</td><td>MW</td><td>4,603</td><td>9,597</td><td>11,279</td><td>11,279</td><td>11,452</td><td>13,543</td><td>18,221</td><td>20,072</td><td>23,553</td></th<>                                                                                                                                 | Battery Storage                             | MW   | 4,603  | 9,597  | 11,279 | 11,279 | 11,452 | 13,543 | 18,221 | 20,072 | 23,553 |
| Gas Capacity Not Retained       MW       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                        | Pumped Storage                              | MW   | -      | -      | -      | 196    | 1,000  | 1,000  | 1,000  | 1,000  | 1,000  |
| Storage + DR 4,666 10,486 12,256 12,452 13,429 15,520 20,199 22,049 25,530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Shed DR                                     | MW   | 63     | 889    | 977    | 977    | 977    | 977    | 977    | 977    | 977    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Gas Capacity Not Retained                   | MW   | -      | -      | -      | -      | -      | -      | -      | -      | -      |
| Table 20 752 27 244 20 057 20 050 64 404 65 552 74 777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Storage + DR                                | MW   | 4,666  | 10,486 | 12,256 | 12,452 | 13,429 | 15,520 | 20,199 | 22,049 | 25,530 |
| Iotal Resources (Renewables + Storage + DK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Total Resources (Renewables + Storage + DR) | MW   | 13,113 | 20,753 | 27,341 | 28,957 | 36,072 | 49,839 | 61,401 | 65,552 | 74,777 |

13.4 GW forced-in capacity

#### Compared to the 30 MMT TPP 2023-2024 case:

 By 2035, there is 8.7 GW incremental offshore wind resulting in 0.7 GW less geothermal, 13.2 GW less solar, 4.8 GW less battery storage, 1 GW less pumped storage

### Difference in annual selected capacities relative to forced-in amounts – 30 MMT additional offshore wind sensitivity


| <b>Technology Class</b> | Unit | 2023 | 2024  | 2025  | 2026  | 2028    | 2030    | 2032  | 2033  | 2035  |
|-------------------------|------|------|-------|-------|-------|---------|---------|-------|-------|-------|
| Battery Storage         | MW   | (0)  | 3,862 | 240   | (367) | (485)   | 1,391   | 4,679 | 1,850 | 3,481 |
| Pumped Storage          | MW   | -    | -     | -     | -     | (399)   | (72)    | -     | 0     | -     |
| Biomass                 | MW   | (0)  | -     | 12    | (12)  | -       | -       | -     | -     | -     |
| Shed DR                 | MW   | -    | 825   | 87    | -     | 1       | 0       | -     | -     | -     |
| Geothermal              | MW   | -    | -     | -     | 933   | (1,057) | (71)    | -     | -     | -     |
| Solar                   | MW   | 0    | (0)   | 2,344 | (537) | (732)   | 5,649   | 4,976 | -     | -     |
| Wind                    | MW   | (0)  | 270   | 837   | (321) | (341)   | (1,612) | -     | _     | -     |
| Offshore Wind           | MW   | -    | -     | -     | -     | -       | 3,254   | 1,906 | 2,301 | 5,744 |
| Wind OOS New Tx         | MW   | -    | -     | -     | 283   | 4,546   | -       | -     |       | -     |

Reflects the 13.4 GW forcedin capacity

Note 1: Negative values indicate resources have been selected in RESOLVE in an earlier year than the forced-in capacities from LSE plans and MTR order in that year

Note 2: The values exclude LSE plans, newly developed resources, and MTR-related 1 GW geothermal and 1 GW long-duration storage

Selected Resources – 30 MMT limited offshore and out-of-state wind sensitivity



California Public Utilities Commission 25

GW selected by 2028

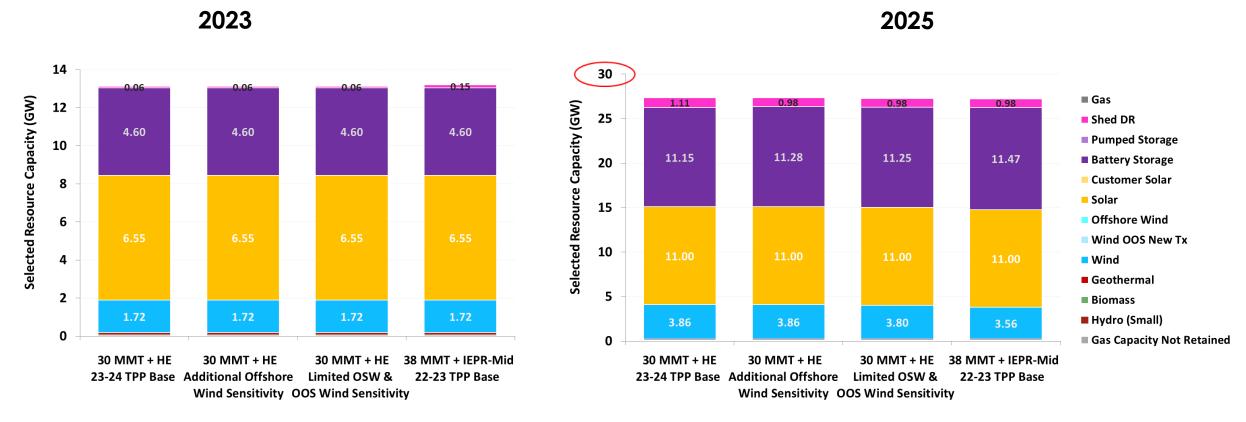
## Selected Resources – 30 MMT limited offshore and out-of-state wind sensitivity

|                                             | Unit | 2023   | 2024   | 2025   | 2026   | 2028   | 2030   | 2032   | 2033   | 2035   |
|---------------------------------------------|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Gas                                         | MW   | -      | -      | -      | -      | -      | -      | -      | -      | -      |
| Biomass                                     | MW   | 65     | 83     | 107    | 107    | 134    | 134    | 134    | 134    | 699    |
| Geothermal                                  | MW   | 114    | 114    | 114    | 1,306  | 1,826  | 1,826  | 1,826  | 1,885  | 1,885  |
| Hydro (Small)                               | MW   | -      | -      | -      | -      | -      | -      | -      | -      | -      |
| Wind                                        | MW   | 1,719  | 2,319  | 3,797  | 3,797  | 3,797  | 3,797  | 3,797  | 3,797  | 3,797  |
| Wind OOS New Tx                             | MW   | -      | -      | -      | -      | 2,000  | 2,000  | 2,000  | 2,000  | 2,000  |
| Offshore Wind                               | MW   | -      | -      | -      | 120    | 195    | 2,000  | 2,000  | 2,000  | 2,000  |
| Solar                                       | MW   | 6,549  | 7,750  | 11,000 | 11,009 | 15,448 | 25,905 | 34,966 | 40,193 | 49,961 |
| Customer Solar                              | MW   | -      | -      | -      | -      | -      | -      | -      | -      | -      |
| Battery Storage                             | MW   | 4,603  | 9,571  | 11,252 | 11,252 | 12,629 | 15,504 | 22,173 | 23,741 | 30,713 |
| Pumped Storage                              | MW   | -      | -      | -      | 196    | 1,000  | 1,000  | 1,000  | 2,000  | 2,000  |
| Shed DR                                     | MW   | 63     | 889    | 977    | 977    | 977    | 977    | 977    | 977    | 1,716  |
| Gas Capacity Not Retained                   | MW   | -      | -      | -      | -      | -      | -      | -      | -      | -      |
| Storage + DR                                | MW   | 4,666  | 10,460 | 12,229 | 12,425 | 14,606 | 17,481 | 24,150 | 26,718 | 34,429 |
| Total Resources (Renewables + Storage + DR) | MW   | 13,113 | 20,727 | 27,248 | 28,765 | 38,007 | 53,143 | 68,874 | 76,728 | 94,771 |

#### Compared to the 30 MMT TPP 2023-2024 case:

 By 2035, 2.8 GW less out-of-state wind, 2.7 GW less offshore wind, 10.9 GW more solar, 2.3 GW more battery storage, 0.6 GW more biomass, and 0.6 GW more DR

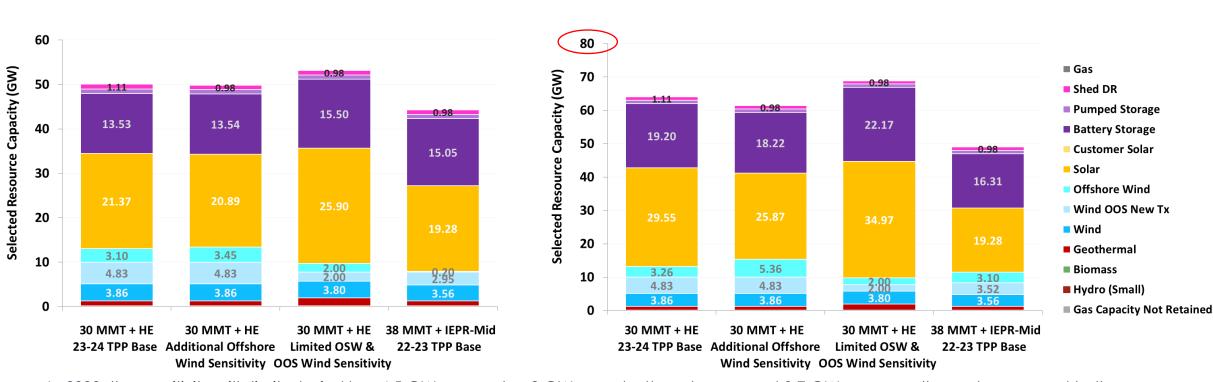
### RESOLVE optimized annual incremental selected capacities – 30 MMT limited offshore and out-of-state wind sensitivity


| <b>Technology Class</b> | Unit | 2023 | 2024  | 2025  | 2026  | 2028  | 2030    | 2032  | 2033  | 2035  |
|-------------------------|------|------|-------|-------|-------|-------|---------|-------|-------|-------|
| Battery Storage         | MW   | 0    | 3,836 | 240   | (367) | 718   | 2,175   | 6,670 | 1,568 | 6,972 |
| Pumped Storage          | MW   | -    | -     | -     | -     | (399) | (72)    | -     | 1,000 | -     |
| Biomass                 | MW   | (0)  | -     | 12    | (12)  | -     | -       | -     | -     | 565   |
| Shed DR                 | MW   | -    | 825   | 87    | -     | 1     | 0       | -     | -     | 739   |
| Geothermal              | MW   | -    | -     | -     | 1,122 | (569) | (71)    | -     | 60    | -     |
| Solar                   | MW   | 0    | 0     | 2,344 | (542) | 2,249 | 7,682   | 9,062 | 5,226 | 9,769 |
| Wind                    | MW   | (0)  | 270   | 769   | (321) | (341) | (1,612) | -     | -     | -     |
| Offshore Wind           | MW   | -    | -     | -     | -     | -     | 1,805   | -     | -     | -     |
| Wind OOS New Tx         | MW   | -    | -     | -     | -     | 2,000 | -       | -     | -     | -     |

Note 1: Negative values indicate resources have been selected in RESOLVE in an earlier year than the forced-in capacities from LSE plans and MTR order in that year

Note 2: The values exclude LSE plans, newly developed resources, and MTR-related 1 GW geothermal and 1 GW long-duration storage

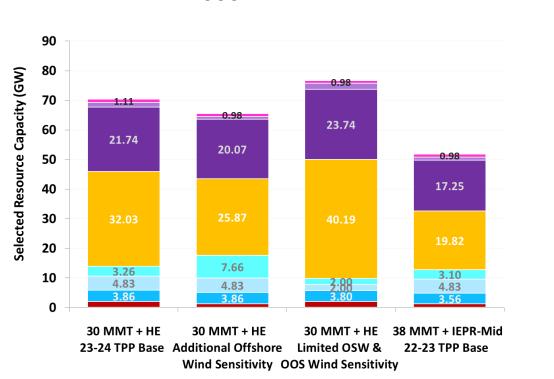
# Comparison of 30 MMT TPP 2023-2024 Base Case, Sensitivities and the 2022-2023 TPP Base Portfolio


### Selected resources comparison

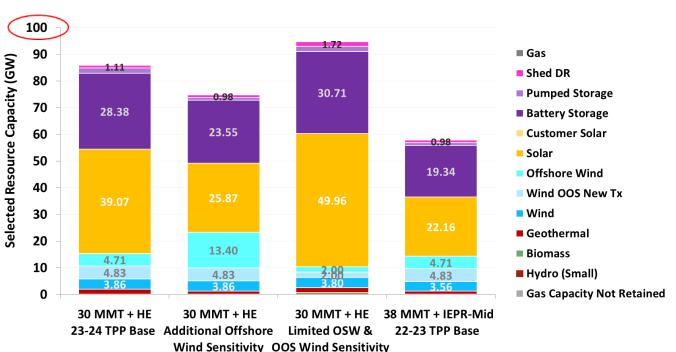


• In 2025, selected resources are similar in all cases except for small differences in DR.

### Selected resources comparison


2030




2032

- In 2030, the sensitivity with limited wind has 4.5 GW more solar, 2 GW more battery storage and 0.7 GW more geothermal compared to the base case
- By 2030, there is small differences in offshore wind, solar and DR capacities in the forced-in OSW sensitivity compared to the base case
- In 2032, in the forced-in offshore wind sensitivity, 2 GW higher offshore wind reduces solar and battery storage by 4 and 1 GW, compared to the base case, respectively. The constrained wind sensitivity, however, results in 5 GW more solar and 3 GW more battery storage capacity compared to the base case.

### Selected resources comparison

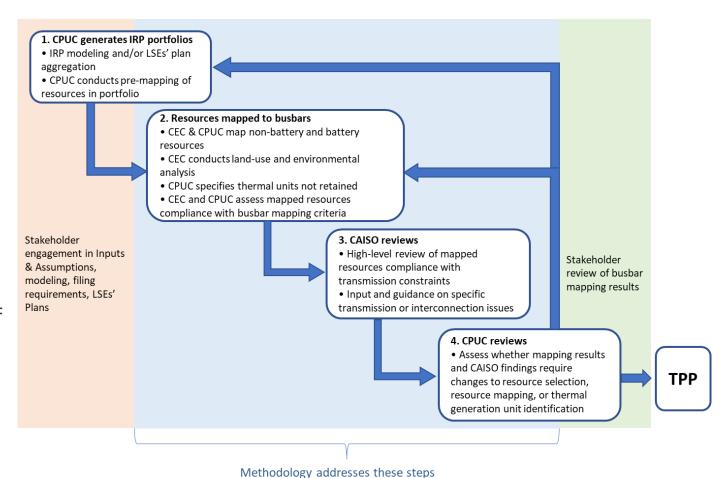


2033



2035

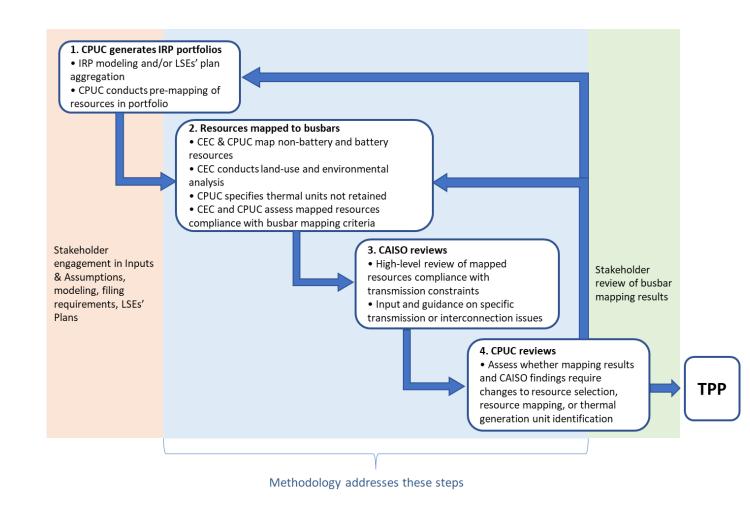
- In 2033, the forced-in offshore wind sensitivity reduces selected battery storage capacity only by 1 GW and solar capacity by 6 GW compared to the base case. 8 GW more solar and 2 GW more battery storage is selected instead of reduced 1 GW and 2.8 GW offshore and out-of-state wind in the wind capacity constrained sensitivity (no new gas) compared to the base case
- In 2035, the 13.4 GW offshore wind capacity further reduces solar, and wind buildout compared to the base case.
- In 2035, since no new gas is allowed in the sensitivity with constrained wind, additional capacity needs are sourced from additional solar (10 GW more) and storage (2 GW more), and DR (0.7 GW more compared to the base case


### **Takeaways**

- By 2025, 30 MMT cases have similar build out as the 22-23 TPP Base portfolio.
- By 2030, total selected resources are similar across all three 30 MMT cases, but 6-10 GW more compared to the 22-23 TPP Base portfolio.
- Constraining wind triggers geothermal and biomass selection in 2030 and 2035, respectively.
- Limited wind availability results in much greater solar and storage capacity, especially in later years.
- In the 30 MMT TPP 23-24, offshore wind is first selected in 2030, earlier than in 2032 in the 22-23 TPP Base portfolio.

### **Busbar Mapping Methodology**

### Busbar Mapping Methodology – Mapping Steps


- Busbar Mapping can be viewed as a sequence of steps between CPUC, CEC, and CAISO after the portfolios are developed:
  - CPUC staff prepare and share portfolios with CEC
    - Pre-mapping effort to identify substations and MW amounts for CEC to consider when conducting land-use analysis
  - 2. Mapping and busbar criteria analysis preformed by CEC & CPUC
  - 3. CAISO reviews transmission implications of mapping results
  - 4. CPUC incorporates CAISO's findings and review criteria alignment to assess if a further round of mapping is needed.
- For further rounds, resources may be reallocated to different regions manually or using RESOLVE



Wiethodology addresses these step.

### Busbar Mapping Methodology – Mapping Criteria

- Goal of mapping process is to identify plausible locations for portfolio resources that do not violate established busbar mapping criteria.
- Criteria are organized into five categories:
  - Distance to transmission of appropriate voltage
  - 2. Transmission capability limits
  - 3. Land-use and environmental constraints
  - 4. Commercial interest
  - 5. Consistency with prior year mapping
- Difference in criteria specifically for battery mapping
  - Criteria 1 and 3 are not incorporated
  - Additional criteria are implemented for battery mapping



#### **Battery Mapping Methodology & Criteria**

- Battery mapping partially differs from non-battery resource mapping
  - Land-use and environmental implication differ from other resources
  - Battery storage provides opportunity to consider additional local values
- Additional issues that can be addressed with battery siting:
  - Minimizing Ratepayer costs
    - Co-location with renewable resources
    - Reducing congestion and curtailment
    - Reducing market power in Local Capacity Requirement (LCRs) areas
  - Minimizing Criteria Pollutants
    - Prioritizing transmission-constrained LCR areas, areas with high air quality impacts, and disadvantaged communities (DACs) to potentially reduce use of local power plant emission sources.
- Substations are ranked based on the number of points received for aligning with the following attributes; rank is incorporated with general mapping criteria for prioritization of mapping batteries
  - Is in LCR
  - Is in DAC
  - Is in ozone non-attainment area
  - Is in NOx non-attainment area
  - Is in high renewable curtailment zone
  - Is near a identified fossil-fuel plant mapped as retiring

# Criteria 1 – Distance to Transmission of Appropriate Voltage

- Mapped resources should fall within an economically viable distance to transmission
- Utilizes standard distances in assessment but exceedance of the standard distance does not necessarily mean the allocation is not plausible or economic.
- Busbar voltage is also considered broadly to assess if the interconnection costs are generally economical given resource type and MW amount mapped.
  - Limit mapping large amounts of resources to lower voltage 115 kV or 60 kV buses, and limit mapping small amounts of resources to 500 kV substations.
- Criteria Compliance Flags:
  - Level-2 flag: >10 mi from substation,
  - Level-2 flag: Substation voltage misalignment,
  - Level-3 flag: >20 mi from substation.
- Flags do not exclude resources from being mapped to specific areas just highlight potential issues for further assessment.

• Utilize CAISO participating transmission owner per unit cost estimates for more detailed analysis.

## Criteria 2 – Transmission Capability

- Mapping should abide by existing transmission constraints and trigger only potential upgrades which are
  likely to be cost-effective or necessary to meet policy goals and reliability requirements
- Utilize transmission constraint and upgrade information identified in the most recent CAISO's White Paper 2021 Transmission Capability Estimates (Link to 10/28/2021 Revised White Paper)
  - Updated with upgrade and capacity information from the Final 21-22 TPP Report
- Account for 44 transmission constraints with on-peak and off-peak limits and identified upgrades
  - Actual limits: binding amounts identified in CAISO studies,
  - Default constraints are non-binding limits, which represent the largest amount CAISO has studied.
- Criteria Compliance Flag: Level-3 for exceedance in actual constraint; Level-2 for default exceedance.

|                                               |                                             | Cdikid                                      | Estimate | d FCDS                        | ADNU & Cost Estimate (\$r                                                                                       | nillion)                      | Estimat | ed EODS                        | AOPNU & Cost Estimate (\$                                                                                       | million)                      | NA /:1 /               | FCDS              | OPDS                          |
|-----------------------------------------------|---------------------------------------------|---------------------------------------------|----------|-------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------|---------|--------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------|-------------------|-------------------------------|
| Transmission Constraint                       | Affected Zones                              | Condition under which Constraint is Binding | •        | Incremet<br>al due to<br>ADNU | ADNU (Time to Construct)                                                                                        | Cost<br>(Escalated<br>to COD) |         | Incremet<br>al due to<br>AOPNU | AOPNU (Time to Construct)                                                                                       | Cost<br>(Escalated<br>to COD) | Wind/<br>Solar<br>Area | Limit<br>(Actual/ | Limit<br>(Actual/<br>Default) |
| SCE North of Lugo (NOL) Study                 | Area Constraints                            | 5                                           |          |                               |                                                                                                                 |                               |         |                                |                                                                                                                 |                               |                        |                   |                               |
| Lugo 500/230 kV Transformer<br>Constraint     | Inyokern North<br>Kramer, Victor,<br>Pisgah | On-peak                                     | 1,576    | 980                           | New Lugo 500/230kV No. 3<br>transformer (42 months)                                                             | \$70                          | 1,619   | N/A                            | N/A                                                                                                             | N/A                           | Solar                  | Actual            | Default                       |
| Victor-Lugo Constraint                        | Inyokern North<br>Kramer,<br>Victor         | On-peak                                     | 1,156    | 430                           | Reconductor Lugo - Victor<br>230kV lines (27 Months)                                                            | \$226                         | 1,311   | N/A                            | N/A                                                                                                             | N/A                           | Solar                  | Actual            | Default                       |
| Kramer- Victor/Roadway -<br>Victor Constraint | Inyokern North<br>Kramer                    | On-peak, Off-peak                           | 826      | 430                           | Loop in Kramer - Victor 115kV<br>line into Roadway and<br>reconductor Kramer to Lugo<br>230kV lines (81 months) | \$108                         | 1,237   | 480                            | Loop in Kramer - Victor 115kV<br>line into Roadway and<br>reconductor Kramer to Lugo<br>230kV lines (81 months) | \$108                         | Solar                  | Actual            | Actual                        |

**Table:** White paper information on transmission constraints in the Greater Kramer area

# Criteria 2 – Transmission Capability: Deliverability Status

- Mapped resources are considered either Fully Deliverability (FCDS) or Energy Only (EODS)
  - FCDS resources require on-peak capacity at both CAISO's HSN and SSN scenarios and off-peak capacity
  - EODS resources require only off-peak capacity
- CAISO's White Paper includes resource specific output factors that represent a resource's utilization of transmission capacity.
  - Different values for On-peak (HSN and SSN) and Offpeak
  - Different values based on geographic area and dominate resource type
- Batteries in off-peak viewed as charging and thus enabling additional off-peak transmission capacity

#### On-Peak FCDS Output Factors

| Doggerson trans                |                                                                    | HSN    |        |        | SSN    |        |  |  |  |  |
|--------------------------------|--------------------------------------------------------------------|--------|--------|--------|--------|--------|--|--|--|--|
| Resource type                  | SDG&E                                                              | SCE    | PG&E   | SDG&E  | SCE    | PG&E   |  |  |  |  |
| Solar                          | 3.00%                                                              | 10.60% | 10.00% | 40.20% | 42.70% | 55.60% |  |  |  |  |
| Wind                           | 33.70%                                                             | 55.70% | 66.50% | 11.20% | 20.80% | 16.30% |  |  |  |  |
| Non-<br>Intermittent resources |                                                                    |        | 10     | 0%     |        |        |  |  |  |  |
|                                |                                                                    | 100%   |        |        | 50%    |        |  |  |  |  |
| Energy storage                 | if duration is ≥ 4-hour or MW*(duration/4) if duration is < 4-hour |        |        |        |        |        |  |  |  |  |
|                                |                                                                    |        |        |        |        |        |  |  |  |  |

#### Off-Peak EODS Output Factors

| Posourco typo  | V                                                                               | ind Ared | а    | S     | olar Ared | c    |  |  |
|----------------|---------------------------------------------------------------------------------|----------|------|-------|-----------|------|--|--|
| Resource type  | SDG&E                                                                           | SCE      | PG&E | SDG&E | SCE       | PG&E |  |  |
| Solar          |                                                                                 | 68%      |      | 79%   | 77%       | 79%  |  |  |
| Wind           | 69%                                                                             | 64%      | 63%  |       | 44%       |      |  |  |
| Hydro          |                                                                                 |          | 30   | )%    |           |      |  |  |
| Thermal        |                                                                                 |          | 0    | %     |           |      |  |  |
| Energy storage | -100% in charging mode if duration is ≥ 4-hour o<br>hour equivalent if < 4-hour |          |      |       |           |      |  |  |

# Criteria 2 – Transmission Capability: Calculating Tx Utilization (1/3)

 Multi-step process to calculate transmission utilization within a constraint

Aggregate all resources within constraint

- Includes recently online resources in addition to in-development and generic resources
- Need to account for all resources within constraint that have come online since the White Paper information was developed.

**Table:**2035 Resources in Greater Kramer Area

| (MW) by S  | Total Resources (MW) by Substation |      | Biomass | Distribut<br>ed Solar | Solar | Solar       | Li_Bat<br>tery |
|------------|------------------------------------|------|---------|-----------------------|-------|-------------|----------------|
| Substation | Voltage                            | FCDS | FCDS    | FCDS                  | FCDS  | <b>EODS</b> | FCDS           |
| Calcite    | 230                                | -    | -       | -                     | 200   | 230         | 185            |
| Control    | 115                                | 53   | -       | -                     | -     | -           | -              |
| Coolwater  | 115                                | -    | -       | -                     | 150   | 204         | 104            |
| Kramer     | 230                                | -    | -       | -                     | 620   | 741         | 700            |
| Kramer     | 115                                | -    | -       | 2                     | 90    | -           | 75             |
| Pisgah     | 230                                | -    | -       | -                     | 100   | -           | -              |
| Roadway    | 115                                | -    | -       | 3                     | 111   | 120         | 150            |
| Victor     | 230                                | -    | 3       | 2                     | 100   | -           | 50             |
| Victor     | 115                                | -    | 22      | -                     | -     | -           | -              |



|            | _     | mer-<br>oadway - | Krar<br>Victor/R | mer-      | Lugo 500/230 kV<br>Transformer |       |  |  |
|------------|-------|------------------|------------------|-----------|--------------------------------|-------|--|--|
|            | _     | onstraint        | Ī -              | onstraint | Constraint                     |       |  |  |
|            | FCDS  | EODS             | FCDS             | EODS      | FCDS                           | EODS  |  |  |
| Wind       | -     | -                | -                | -         | -                              | -     |  |  |
| Solar      | 971   | 1,065            | 1,071            | 1,065     | 1,371                          | 1,295 |  |  |
| Geothermal | 53    | -                | 53               | -         | 53                             | -     |  |  |
| Biomass    | -     | -                | 25               | -         | 25                             | -     |  |  |
| Li_Battery | 1,029 | -                | 1,079            | -         | 1,264                          | -     |  |  |

**Table:** 2035 Resources aggregated by transmission constraint

# Criteria 2 – Transmission Capability: Calculating Tx Utilization (2/3) Kramer- Lugo 5

- Multi-step process to calculate transmission utilization within a constraint
  - 1. Aggregate all resources within constraint
    - Includes recently online resources in addition to in-development and generic resources
    - Need to account for all resources within constraint that have come online since the White Paper information was developed.
  - 2. Calculate transmission utilization of each resource type for each transmission use scenario.
  - 3. Sum across all resources for each constraint and comparing to existing transmission capacity

|            | Victor/R | mer-<br>oadway -<br>onstraint | Victor/R | mer-<br>oadway -<br>onstraint | Lugo 500/230 kV<br>Transformer<br>Constraint |       |  |  |
|------------|----------|-------------------------------|----------|-------------------------------|----------------------------------------------|-------|--|--|
|            | FCDS     | EODS                          | FCDS     | EODS                          | FCDS                                         | EODS  |  |  |
| Wind       | -        | -                             | -        | -                             | -                                            | -     |  |  |
| Solar      | 971      | 1,065                         | 1,071    | 1,065                         | 1,371                                        | 1,295 |  |  |
| Geothermal | 53       | -                             | 53       | -                             | 53                                           | -     |  |  |
| Biomass    | -        | -                             | 25       | -                             | 25                                           | -     |  |  |
| Li_Battery | 1,029    | -                             | 1,079    | -                             | 1,264                                        | -     |  |  |



| Tx Capacity Utilized by Mapped |       | - Victor/Ro | •        |       | - Victor/Ro<br>tor Constra | •       | Lugo 500/230 kV Transformer<br>Constraint |       |          |  |
|--------------------------------|-------|-------------|----------|-------|----------------------------|---------|-------------------------------------------|-------|----------|--|
| Resources (MW)                 | HSN   | SSN         | Off-Peak | HSN   | SN SSN Off-Peak            |         |                                           | SSN   | Off-Peak |  |
| Existing Capacity:             | 826   | 826         | 1,237    | 1,156 | 1,156                      | 1,311   | 1,576                                     | 1,576 | 1,619    |  |
| Wind                           | -     | -           | -        | -     | -                          | -       | -                                         | -     | -        |  |
| Solar                          | 103   | 415         | 1,567    | 114   | 457                        | 1,644   | 145                                       | 585   | 2,053    |  |
| Geothermal                     | 53    | 53          | -        | 53    | 53                         | -       | 53                                        | 53    | -        |  |
| Biomass                        | -     | -           | -        | 25    | 25                         | -       | 25                                        | 25    | -        |  |
| Li_Battery                     | 1,029 | 514         | (1,029)  | 1,079 | 539                        | (1,079) | 1,264                                     | 632   | (1,264)  |  |
| Total Utilized:                | 1,185 | 982         | 539      | 1,270 | 1,075                      | 566     | 1,487                                     | 1,295 | 789      |  |
| Remaining:                     | (359) | (156)       | 698      | (114) | 81                         | 745     | 89                                        | 281   | 830      |  |
| Tx Upgrade Amt:                | 430   | 430         | 480      | 430   | N/A                        | N/A     | 980                                       | N/A   | N/A      |  |

**Table:** Transmission utilization in the three scenarios are calculated for each constraint

# Criteria 2 – Transmission Capability: Calculating Tx Utilization (3/3) Tx Capacity Utilized by Utilized by Kramer- Victor/Roadway- Kramer- Victor/Roadway- Lugo

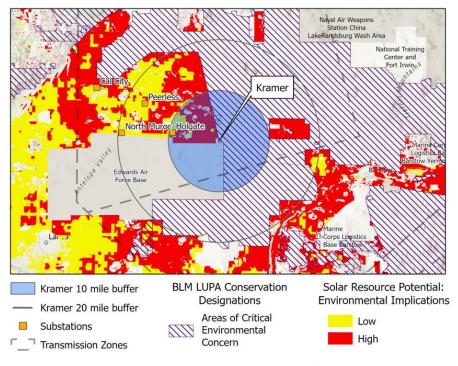
- Multi-step process to calculate transmission utilization within a constraint
  - 1. Aggregate all resources within constraint
    - Includes recently online resources in addition to in-development and generic resources
    - Need to account for all resources within constraint that have come online since the White Paper information was developed.
  - 2. Calculate transmission utilization of each resource type for each transmission use scenario.
  - 3. Sum across all resources for each constraint and comparing to existing transmission capacity.
  - 4. Assess exceedances and if any CAISO identified upgrades could alleviate the exceedances.

| Tx Capacity<br>Utilized by<br>Mapped |       | - Victor/Ro | •        |       | - Victor/Ro | •        | Lugo 500/230 kV Transformer<br>Constraint |       |          |  |  |
|--------------------------------------|-------|-------------|----------|-------|-------------|----------|-------------------------------------------|-------|----------|--|--|
| Resources (MW)                       | HSN   | SSN         | Off-Peak | HSN   | SSN         | Off-Peak | HSN                                       | SSN   | Off-Peak |  |  |
| <b>Existing Capacity:</b>            | 826   | 826         | 1,237    | 1,156 | 1,156       | 1,311    | 1,576                                     | 1,576 | 1,619    |  |  |
| Wind                                 | -     | -           | -        | -     | -           | -        | -                                         | -     | -        |  |  |
| Solar                                | 103   | 415         | 1,567    | 114   | 457         | 1,644    | 145                                       | 585   | 2,053    |  |  |
| Geothermal                           | 53    | 53          | -        | 53    | 53          | -        | 53                                        | 53    | -        |  |  |
| Biomass                              | -     | -           | -        | 25    | 25          | -        | 25                                        | 25    | -        |  |  |
| Li_Battery                           | 1,029 | 514         | (1,029)  | 1,079 | 539         | (1,079)  | 1,264                                     | 632   | (1,264)  |  |  |
| Total Utilized:                      | 1,185 | 982         | 539      | 1,270 | 1,075       | 566      | 1,487                                     | 1,295 | 789      |  |  |
| Remaining:                           | (359) | (156)       | 698      | (114) | 81          | 745      | 89                                        | 281   | 830      |  |  |
| Tx Upgrade Amt:                      | 430   | 430         | 480      | 430   | N/A         | N/A      | 980                                       | N/A   | N/A      |  |  |



#### Flags without (left) and with (right) upgrades

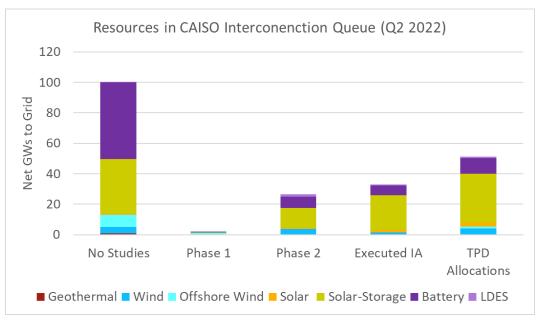
| Total Re   | ubstation | Geother<br>mal | Biomass | Distribut<br>ed Solar |      | Solar       | tery | Flag | Tx<br>Criteria<br>Flag |
|------------|-----------|----------------|---------|-----------------------|------|-------------|------|------|------------------------|
| Substation | Voltage   | FCDS           | FCDS    | FCDS                  | FCDS | <b>EODS</b> | FCDS | FCDS | EODS                   |
| Calcite    | 230       | -              | -       | -                     | 200  | 230         | 185  | 1    | 1                      |
| Control    | 115       | 53             | -       | -                     | -    | -           | -    | 3    | 1                      |
| Coolwater  | 115       | -              | -       | -                     | 150  | 204         | 104  | 3    | 1                      |
| Kramer     | 230       | -              | -       | -                     | 620  | 741         | 700  | 3    | 1                      |
| Kramer     | 115       | -              | -       | 2                     | 90   | -           | 75   | 3    | 1                      |
| Pisgah     | 230       | -              | -       | -                     | 100  | -           | -    | 1    | 1                      |
| Roadway    | 115       | -              | -       | 3                     | 111  | 120         | 150  | 3    | 1                      |
| Victor     | 230       | -              | 3       | 2                     | 100  | -           | 50   | 3    | 1                      |
| Victor     | 115       | -              | 22      | -                     | -    | -           | -    | 3    | 1                      |


| Tx<br>Criteria<br>Flag<br>FCDS | Tx<br>Criteria<br>Flag<br>EODS |
|--------------------------------|--------------------------------|
| 1                              | 1                              |
| 1*                             | 1                              |
| 1*                             | 1                              |
| 1*                             | 1                              |
| 1*                             | 1                              |
| 1                              | 1                              |
| 1*                             | 1                              |
| 1*                             | 1                              |
| 1*                             | 1                              |

**Table:** Criteria 2 non-compliance flags determined from transmission constraints utilization calculations

42

#### Criteria 3 – Land Use & Environmental Constraints


- Mapping should not exceed available land area to accommodate the resources.
- Mapping should seek to limit use of land with high environmental implications.
- In addition to relocating to other substations, possible solution is increasing gen-tie distance affecting criteria 1)
- Compliance criteria flags divided into two parts:
  - Criteria 3a) utilizes a CEC developed environmental implications layer
  - Criteria 3b) assess impacts from individual datasets
- Compliance criteria flag thresholds:
  - 3a) Level-2: > 50% of lower-implication potential area;
  - 3a) Level-3: > 75% of total potential area;
  - 3b) Level-2: 2 or more datasets with > 75% or 1 or more datasets with 95% or greater;
  - 3b) Level-3: 4 or more datasets with > 75% or 2 or more datasets with 95% or greater.



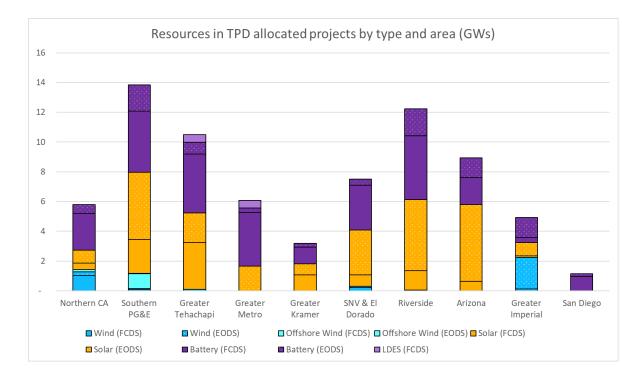
**Figure:** Criteria 3a and 1 analysis for the Kramer substation

## Criteria 4 – Commercial Development Interest

- Mapping, to extent possible, should align with planned procurement by LSEs and the level of resources proposed in the CAISO interconnection queue and other relevant in queues.
- Prioritize "high-confidence" commercial interest:
  - In-development/identified resources in LSE plans
  - Resources with CAISO TPD allocations
  - Resource with executed IAs in CAISO or other queues
- Total commercial interest includes projects in queues still in initial study phases or not yet in an interconnection queue.
- Assess if mapping exceeds commercial interest or if it is significantly less than the commercial interest.



#### Interconnection Queues Utilized


- CAISO Interconnection Queue
- IID Interconnection Queue<sup>1</sup>
- NVEP Interconnection Queue<sup>1</sup>
- SCE WDAT Interconnection Queue<sup>2</sup>
- PG&E WDT Interconnection Queue<sup>2</sup>
- SDGE WDAT Interconnection Queue<sup>2</sup>

44

<sup>&</sup>lt;sup>1</sup>Primarily for geothermal resources <sup>2</sup>Biomass/gas and larger projects >5 MWs

# Criteria 4 – Commercial Development Interest (cont'd)

- Criteria analysis is conducted on a busbar level (prior to 22-23 TPP, only RESOVLE area level)
  - Some resources at lower voltage buses included in nearest system level bus.
- Prioritize FCDS TPD alignment. **Note**: TPD from CAISO still confidential, so not included at substation level in Mapping Dashboards.
- Criteria Compliance Flags factors:
  - Alignment with high and total commercial interest
  - Amount mapped was more or less than commercial interest.
- Thresholds for level-2 and level-3 non-compliance variable depending on confidence-level
- Final flag utilizes a combined assessment



|        | Mapped          | d Amounts       | (MWs)   | Ex              | Executed IA Amounts (MWs) |                 |      | All Projects Amounts (MWs) |      |                 |      |                 |      | Final Flags |      |       |         |
|--------|-----------------|-----------------|---------|-----------------|---------------------------|-----------------|------|----------------------------|------|-----------------|------|-----------------|------|-------------|------|-------|---------|
|        | Solar<br>(FCDS) | Solar<br>(EODS) | Battery | Solar<br>(FCDS) | Flag                      | Solar<br>(EODS) | Flag | Battery                    | Flag | Solar<br>(FCDS) | Flag | Solar<br>(EODS) | Flag | Battery     | Flag | Solar | Battery |
| Sample | 110.0           | 250.0           | 100.0   | 50.0            | 2                         | 100.0           | 3    | 75.0                       | 1    | 50.0            | 2    | 1,500.0         | 2+   | 1,475.0     | 2+   | 2     | 1+      |

**Table:** Analysis of commercial interest at a hypothetical substation

## Criteria 5 – Alignment with prior TPP portfolios

- Mapping should be relatively consistent with prior years.
  - The Base Case compared to base cases of prior years
  - Sensitivity Portfolios compared to similar issue-focused portfolios of prior years
- Goal is to avoid significantly reducing transmission impacts of prior years' mapping without clear reasons which are explicitly justified.
- Criteria Following review by CAISO staff and woCompliance Flags focuses on reduction from prior years:
  - Level-2: Any reduction in resource compared to prior year
  - Level-3: Significant reduction in resources (500 MW or 50%)
- Following working group discussion, non-compliance can be reduced if changes are estimated to not significantly affect transmission implications.

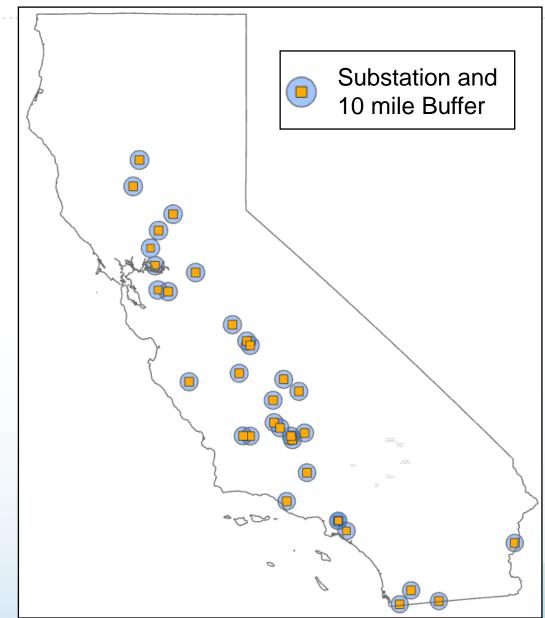
# CEC's Mapping Land-Use and Environmental Analysis



#### **Land-Use Evaluation for Busbar Mapping**

Presenter: Erica Brand

Siting, Transmission, and Environmental Protection Division


Date: October 20, 2022

# Overview Overview

- CPUC disaggregates geographically coarse zonal results from RESOLVE to specific substations for transmission analysis
- CEC Performs Land-Use Evaluation:
  - Resource Potential Area for each Technology
  - Environmental Implications Model
  - Calculate Metrics on Area Around Substation
- Report back to CPUC metrics on environmental and land use characteristics of proposed resource allocation to substations



# **Substations List**



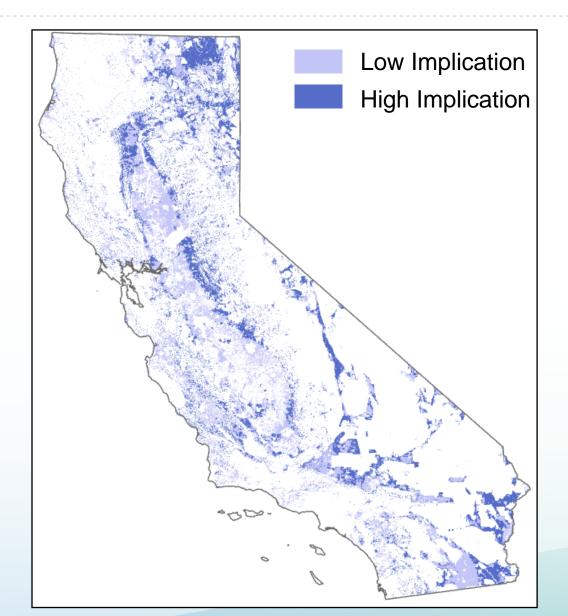
- CPUC provides list of substations intended for additional capacity for each technology
- Geolocate the substation from CEC and Homeland Infrastructure Foundation Level Data (HIFLD) databases of substations



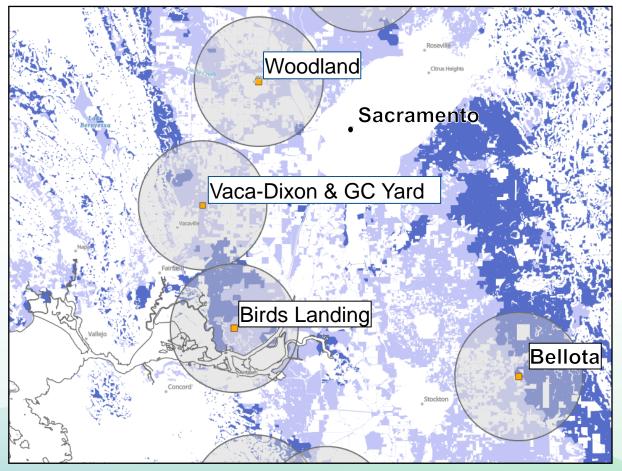
# **Summary of Analysis**

- Buffer substations by chosen radius (10 or 15 miles)
- Intersect with resource potential map for each technology
- Analyze land-use and environmental factors within this area
  - Main Ecological and Biodiversity factors bundled into model, single measure
    - Biodiversity
    - Connectivity
    - Landscape Intactness
    - Individual components to understand driving force behind model score:
      - Natural Landscape Blocks
      - Native Species Richness
      - Rarity of Species
      - Irreplaceability
  - Stand-alone Factors:
    - Important Bird Areas
    - Fire-Threat Tier
- Metrics reported back to CPUC to help inform decisions




# **Environmental Implications Model**

- Exclude lands that are unfeasible to build on
  - Military, urban areas, slope, protected areas (RETI Category 1 and 2 Lands)
- Multi-criteria evaluation method on remaining land
  - Composite score of three data sets:
    - Terrestrial Biodiversity<sup>1</sup>
    - Terrestrial Connectivity<sup>1</sup>
    - Landscape Intactness<sup>2</sup>
- Classify model results into high and low categories to identify potential implications



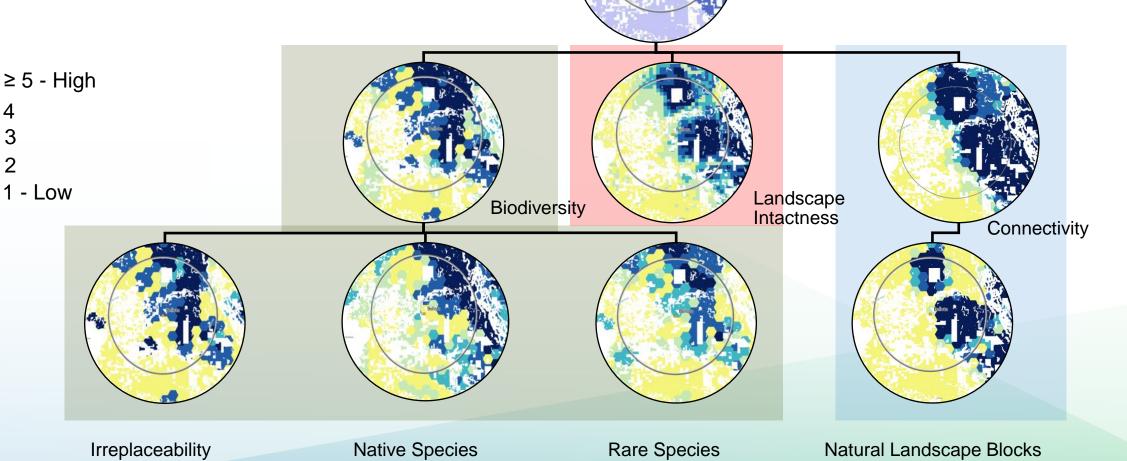



### **Binary Classification of Environmental Model**



- Overlayed on Solar Resource Area
- Buffered areas around substations for high-level analysis - metrics

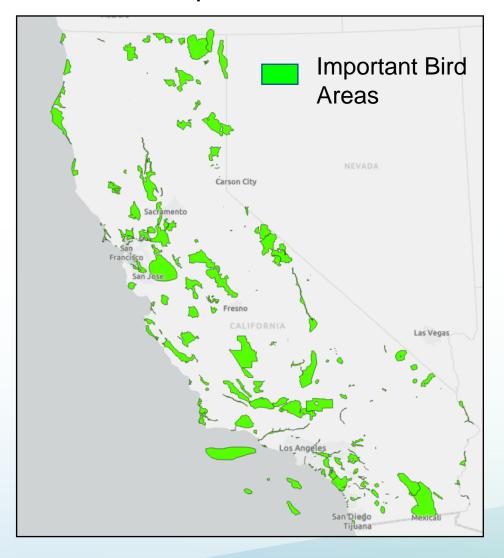




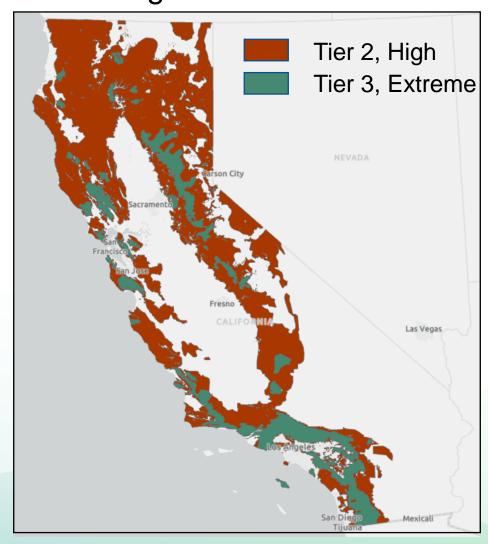

# Individual Components of Environmental Implications



High Implication

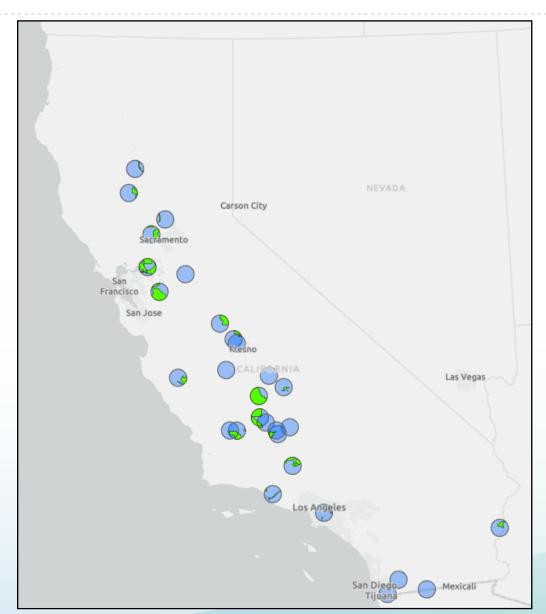

Model Results






# **Stand-Alone Data Sets:**

#### Audubon Important Bird Areas<sup>3</sup>




#### CPUC High Fire Threat Districts<sup>4</sup>





# **Intersect with Substation Buffers**





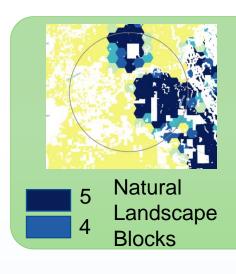


# Solar Resource Metrics Analysis I

 Main Model Results: Of the low implication land available in the solar resource potential map, how much land area will the allocated MW require?



#### Percent Low Implication Build


- Total Acreage of Allocated Resource
  - 1,430 MW Allocated Resource → 7 Acres/MW → 10,010 Acres
- Total Acreage of Low Implication Land

| Substation |                               |
|------------|-------------------------------|
|            | Percent Low Implication Build |
| Bellota    | 19                            |

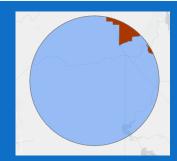


# Solar Resource Metrics Analysis II

 Individual Components: Of the total resource potential land available, what percentage of it is occupied by highly ranked scores of the individual data variables that make up the environmental implication model?



#### Percentage of High Characteristic


- Total Acreage of Highly-Ranked Biodiversity, Connectivity, Intactness, Natural Landscape Blocks, Native Species Richness, Rarity, Irreplaceability
- Total Acreage of Resource Potential

| Substation | Percent of Highest Two Ranks in the Solar Resource Potential 10-mile Buffers |              |            |                          |                |        |                 |
|------------|------------------------------------------------------------------------------|--------------|------------|--------------------------|----------------|--------|-----------------|
|            | Biodiversity                                                                 | Connectivity | Intactness | Natural Landscape Blocks | Native Species | Rarity | Irreplacability |
| Bellota    | 55                                                                           | 41           | 42         | 40                       | 34             | 28     | 51              |

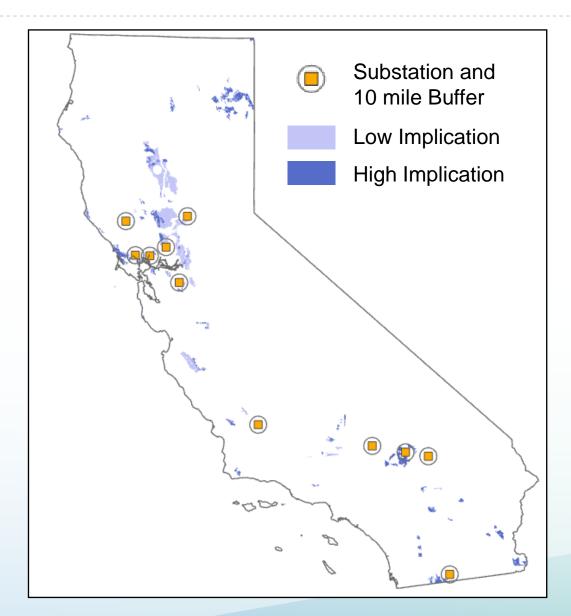


# **Solar Resource Metrics Analysis III**

 Stand-Alone Data Sets: Of the total buffer area around the substation, how much of the area intersects with an Important Bird Area or High Fire Threat District?



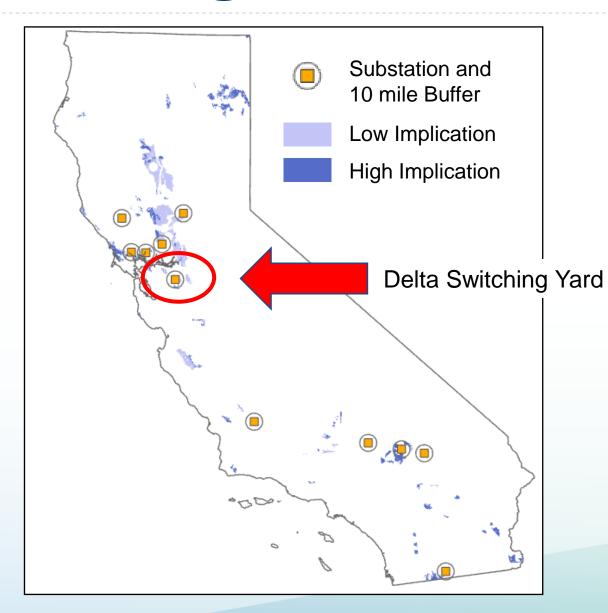
#### Percentage of High Fire Threat Areas


- Total Acreage of High Fire Threat Tier 2 and Tier 3
- Total Acreage of Buffer

High Fire Threat Tiers 2 and 3

| Substation | Percent of Buffer                |                      |  |  |  |
|------------|----------------------------------|----------------------|--|--|--|
|            | Sum of Tiers 2 and 3 Fire Threat | Important Bird Areas |  |  |  |
| Bellota    | 3                                | 0                    |  |  |  |

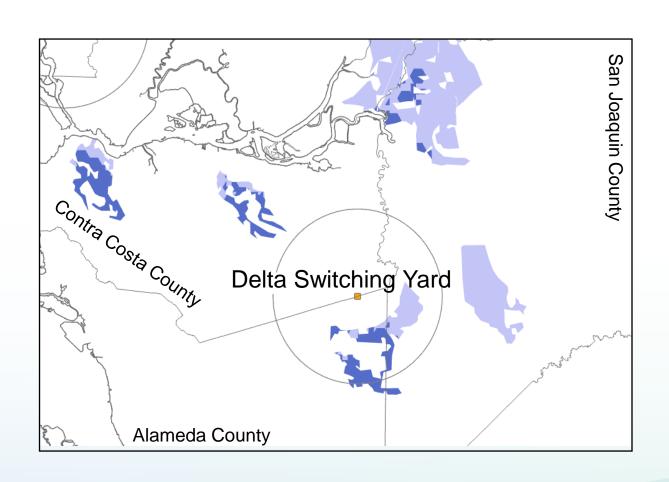



## **Terrestrial Wind Resource Potential**



- Limited spatial extent of resource potential
- Environmental Implications Model overlayed on resource potential
- Already divided into Wind Resource Polygon Areas, minimum sized project areas

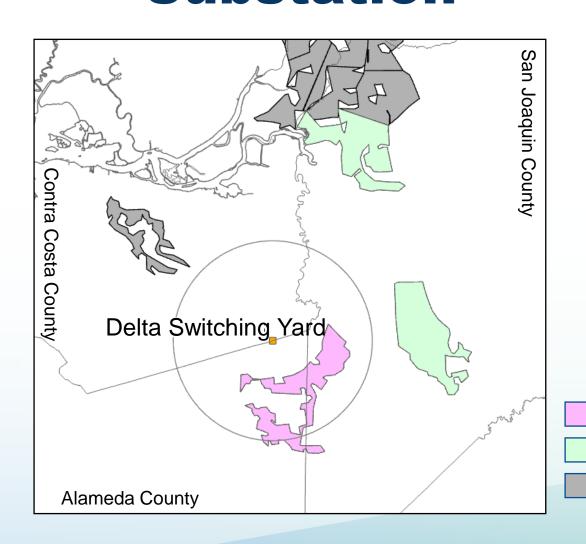



# **High Resolution Evaluation**



- Limited spatial extent of resource potential
- Environmental Implications Model overlayed on resource potential
- Already divided into Wind Resource Polygon Areas, minimum sized project areas




# **Adjusted Method**



- Start with an intersection of wind resource areas to substation buffer
- Manually match wind resource polygons to substation even if outside of buffer radius
  - Proximity and within same transmission zone/grouping
- Calculate Land-Use Environmental Metrics on those areas



# **Example: Manual Assignment of Wind Resource Polygons to Substation**



 Can add as many as are needed to fulfill the desired resource allocation

Wind Resource Polygons Intersected by Substation

Wind Resource Polygons Manually Chosen for Substation

Other Wind Resource Polygons under Consideration



# **Metrics Report for Wind:**

#### Percent Low Implication Build

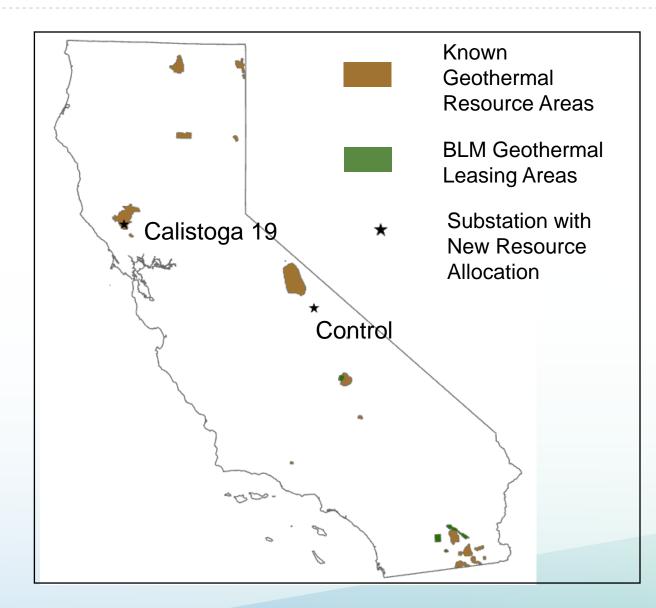
- Low implication area
- Allocated Resource Conversion:
  - 40 Acres/MW

|                      | Percent Low Implication Build |  |
|----------------------|-------------------------------|--|
| Delta Switching Yard | 24                            |  |

#### Percentage of High Characteristic in Environmental Implications Model

Area of highest two ranks divided by area of total resource potential (sum of all wind resource polygons associated with substation)

|                      | Percent of Highest Two Ranks in the Wind Resource Area |              |            |                          |                |        |                  |
|----------------------|--------------------------------------------------------|--------------|------------|--------------------------|----------------|--------|------------------|
|                      | Biodiversity                                           | Connectivity | Intactness | Natural Landscape Blocks | Native Species | Rarity | Irreplaceability |
| Delta Switching Yard | 68                                                     | 12           | 13         | 14                       | 41             | 90     | 57               |


#### Percent of Buffer

- Area of IBA and HFTD within buffer
- Divided by the area of the buffer

|                      | Percent of Area                  |    |  |  |
|----------------------|----------------------------------|----|--|--|
|                      | Fire Threat Important Bird Areas |    |  |  |
| Delta Switching Yard | 0                                | 53 |  |  |



# Geothermal



- Even more spatially constrained
- Apply Environmental Implications Model results to nearest geothermal resource potential field
- Calculate metrics to report back to the CPUC
- 5 acres/MW conversion factor
- Calculate IBA and Fire Threat percentages in field, no buffers



# **Metrics Report for Geothermal**

#### Geothermal Resource Build: Low Implication Land

|                        | ACRES_LOW IMPLICATION | TOTAL ACRES | GEOTHERMAL MW Assigned | GEOTHERMAL Resource Acres | Percent Low Implication Build |
|------------------------|-----------------------|-------------|------------------------|---------------------------|-------------------------------|
| SUBSTATION             | Resource              | Resource    |                        | 5 ACRES/MW                |                               |
| Calistoga 19 (Geysers) | 117,594               | 311,534     | 99                     | 495                       | 0.42%                         |
|                        |                       |             |                        |                           |                               |
| Control                | 76,699                | 425,639     | 40                     | 200                       | 0.26%                         |

#### Ecological Summary: High Characteristic Percentage of Total Resource Potential

| Terrestrial Connectivity | 6   | 7     | Total Area | Percent Total Resource Area |
|--------------------------|-----|-------|------------|-----------------------------|
| Geysers                  | 381 | 1,337 | 311,534    | 1%                          |
| Long Valley              | -   | -     | 425,639    | 0%                          |

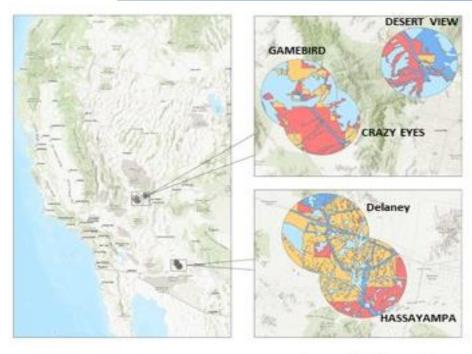
#### Stand-Alone Data Sets: Percent of IBA or Fire Threat in Geothermal Field Associated with Substation

|             | IBA ACRES | PERCENT RESOURCE |
|-------------|-----------|------------------|
| RESOURCE    |           |                  |
| Geysers     | 70,458    | 23%              |
| Long Valley | 219,199   | 55%              |

66



- CPUC provides a list of substations and their proposed resource allocation
- CEC uses resource potential maps to spatially define areas that are available for solar, wind or geothermal energy build
- CEC further evaluates the buffered area around each substation in terms of environmental implications and risk factors throughout the buffer.
- CEC returns metrics to CPUC to elucidate any issues with resource allocation or to flag potential non-compliance with Criteria 3a or 3b.




## References

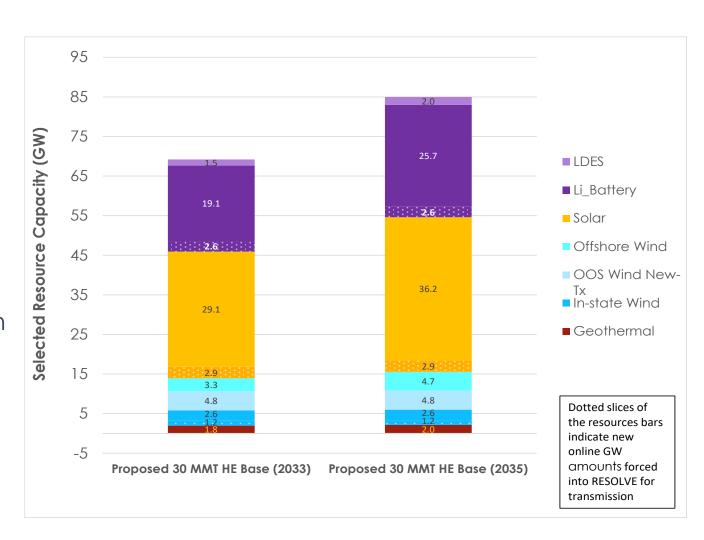
- 1. Areas of Conservation Emphasis. California Department of Fish and Wildlife. 2018. Accessed 2018 https://wildlife.ca.gov/Data/Analysis/Ace
- 2. Degagne, R., J. Brice, M. Gough, T. Sheehan, and J. Strittholt. Terrestrial Landscape Intactness 1 km, California. Conservation Biology Institute, December 2016. From DataBasin.org: https://databasin.org/datasets/e3ee00e8d94a4de58082fdbc91248a65
- California Important Bird Areas. Audubon. 2016. https://ca.audubon.org/conservation/california-important-bird-areas-gis-data-and-methods
- CPUC Fire-Threat Map. State of California Public Utilities Commission. 2021. https://files.cpuc.ca.gov/safety/firethreat\_map/2018/PrintablePDFs/8.5X11inch\_PDF/CPUC\_Fire-Threat\_Map\_final.pdf

#### Out-of-State Land-use Evaluation

- For out-of-state resource still within the CAISO BAA, CPUC staff utilize alternative land-use data sets available for areas outside of California.
- Data source: <u>WECC Environmental Data Viewer</u>
  - Risk class 1: Least Risk of Environmental or Cultural Resource Sensitivities and Constraints
  - Risk class 2: Low to Moderate Risk of Environmental or Cultural Resource Sensitivities and Constraints
  - Risk class 3: High Risk of Environmental or Cultural Resource Sensitivities and Constraints
  - Risk class 4: Areas Presently Precluded by Law or Regulation
- Class 4 land is excluded from resource potential
- Class 2 land is correlated to low environmental implications; Class 3 land is correlated to high implications

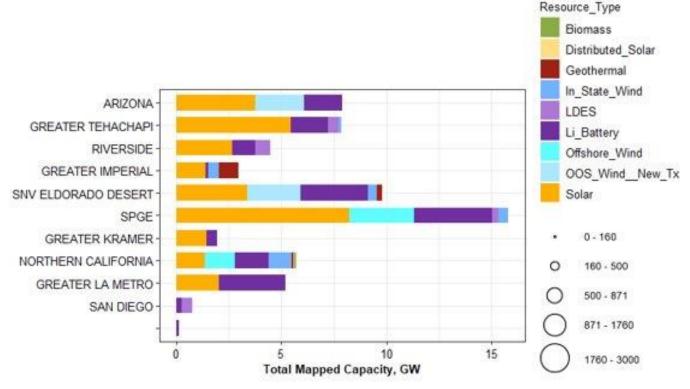




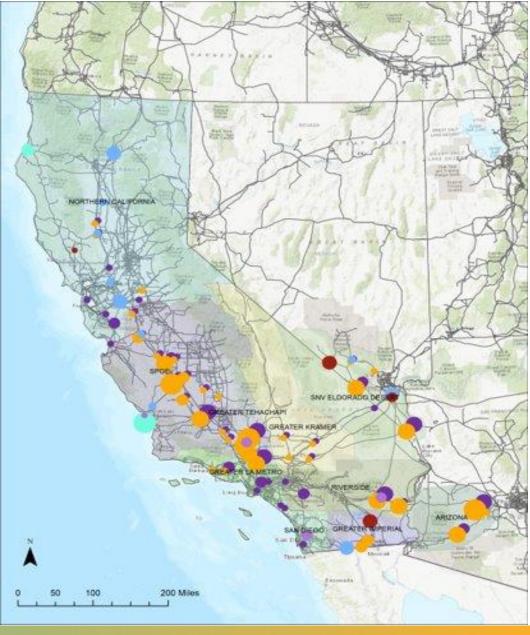

Legend
CPA within WECC Risk
Class 2
CPA within WECC Risk
Class 3
CPA resource within 10
miles of substation
10 mile area around
substation

|             | D                                       |       | D                                    |       |
|-------------|-----------------------------------------|-------|--------------------------------------|-------|
| Substation  | Percent of solar r<br>that occurs on RO |       | Percent of solar<br>that occurs on F |       |
| DELANEY     |                                         | 8.5%  |                                      | 75.7% |
| GAMEBIRD    |                                         | 54.7% |                                      | 39.7% |
| HASSAYAMPA  |                                         | 31.2% |                                      | 57.7% |
| CRAZY EYES  |                                         | 40.8% |                                      | 20.5% |
| DESERT VIEW |                                         | 54.3% |                                      | 4.1%  |

# Preliminary Mapping Results – Proposed 30 MMT High Electrification Base Case

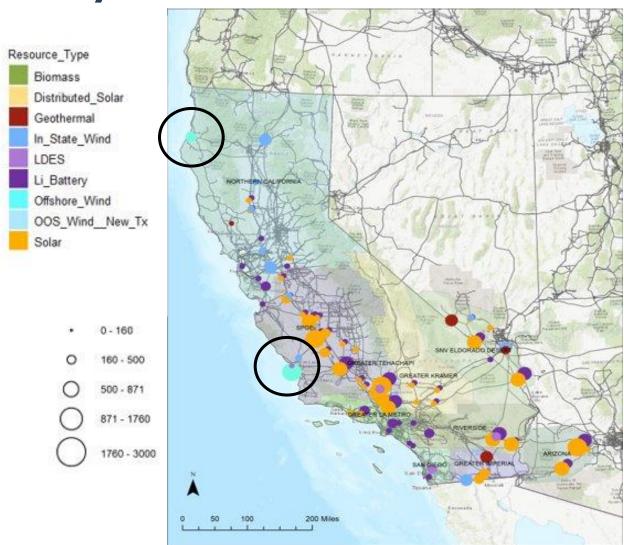

### Preliminary Mapping Results – Overview

- Working Group staff conducted an initial round of mapping for the proposed base case.
- Mapped resources and completed busbar mapping criteria analysis for both 2033 and 2035 years:
  - 2033 Mapping Results: <u>Dashboard Link</u>
  - 2035 Mapping Results: <u>Dashboard Link</u>
- Preliminary results are a snapshot from the middle of the mapping process, before additional rounds of mapping with reallocation and relocation of resources to better optimize criteria alignment.




## Preliminary Mapping Results – Mapping Summary

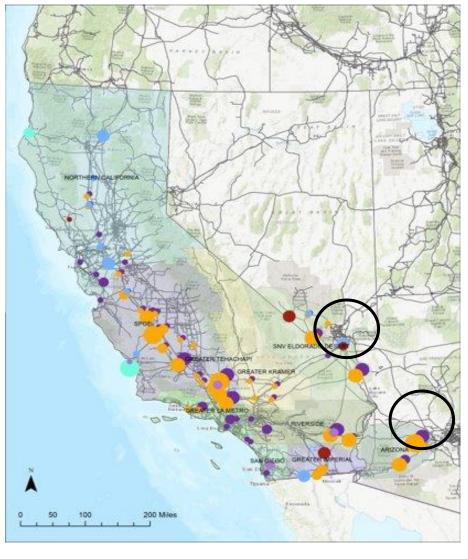
- Geographic distribution of generic resources in the 2035 portfolio, by resource area (below) and by substation location (right)
- Out of state wind and geothermal (imported at CAISO interties) are not plotted in map




\*Map visualizations do not full capture all mapped resources, some inconsistencies with complete workbook results

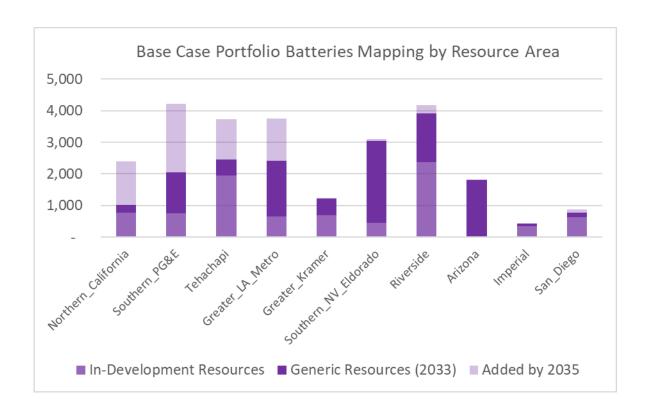


#### Preliminary Mapping Results - Key Resource: OSW


- Offshore Wind Mapping
  - 2033: 3,261 MW (3,100 MW at Morro Bay, 161 MW at Humboldt)
  - 2035: 4,707 MW (3,100 MW at Morro Bay, 1,607 MW at Humboldt
- Mapping aligns with RESOLVE selection and utilizes RESOLVE resource density assumptions
- Transmission implications by 2035:
  - Central Coast: Morro Bay wind can either tie into Diablo Canyon substation or a new 500 kV Morro Bay sub (a small transmission upgrade)
  - North Coast: Initial few hundred MWs can be energy only (as mapped in 2033), but full Humboldt wind requires major transmission upgrade to interconnect. Potential options identified in 21-22 TPP offshore wind sensitivity study.



#### Preliminary Mapping Results – Key Resources: OOS


- Out-of-State Wind on new transmission
  - Complete build-out of RESOLVE available resources before 2033.
  - Mapped locations (same for 2033 & 2035)
    - 2,328 MW of New Mexico Wind interconnecting at Palo Verde
    - 1,500 MW of Wyoming wind interconnecting at Harry Allen or El Dorado
    - 1,000 MW of Idaho Wind interconnecting at Harry Allen
- Mapping shifted RESOLVE selected resources around to better align with potential transmission upgrades





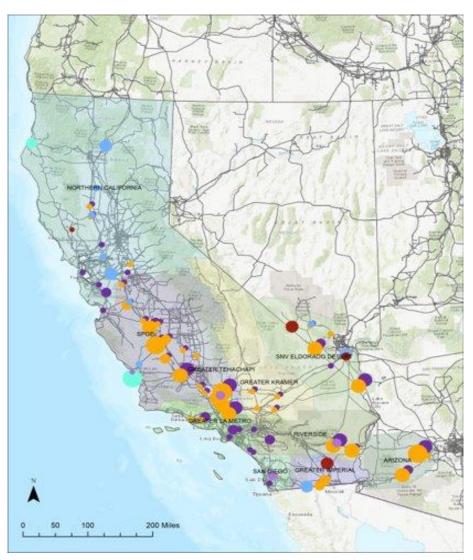
#### Preliminary Mapping Results – Battery Results

- Mapped in-development and generic batteries alignment with batter mapping criteria for both 2033 and 2035 (right)
- Mapped batteries by resource area (below)



| Battery Criteria Su                   | mmary     |           |
|---------------------------------------|-----------|-----------|
| Battery Category                      | 2033 (MW) | 2035 (MW) |
| Co-Located                            | 14,587    | 19,448    |
| Stand-Alone                           | 4,495     | 6,277     |
| Total in LCR Areas                    | 19,082    | 25,725    |
|                                       |           |           |
| Co-Located in LCR Areas               | 2,275     | 2,560     |
| Stand-Alone in LCR Areas              | 2,802     | 3,719     |
| Total in LCR Areas                    | 5,077     | 6,279     |
|                                       |           |           |
| Co-Located in DACs                    | 2,144     | 3,146     |
| Stand-Alone in DACs                   | 1,542     | 1,984     |
| Total in DACs                         | 3,686     | 5,130     |
|                                       |           |           |
| Co-Located in Non-Attainment Zones    | 8,452     | 12,735    |
| Stand-Alone in Non-Attainment Zones   | 3,079     | 4,714     |
| Total in Non-Attainment Zones         | 11,531    | 17,449    |
|                                       |           |           |
| Co-Located in High-Curtailment Zones  | 9,893     | 12,962    |
| Stand-Alone in High-Curtailment Zones | 350       | 475       |
| Total in High-Curtailment Zones       | 10,243    | 13,437    |

#### Preliminary Mapping Results – Transmission Implications


 Preliminary mapping impacts on transmission constraints by region and ability of CAISO identified upgrades to alleviate them.

 Working group has not assessed cost effectiveness of all identified upgrades, only ability to accommodate the

resources.

|                                | Actual Co | nstraints | Potentially | Alleviated | Default Co | onstraints |  |
|--------------------------------|-----------|-----------|-------------|------------|------------|------------|--|
| 2033 Tx Constraint Exceedances | Exce      | eded      | by Up       | grade      | Exceeded   |            |  |
|                                | FCDS      | EODS      | FCDS        | EODS       | FCDS       | EODS       |  |
| Northern CA                    | 3         | 0         | 3           | 0          | 0          | 1          |  |
| Southern PG&E                  | 3         | 5         | 2           | 5          | 6          | 3          |  |
| Tehacahpi and Greater LA Metro | 0         | 0         | 0           | 0          | 0          | 0          |  |
| Greater Kramer                 | 2         | 0         | 2           | 0          | 0          | 0          |  |
| Southern NV & Eldorado         | 0         | 0         | 0           | 0          | 2          | 0          |  |
| Riverside & Arizona            | 2         | 0         | 1           | 0          | 0          | 0          |  |
| San Diego & Greater Imperial   | 4         | 1         | 3           | 0          | 0          | 0          |  |

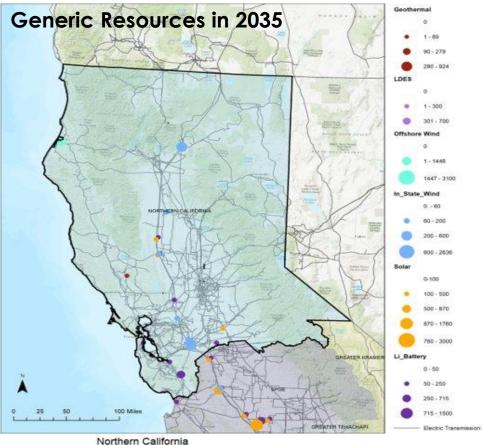
| 2035 Tx Constraint Exceedances |      | onstraints<br>eded | Potentially<br>by Up | Alleviated grade |      | onstraints<br>eded |
|--------------------------------|------|--------------------|----------------------|------------------|------|--------------------|
|                                | FCDS | EODS               | FCDS                 | EODS             | FCDS | EODS               |
| Northern CA                    | 4    | 0                  | 3                    | 0                | 0    | 1                  |
| Southern PG&E                  | 5    | 4                  | 2                    | 4                | 6    | 2                  |
| Tehacahpi and Greater LA Metro | 1    | 0                  | 1                    | 0                | 0    | 0                  |
| Greater Kramer                 | 2    | 0                  | 2                    | 0                | 0    | 0                  |
| Southern NV & Eldorado         | 0    | 0                  | 0                    | 0                | 2    | 0                  |
| Riverside & Arizona            | 2    | 0                  | 1                    | 0                | 0    | 0                  |
| San Diego & Greater Imperial   | 4    | 1                  | 3                    | 0                | 0    | 0                  |

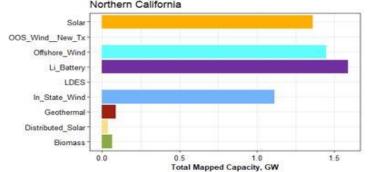


#### Preliminary Mapping Results – Imports

- Working group staff worked to better identify out of CAISO resources, their interconnection points, and MIC expansion implications.
- Dashboard includes tab providing mapping details for out of CAISO resources.

|                                               |                     |        |                                                                 |                           |                                          |                  |                                                                             | Electrific   | TPP 30 MM<br>cation Base<br>nd Generic | e Portfolio   |              | and PTO Idelopment R | dentified In-<br>Resources | Incr         | remental G<br>Resource |               |
|-----------------------------------------------|---------------------|--------|-----------------------------------------------------------------|---------------------------|------------------------------------------|------------------|-----------------------------------------------------------------------------|--------------|----------------------------------------|---------------|--------------|----------------------|----------------------------|--------------|------------------------|---------------|
| Transmission Area                             | CAISO<br>Substation |        | Out-of-CAISO substation                                         |                           | Out-of-CAISO<br>Transmission<br>Utilized |                  | d Notes on CAISO interites                                                  | FCDS<br>(MW) | EODS<br>(MW)                           | Total<br>(MW) | FCDS<br>(MW) | EODS<br>(MW)         | Total<br>(MW)              | FCDS<br>(MW) | EODS<br>(MW)           | Total<br>(MW) |
| East of Pisgah Study Area                     | Eldorado            |        | 0 NVEP substations                                              | 11. 11. 11.               | Existing Tx                              | Expanding MIC    |                                                                             | 40           | · · ·                                  | 40            |              |                      | 40.0                       |              | -                      | -             |
| East of Pisgah Study Area                     | Eldorado            |        | Aeolus 500 kV<br>0 (proposed, WY)                               | OOS Wind, Wyoming Wind    | New Tx                                   |                  | Can consider Harry Allen interite                                           | 1,500        | -                                      | 1,500         | -            |                      | -                          | 1,500        | -                      | 1,500         |
| East of Pisgah Study Area                     | Gondor              | 34.5   | 5 NVEP substations                                              | Geothermal, Northern NV   | Existing Tx                              | Expanding MIC    | GONDIPPDC_ITC intertie                                                      | 68           | ,   -                                  | 68            | 36.0         | 5 -                  | 36.0                       | 32           | 1 -                    | 32            |
| <u> </u>                                      |                     |        | Eagle 120 kV (NVEP),<br>Falcon 120 kV (NVEP),                   |                           |                                          |                  | CPUC assuming resource is wheeled down ON-line; Can consider other NVEP     |              |                                        | 247           |              |                      |                            |              |                        |               |
| East of Pisgah Study Area                     | Harry Allen         | 500    | 0 Millers 120 kV (NVEP)                                         | Geothermal, Northern NV   | Existing Tx                              | Expanding MIC    | interties                                                                   | 247          |                                        | 247           |              |                      |                            | 247          |                        | 247           |
| East of Pisgah Study Area                     | Harry Allen         | 500    | 0 Midpoint 345 kV (ID)                                          | OOS Wind, Idaho Wind      | New Tx                                   | Expanding MIC    |                                                                             | 1,000        | -                                      | 1,000         | -            |                      | - /                        | 1,000        | 0 -                    | 1,000         |
| SDG&E Study Area                              | Imperial Vall       | ıl 230 | 0 IID System                                                    | Geothermal, Imperial      | Existing Tx                              | Expanding MIC    | IID-SDGE intertie                                                           | 50           |                                        | 50            | 50.0         | 0 -                  | 50.0                       | - /          | 4 -/                   | -             |
| CCT Factors Childu Area                       | Mairing             |        | Bannister 230 kV (IID),<br>Midway 230 kv (IID),<br>Proposed New |                           | Existing Tx                              |                  | COURT TO COE Intentio                                                       | 024          |                                        | 024           |              |                      |                            | 03/          |                        | 024           |
| SCE Eastern Study Area SCE Eastern Study Area | Mirage<br>Mirage    |        |                                                                 | , ·                       | and New Tx Existing Tx                   |                  | CPUC presumed IID-SCE intertie IID-SCE intertie                             | 924          |                                        | 924           | _            |                      |                            | 924          | 4 -                    | 924           |
| SCE Eastern Study Area                        | Palo Verde          |        | Proposed Substation,                                            | OOS Wind, New Mexico Wind |                                          | Expanding MIC    |                                                                             | 2,328        |                                        | 2,328         |              | _                    |                            | 2,328        | 3 -                    | 2,328         |
| SCE North of Lugo (NOL) Stud                  | ıd Silver Peak      | 55     | 5 NVEP substations                                              | Geothermal, Northern NV   | Existing Tx                              | Expanding MIC    | Can also consider other NVEP interties if lacking technical line capacity   | 13           | -                                      | 13            | 13.0         | <b>)</b> -           | 13.0                       |              |                        | -             |
| PG&E North of Greater Bay S                   | St Summit           | 11!    | 5 NVEP substations                                              | Geothermal, Northern NV   | Existing Tx                              | Existing & Expar | Can also consider other NVEP interties if nelacking technical line capacity | 40           |                                        | 40            | 40.0         | <b>o</b> -           | 40.0                       | _            |                        | -             |


# Preliminary Mapping Results – Summaries by Area


#### Northern California Area – Mapping Summary

 Greater Bay area, North Coast, and Central Valley north of Modesto

| Northern California | In-Devel | opment R | Resources | Generic | Resource | es (2033) | Additional MWs in 2035 |      |       |  |
|---------------------|----------|----------|-----------|---------|----------|-----------|------------------------|------|-------|--|
| Northern Camorna    | FCDS     | EODS     | Total     | FCDS    | EODS     | Total     | FCDS                   | EODS | Total |  |
| Geothermal          | -        | -        | -         | 89      | -        | 89        | -                      | -    | -     |  |
| Solar               | 120      | -        | 120       | 505     | 10       | 515       | 50                     | 782  | 832   |  |
| Wind                | -        | -        | -         | 911     | 292      | 1,203     | -                      | -    | -     |  |
| Humboldt Offshore   | -        | -        | -         | 41      | 120      | 161       | 1,446                  | -    | 1,446 |  |
| Battery             | 782      | -        | 782       | 236     | -        | 236       | 1,383                  | -    | 1,383 |  |

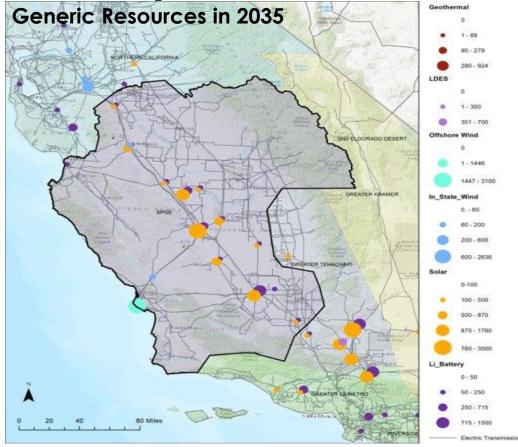
- Key Preliminary 2035 Criteria Implications:
  - 2) Largest constraints significantly exceeded but could be alleviated by CAISO identified upgrades; smaller Humboldt constraint still exceeded even with identified upgrade; Humboldt offshore wind requires major transmission build.
  - 3) A few substations, particularly for wind, have high values for specific environmental datasets.
  - 4) Several substations exceed commercial interest.
  - 5) Reductions in battery and wind resources mapped at several substations, shifted to better align with commercial interest.

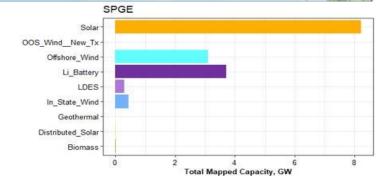




### Northern California Area – 2035 Criteria Alignment by Substation (1/2)

| 2035 Mapping Am      | ount of I | n-Developn       | nent and G   | eneric Res   | ources        |                                                       | Busba | ar Mapping C               | riteria Comp                     | liance                       |                       |
|----------------------|-----------|------------------|--------------|--------------|---------------|-------------------------------------------------------|-------|----------------------------|----------------------------------|------------------------------|-----------------------|
| Substation           | Voltage   | Resource<br>Type | FCDS<br>(MW) | EODS<br>(MW) | Total<br>(MW) | 1. Distance<br>to Trans. of<br>Appropriate<br>Voltage |       | 3a. Available<br>Land Area | 3b.<br>Environment<br>al Impacts | 4.<br>Commercial<br>Interest | 5. Prior Base<br>Case |
| Birds Landing        | 230       | In-State Wind    | 90           | 10           | 100           | 2                                                     | 1*    | 1                          | 1                                | 1                            | 2                     |
| Cortina              | 115       | In-State Wind    | 65           | 33           | 98            | 1                                                     | 3     | 1                          | 1                                | 1*                           | 1                     |
| Delta Switching Yard | 230       | In-State Wind    | 80           | -            | 80            | 1                                                     | 1*    | 1                          | 1                                | 1                            | 1                     |
| Glenn                | 230       | In-State Wind    | 30           | 98           | 128           | 1                                                     | 1*    | 1                          | 1                                | 3                            | 2*                    |
| Kelso                | 230       | In-State Wind    | 36           | 25           | 61            | 1                                                     | 1*    | 1                          | 1                                | 2+                           | 1*                    |
| Round Mountain       | 230       | In-State Wind    | 200          | 11           | 211           | 1                                                     | 1*    | 2                          | 3                                | 1                            | 2                     |
| Tesla                | 230       | In-State Wind    | 80           | 25           | 105           | 1                                                     | 1*    | 1                          | 1                                | 2+                           | 2                     |
| Tesla                | 500       | In-State Wind    | 330          | -            | 330           | 1*                                                    | 1*    | 1                          | 1                                | 2+                           | 1                     |
| Thermalito           | 230       | In-State Wind    | -            | -            | -             | 1                                                     | 1*    | 1                          | 1                                | 1                            | 3                     |
| Delevan              | 230       | In-State Wind    | -            | -            | -             | 1                                                     | 1*    | 1                          | 1                                | 1                            | 3                     |
| Geysers              | 230       | Geothermal       | 89           | -            | 89            | 1                                                     | 1*    | 1                          | 2                                | 2                            | 1                     |
| Summit               | 115       | Geothermal       | 40           |              | 40            | Not Availabe                                          | 1*    | Not Availabe               | Not Availabe                     | 1                            | 1                     |
| Humboldt (Proposed)  | 500       | Offshore Wind    | 1,487        | -            | 1,487         | Not Availabe                                          | 1*    | Not Availabe               | Not Availabe                     | 3                            | 1                     |
| Humboldt             | 115       | Offshore Wind    | -            | 120          | 120           | Not Availabe                                          | 3     | Not Availabe               | Not Availabe                     | 1                            | 1                     |


Full Criteria Alignment tables for Northern California and all other areas include in Appendix A at end of slides

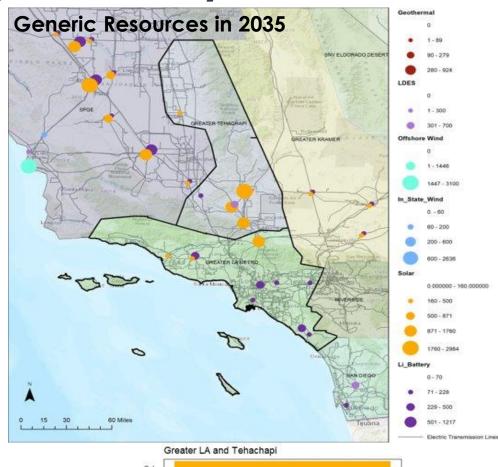

Southern PG&E Area – Mapping Summary

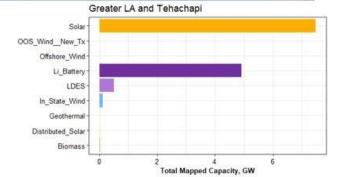
• San Joaquin Valley, Carrizo, and Central Coast

| Southern PG&E      | In-Devel | opment R | Resources | Generic | Resource | es (2033) | Additional MWs in 2035 |       |       |  |
|--------------------|----------|----------|-----------|---------|----------|-----------|------------------------|-------|-------|--|
| Southern PG&E      | FCDS     | EODS     | Total     | FCDS    | EODS     | Total     | FCDS                   | EODS  | Total |  |
| Solar              | 862      | 198      | 1,060     | 1,878   | 3,901    | 5,779     | 265                    | 1,453 | 1,718 |  |
| Wind               | 167      | -        | 167       | 337     | -        | 337       | -                      | -     | -     |  |
| Morro Bay Offshore | -        | -        | -         | 3,100   | -        | 3,100     | -                      | -     | -     |  |
| Battery            | 749      | -        | 749       | 1,304   | -        | 1,304     | 2,175                  | -     | 2,175 |  |
| LDES               | -        | -        | -         | -       | -        | -         | 300                    | -     | 300   |  |

- Key Preliminary 2035 Criteria Implications:
  - 2) Numerous constraint exceedances (9 in 2033, 11 in 2035). Some could be alleviated by CAISO identified upgrades, others have no identified upgrade.
  - 3) Three substations, have high values for specific env. datasets.
  - 4) Numerous substations exceed high-confidence commercial interest but not total commercial interest.
  - 5) Solar+storage resources shifted from several substations to better align with commercial interest.





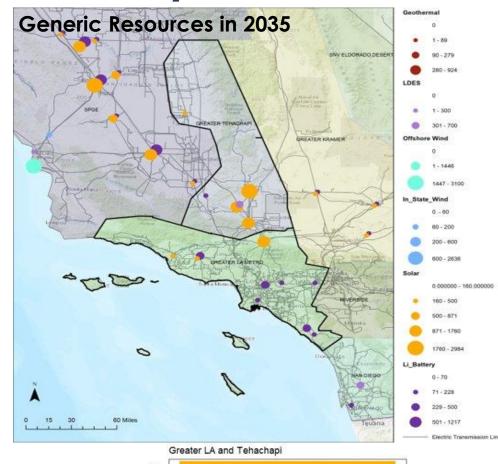


#### Greater Tehachapi Area – Mapping Summary

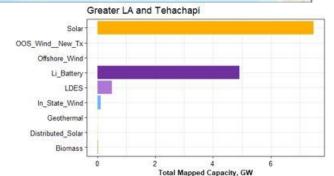
Tehachapi and SCE system north of Tehachapi area

| Greater Tehachapi | In-Devel | opment R | Resources | Generic | Resource | s (2033) | Additional MWs in 2035 |       |       |  |
|-------------------|----------|----------|-----------|---------|----------|----------|------------------------|-------|-------|--|
|                   | FCDS     | EODS     | Total     | FCDS    | EODS     | Total    | FCDS                   | EODS  | Total |  |
| Solar             | 1,031    | 600      | 1,631     | 1,883   | 2,103    | 3,986    | 300                    | 1,150 | 1,450 |  |
| Wind              | 3        | -        | 3         | 112     | -        | 112      | -                      | -     | -     |  |
| Battery           | 1,939    | -        | 1,939     | 507     | -        | 507      | 1,280                  | -     | 1,280 |  |
| LDES              | -        | -        | -         | 500     | -        | 500      | -                      | -     | -     |  |

- Key Preliminary 2035 Criteria Implications:
  - 1) Small amounts of wind resources mapped to two wind resources some distance from substations.
  - One constraint exceeded but can be alleviated by CAISO identified upgrade.
  - A few substations with high values for specific env. datasets.
  - 4) Several substations exceed high-confidence commercial interest amounts but not total amount. Windhub 230 kV bus has less batteries mapped than high-confidence commercial interest.
  - 5) Some reductions in battery resources mapped to three substations, shifted to nearby buses.





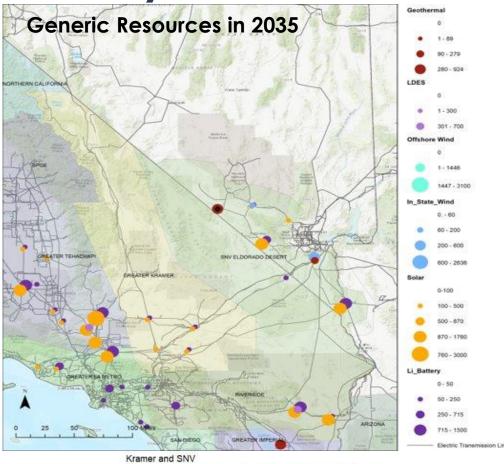


#### Greater LA Metro Area – Mapping Summary

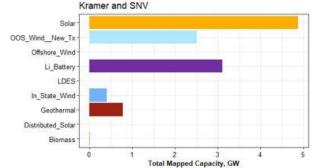
 LA Metro, Orange County, and San Fernando and Simi valleys areas

| Greater LA Metro | In-Devel | opment R | Resources | Generic | Resource | s (2033) | Additional MWs in 2035 |      |       |  |
|------------------|----------|----------|-----------|---------|----------|----------|------------------------|------|-------|--|
| Greater LA Metro | FCDS     | EODS     | Total     | FCDS    | EODS     | Total    | FCDS                   | EODS | Total |  |
| Solar            | -        | 1        | 1         | -       | 1,602    | 1,602    | 125                    | 325  | 450   |  |
| Battery          | 646      | -        | 646       | 1,762   | -        | 1,762    | 1,349                  | -    | 1,349 |  |

- Key Preliminary 2035 Criteria Implications:
  - 1) No identified non-compliance.
  - 2) No exceedances.
  - 3) No identified non-compliance.
  - 4) Two substations have more solar mapped than commercial interest, and two substations have fewer batteries mapped than high confidence commercial interest.
  - 5) Two buses have small reductions in batteries mapped.





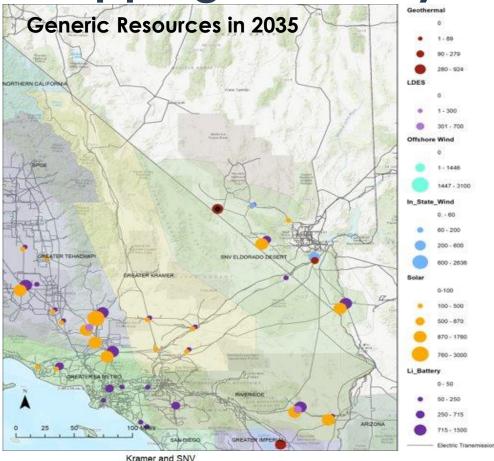


Greater Kramer Area – Mapping Summary

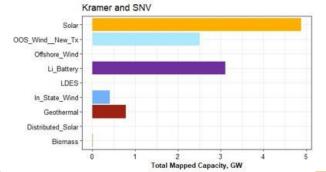
 Kramer area plus areas east to Pisgah and north up to Control

| Greater Kramer     | In-Devel | opment R | esources | Generic | Resource | s (2033) | Additio | nal MWs | in 2035 |
|--------------------|----------|----------|----------|---------|----------|----------|---------|---------|---------|
| Greater Krainer    | FCDS     | EODS     | Total    | FCDS    | EODS     | Total    | FCDS    | EODS    | Total   |
| Nevada Geo. Import | 13       | -        | 13       | -       | -        | -        | -       | -       | -       |
| Solar              | 620      | 510      | 1,130    | 651     | 785      | 1,436    | -       | -       | -       |
| Battery            | 700      | -        | 700      | 514     | -        | 514      | 4       | -       | 4       |

- Key Preliminary 2035 Criteria Implications
  - Kramer bus resources may require longer gen-ties to limit land-use implications
  - Two constraints exceeded, but can be alleviated by CAISO upgrades
  - A few substations with high values for specific env. datasets.
  - A few substations exceed high-confidence commercial interest amounts but not total amount
  - 5) Small reductions in solar & battery resources mapped to three substations, shifted to nearby buses.





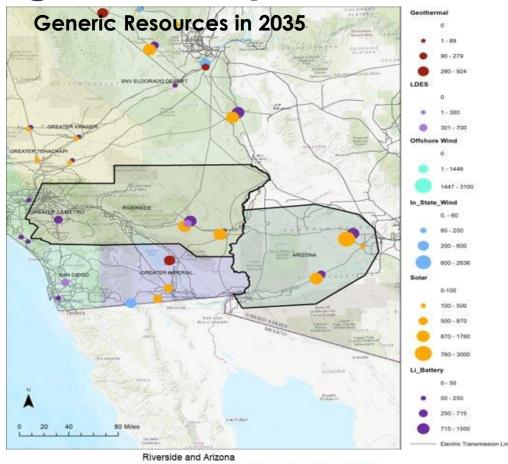


Southern Nevada/El Dorado Area – Mapping Summary

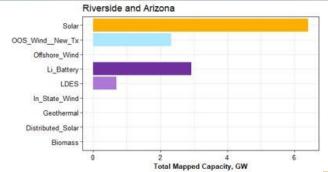
- Southern Nevada, Arizona, and California border area
- Includes key CAISO intertie points, e.g. El Dorado substations

| Southern Nevada & El | In-Devel | opment R | Resources | Generic | Resource | es (2033) | Additional MWs in 2035 |      |       |  |
|----------------------|----------|----------|-----------|---------|----------|-----------|------------------------|------|-------|--|
| Dorado               | FCDS     | EODS     | Total     | FCDS    | EODS     | Total     | FCDS                   | EODS | Total |  |
| Geothermal           | -        | -        | -         | 500     | -        | 500       | -                      | -    | -     |  |
| Nevada Geo. Import   | 116      | -        | 116       | 105     | -        | 105       | 174                    | -    | 174   |  |
| Solar                | 260      | 249      | 509       | 1,172   | 2,172    | 3,344     |                        | 565  | 565   |  |
| Wind                 | -        | -        | -         | 312     | 82       | 394       | -                      | -    | -     |  |
| Battery              | 440      | -        | 440       | 2,594   | -        | 2,594     | 79                     | -    | 79    |  |
| Wyoming Wind Import  | -        | -        | -         | 1,500   | -        | 1,500     |                        |      | -     |  |
| Idaho Wind Import    | -        | -        | -         | 1,000   | -        | 1,000     |                        |      | -     |  |

- Key Preliminary 2035 Criteria Implications
  - 1) Few substations may require longer gen-ties
  - Two constraints exceeded, no identified CAISO upgrades
  - Several substations have limited low potential impact area
  - Several substations exceed high-confidence commercial interest amounts but not total amount
  - 5) Minor reduction in wind resources mapped





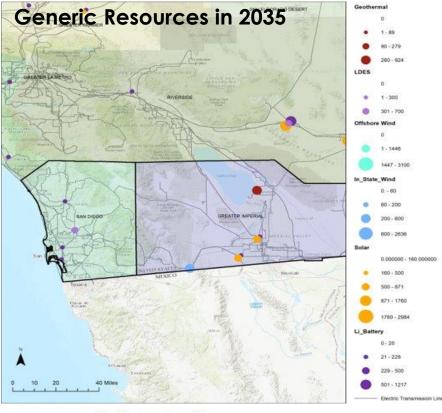


#### Riverside & Arizona Areas – Mapping Summary

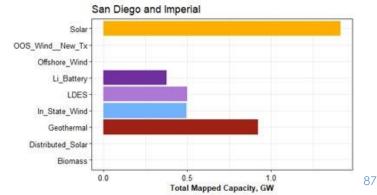
Riverside County and portions of western Arizona

| Riverside & Arizona | In-Devel | opment R | Resources | Generic | Resource | es (2033) | Additional MWs in 2035 |      |       |  |
|---------------------|----------|----------|-----------|---------|----------|-----------|------------------------|------|-------|--|
| Riverside & Arizona | FCDS     | EODS     | Total     | FCDS    | EODS     | Total     | FCDS                   | EODS | Total |  |
| Riverside Solar     | 912      | 1,359    | 2,271     | 21      | 1,956    | 1,977     | 15                     | 670  | 685   |  |
| Arizona Solar       | 350      | -        | 350       | 550     | 2,597    | 3,147     | -                      | 600  | 600   |  |
| Wind                | 9        | -        | 9         | 1       | -        | 1         | -                      | -    | -     |  |
| Riverside Battery   | 2,382    | -        | 2,382     | 1,530   | -        | 1,530     | 258                    | -    | 258   |  |
| Arizona Battery     | -        | -        | -         | 1,805   | -        | 1,805     | -                      | -    | -     |  |
| New Mexico Wind     | -        | -        | -         | 2,328   | -        | 2,328     | -                      | -    | -     |  |
| Riverside LDES      | -        | -        | -         | 700     | -        | 700       | 176                    | -    | 176   |  |

- Key Preliminary 2035 Criteria Implications
  - A few substations may require longer gen-ties to limit land-use implications
  - 2) Riverside and SCE system mapped resources exceed two constraints, one can be alleviated by CAISO upgrade, other constraint upgrade is still exceeded. Remaining Arizona buses impacted by Greater Imperial area constraint exceedance.
  - 4) A few substations have more high-confidence commercial interest than mapped
  - 5) Shift in resources from Hassayampa to Hoodoo Wash.







#### San Diego & Greater Imperial Areas – Mapping Summary

- San Diego and Imperial areas
- Note: Resources mapped to IID's area grouped as either IID-161 kV
   -> Connects through to SDGE intertie or IID-230 kV -> connects
   through SCE intertie

| San Diego & Greater | In-Devel | opment R | Resources | Generic | Resource | s (2033) | Additio | nal MWs | in 2035 |
|---------------------|----------|----------|-----------|---------|----------|----------|---------|---------|---------|
| Imperial            | FCDS     | EODS     | Total     | FCDS    | EODS     | Total    | FCDS    | EODS    | Total   |
| Imp. Geothermal     | 76       | -        | 76        | 924     | -        | 924      | -       | -       | -       |
| Imperial Solar      | 20       | -        | 20        | 100     | 440      | 540      | -       | 213     | 213     |
| Wind                | -        | -        | -         | 135     | 360      | 495      | -       | -       | -       |
| San Diego Battery   | 351      | -        | 351       | 82      | -        | 82       | -       | -       | -       |
| Imperial Battery    | 630      | -        | 630       | 135     | -        | 135      | 115     | -       | 115     |
| San Diego LDES      | -        | -        | -         | 500     | -        | 500      | -       | -       | -       |

- Key Preliminary 2035 Criteria Implications
  - San Diego area resources cause three exceedances which can be mitigated by CAISO upgrades. Imperial area resource cause one constraint exceedance.
  - 3) A few substations have limited low potential impact area.
  - 4) Wind amount mapped to Imperial area substations significantly lower than commercial interests.
  - 5) A few key shifts in battery and wind resources.





### **Next Steps**

#### **Next Steps**

- Stakeholders are encouraged to submit their comments to the Ruling on the proposed 2023-2024 TPP portfolios and preliminary mapping
  - Comment Deadline: October 31, 2022
  - Reply Comment Deadline: November 10, 2022
- Staff will review and incorporate input into the proposed portfolios and busbar mapping effort
- Staff expect the CPUC will finalize and transmit mapped portfolios to the CAISO in Q1 2023 in time for use in the CAISO's 2023-2024 TPP Study Plan

# Appendix A – Criteria Alignment by Substation

### Northern California Area – 2035 Criteria Alignment by Substation (1/2)

| 2035 Mapping Am      | ount of | In-Developn   | nent and G | ieneric Res | ources |              | Busb         | ar Mapping C  | riteria Comp | liance     |               |
|----------------------|---------|---------------|------------|-------------|--------|--------------|--------------|---------------|--------------|------------|---------------|
|                      |         |               |            |             |        | 1. Distance  | 2.           |               |              |            |               |
|                      |         |               |            |             |        | to Trans. of | Transmission |               | 3b.          | 4.         |               |
|                      |         | Resource      | FCDS       | EODS        | Total  | Appropriate  | Capability   | 3a. Available | Environment  | Commercial | 5. Prior Base |
| Substation           | Voltage | Type          | (MW)       | (MW)        | (MW)   | Voltage      | Limit        | Land Area     | al Impacts   | Interest   | Case          |
| Birds Landing        | 230     | In-State Wind | 90         | 10          | 100    | 2            | 1*           | 1             | 1            | 1          | 2             |
| Cortina              | 115     | In-State Wind | 65         | 33          | 98     | 1            | 3            | 1             | 1            | 1*         | 1             |
| Delta Switching Yard | 230     | In-State Wind | 80         | -           | 80     | 1            | 1*           | 1             | 1            | 1          | 1             |
| Glenn                | 230     | In-State Wind | 30         | 98          | 128    | 1            | 1*           | 1             | 1            | 3          | 2*            |
| Kelso                | 230     | In-State Wind | 36         | 25          | 61     | 1            | 1*           | 1             | 1            | 2+         | 1*            |
| Round Mountain       | 230     | In-State Wind | 200        | 11          | 211    | 1            | 1*           | 2             | 3            | 1          | 2             |
| Tesla                | 230     | In-State Wind | 80         | 25          | 105    | 1            | 1*           | 1             | 1            | 2+         | 2             |
| Tesla                | 500     | In-State Wind | 330        | -           | 330    | 1*           | 1*           | 1             | 1            | 2+         | 1             |
| Thermalito           | 230     | In-State Wind | -          | -           | -      | 1            | 1*           | 1             | 1            | 1          | 3             |
| Delevan              | 230     | In-State Wind | _          | _           | -      | 1            | 1*           | 1             | 1            | 1          | 3             |
| Geysers              | 230     | Geothermal    | 89         | -           | 89     | 1            | 1*           | 1             | 2            | 2          | 1             |
| Summit               | 115     | Geothermal    | 40         | -           | 40     | Not Availabe | 1*           | Not Availabe  | Not Availabe | 1          | 1             |
| Humboldt (Proposed)  | 500     | Offshore Wind | 1,487      | -           | 1,487  | Not Availabe | 1*           | Not Availabe  | Not Availabe | 3          | 1             |
| Humboldt             | 115     | Offshore Wind | -          | 120         | 120    | Not Availabe | 3            | Not Availabe  | Not Availabe | 1          | 1             |

#### Northern CA Area – 2035 Criteria Alignment by Sub (2/2)

|             |         |            |       |      |       | 4 5' '                      | -               |                |                |            |               |     |     |                     |                     |                      |
|-------------|---------|------------|-------|------|-------|-----------------------------|-----------------|----------------|----------------|------------|---------------|-----|-----|---------------------|---------------------|----------------------|
|             |         |            |       |      |       | 1. Distance<br>to Trans. of | 2. Transmission |                | 3b.            | 4          |               |     |     |                     | PM2.5               |                      |
|             |         | Resource   | FCDS  | EODS | Total | Appropriate                 |                 | 3a. Available  | Environment    | Commorcial | 5. Prior Base |     |     | O3 non-             | non-                | High                 |
| Substation  | Voltage |            | (MW)  | (MW) | (MW)  | Voltage                     | -               | Land Area      |                | Interest   | Case          | LCR | DAC | attainme<br>nt zone | attainme<br>nt zone | curtailm<br>ent zone |
| Bellota     | Ŭ       | Li Battery | 194   | -    | 194   | Not Applicable              | 1*              | Not Applicable | Not Applicable | 1          | 1             | No  | No  | Yes                 | Yes                 | No                   |
| Bellota     |         | Solar      | 100   |      | 100   | 1                           | 1*              | 1              | 1              | 2          | 1             | 110 | 140 | 103                 | 103                 | 110                  |
| Bellota     |         | Solar      | 100   | 255  | 255   | 1                           | 1               | 1              | 1              | 2          | 1             |     |     |                     |                     | +                    |
| Cayetano    |         | Li Battery | 100   | 233  | 100   | Not Applicable              | 1*              | Not Applicable | Not Applicable | 1          | 1             | Yes | No  | Yes                 | No                  | No                   |
| Cayetano    |         | Solar      | 100   |      | 100   | 1                           | 1*              | 1              | 2              | 1          | 1             | 163 | INO | 163                 | INO                 | INO                  |
| Cortina     |         | Li Battery | 160   | _    | 160   | Not Applicable              | 3               | Not Applicable | Not Applicable | 1          | 1             | No  | No  | No                  | No                  | No                   |
| Cortina     |         | Solar      | - 100 | 230  | 230   | 1                           | 3               | 1              | 1              | 1          | 1             | 110 | 140 | 110                 | 140                 | 110                  |
| Curtis      |         | Li Battery | 10    | -    | 10    | Not Applicable              | 1*              | Not Applicable | Not Applicable | 1          | 1             | No  | No  | Yes                 | No                  | No                   |
| Delevan     |         | Li Battery | 80    | _    | 80    | Not Applicable              | 1*              | Not Applicable | Not Applicable | 1+         | 1             | No  | No  | No                  | No                  | No                   |
| Delevan     |         | Solar      | 50    | 285  | 335   | 1                           | 1*              | 1              | 1              | 1+         | 1             | 110 | 110 | 110                 | 110                 | 110                  |
| Fulton      |         | Li Battery | 25    | -    | 25    | Not Applicable              | 1*              | Not Applicable | Not Applicable | 1          | 1             | Yes | No  | Yes                 | No                  | No                   |
| Geysers     |         | Li Battery | 13    | =    | 13    | Not Applicable              | 1*              | Not Applicable | Not Applicable | 1          | 1             | No  | No  | No                  | No                  | No                   |
| Gold Hill   | 115     |            | 50    | -    | 50    | Not Applicable              | 1*              | Not Applicable | Not Applicable | 1          | 1             | Yes | No  | Yes                 | No                  | No                   |
| Humboldt    | 115     | Li Battery | 5     | -    | 5     | Not Applicable              | 3               | Not Applicable | Not Applicable | 3          | 3             | No  | No  | No                  | No                  | No                   |
| Lakeville   | 230     | Li Battery | 33    | -    | 33    | Not Applicable              | 1*              | Not Applicable | Not Applicable | 1          | 1             | No  | No  | Yes                 | No                  | No                   |
| Los Esteros | 115     | Li_Battery | 203   | -    | 203   | Not Applicable              | 1*              | Not Applicable | Not Applicable | 1+         | 1             | Yes | Yes | Yes                 | No                  | No                   |
| Martin (San | 115     | Li_Battery | 250   | -    | 250   | Not Applicable              | 1*              | Not Applicable | Not Applicable | 1          | 1             | Yes | No  | Yes                 | No                  | No                   |
| Martinez    | 115     | Li_Battery | 20    | -    | 20    | Not Applicable              | 1*              | Not Applicable | Not Applicable | 1          | 1             | No  | Yes | Yes                 | No                  | No                   |
| Mendocino   | 115     | Li_Battery | -     | _    | -     | Not Applicable              | 3               | Not Applicable | Not Applicable | 1          | 3             | No  | No  | No                  | No                  | No                   |
| Metcalf     | 230     | Li_Battery | 425   | -    | 425   | Not Applicable              | 1*              | Not Applicable | Not Applicable | 1          | 1             | No  | No  | Yes                 | No                  | No                   |
| Pittsburg   | 230     | Li_Battery | -     | -    | -     | Not Applicable              | 1*              | Not Applicable | Not Applicable | 2+         | 1             | No  | Yes | Yes                 | No                  | No                   |
| Ripon       | 115     | Li_Battery | 100   | -    | 100   | Not Applicable              | 1*              | Not Applicable | Not Applicable | 1          | 1             | Yes | No  | Yes                 | Yes                 | No                   |
| Tesla       | 230     | Li_Battery | 420   | -    | 420   | Not Applicable              | 1*              | Not Applicable | Not Applicable | 1+         | 1             | No  | No  | Yes                 | No                  | No                   |
| Tesla       | 500     | Solar      | 400   | 10   | 410   | 2                           | 1*              | 1              | 1              | 1          | 1             |     |     |                     |                     |                      |
| Vaca Dixon  | 115     | Li_Battery | 300   | -    | 300   | Not Applicable              | 1*              | Not Applicable | Not Applicable | 1          | 1             | No  | No  | Yes                 | No                  | No                   |
| Vaca Dixon  | 115     | Solar      | 25    | -    | 25    | 1                           | 1*              | 1              | 1              | 1          | 1             |     |     |                     |                     |                      |
| Woodland    | 115     | Li_Battery | 12    | -    | 12    | Not Applicable              | 1*              | Not Applicable | Not Applicable | 1          | 1             | Yes | No  | Yes                 | No                  | No                   |
| Woodland    | 115     | Solar      | -     | 12   | 12    | 1                           | 1               | 1              | 1              | 1          | 1             |     |     |                     |                     |                      |

#### Southern PG&E Area – 2035 Criteria Alignment by Sub (1/2)

|                           |         |             |       |      |       | 1. Distance    | 2.           |                |                | 4.         |               |     |     |          |               |                  |
|---------------------------|---------|-------------|-------|------|-------|----------------|--------------|----------------|----------------|------------|---------------|-----|-----|----------|---------------|------------------|
|                           |         |             |       |      |       | to Trans. of   | Transmission |                | 3b.            | Commercial | 5. Prior Base |     |     | O3 non-  | PM2.5<br>non- | 111-6            |
|                           |         | Resource    | FCDS  | EODS | Total | Appropriate    | Capability   | 3a. Available  | Environment    | Interest – | Case –        |     |     | attainme | attainme      | High<br>curtailm |
| Substation                | Voltage | Туре        | (MW)  | (MW) | (MW)  | Voltage        | Limit        | Land Area      | al Impacts     | Storage    | Storage       | LCR | DAC | nt zone  | nt zone       | ent zone         |
| Alpaugh                   | 115     | Li_Battery  | 70    | -    | 70    | Not Applicable | 2            | Not Applicable | Not Applicable | 2          | 1             | No  | Yes | Yes      | Yes           | No               |
| Alpaugh                   | 115     | Solar       | 20    | 125  | 145   | 1              | 2            | 1              | 1              | 2          | 1             |     |     |          |               |                  |
| Arco                      | 230     | Li_Battery  | 201   | -    | 201   | Not Applicable | 3            | Not Applicable | Not Applicable | 2          | 1             | No  | Yes | Yes      | Yes           | Yes              |
| Arco                      | 230     | Solar       | 130   | 521  | 651   | 1              | 3            | 1              | 1              | 2          | 1             |     |     |          |               |                  |
| Cabrillo                  | 115     | In-State Wi | 99    | -    | 99    | 1              | 2            | 1              | 2              | 1          | 1             |     |     |          |               |                  |
| Caliente                  | 230     | Li_Battery  | 50    | -    | 50    | Not Applicable | 3            | Not Applicable | Not Applicable | 2          | 1             | No  | No  | Yes      | No            | No               |
| Caliente                  | 230     | Solar       | 100   | -    | 100   | 1              | 3            | 1              | 1              | 2          | 1             |     |     |          |               |                  |
| Cholame                   | 70      | In-State Wi | 60    | -    | 60    | 1              | 3            | 1              | 1              | 3          | 1             |     |     |          |               |                  |
| Coburn                    | 230     | Li_Battery  | 10    | -    | 10    | Not Applicable | 2            | Not Applicable | Not Applicabl  | 1          | 1             | No  | No  | No       | No            | No               |
| Diablo                    | 500     | Offshore W  | 3,100 | -    | 3,100 | Not Availabe   | 1            | Not Availabe   | Not Availabe   | 2          | 1             |     |     |          |               |                  |
| Gates                     | 500     | Li_Battery  | 300   | -    | 300   | Not Applicable | 3            | Not Applicable | Not Applicable | 1          | 1             | No  | No  | Yes      | No            | No               |
| Gates                     | 230     | Li_Battery  | 253   | -    | 253   | Not Applicable | 3            | Not Applicable | Not Applicable | 2          | 1             | No  | No  | Yes      | No            | No               |
| Gates                     | 230     | Solar       | 1,060 | 887  | 1,947 | 1              | 3            | 1              | 1              | 1+         | 1             |     |     |          |               |                  |
| <b>GWF Hanford Sw Sta</b> | 115     | Solar       | 14    | -    | 14    |                | 3            |                |                | 1          | 1             |     |     |          |               |                  |
| Helm                      | 230     | Li_Battery  | 109   | -    | 109   | Not Applicable | 2            | Not Applicable | Not Applicable | 2          | 1             | No  | Yes | Yes      | Yes           | No               |
| Helm                      | 230     | Solar       | 165   | 200  | 365   | 1              | 2            | 1              | 1              | 2          | 1             |     |     |          |               |                  |
| Henrietta                 | 115     | Li_Battery  | 54    | -    | 54    | Not Applicable | 2            | Not Applicable | Not Applicable | 2          | 1             | Yes | Yes | Yes      | Yes           | No               |
| Henrietta                 | 115     | Solar       | 25    | 88   | 113   | 1              | 2            | 1              | 1              | 2          | 1             |     |     |          |               |                  |
| Kettleman                 | 70      | Li_Battery  | 10    | -    | 10    | Not Applicable | 3            | Not Applicable | Not Applicable | 1          | 1             | No  | No  | Yes      | No            | No               |
| Lamont                    | 115     | Li_Battery  | -     | -    | -     | Not Applicable | 3            | Not Applicable | Not Applicable | 1          | 3             | No  | Yes | Yes      | Yes           | No               |
| Lamont                    | 115     | Solar       | 90    | -    | 90    | 1              | 3            | 1              | 1              | 1          | 2             |     |     |          |               |                  |
| Los Banos                 | 230     | Li_Battery  | 100   | -    | 100   | Not Applicable | 3            | Not Applicable | Not Applicable | 1          | 1             | No  | Yes | Yes      | Yes           | No               |
| Los Banos                 | 500     | Li_Battery  | -     | -    | -     | Not Applicable | 1            | Not Applicable | Not Applicable | 1+         | 1             | No  | Yes | Yes      | Yes           | No               |
| Los Banos                 | 230     | Solar       | 300   | 230  | 530   | 1              | 3            | 1              | 1              | 2          | 1             |     |     |          |               |                  |
| Los Banos                 | 230     | In-State Wi | 186   | -    | 186   | 1              | 3            | 1              | 1              | 2          | 1             |     |     |          |               |                  |
| McCall                    | 230     | Li_Battery  | -     | -    | -     | Not Applicable | 2*           | Not Applicable | Not Applicable | 1          | 3             | No  | Yes | Yes      | Yes           | No               |
| McCall                    | 230     | Solar       | -     | -    | -     | 1              | 2*           | 1              | 1              | 1          | 3             |     |     |          |               |                  |
| Mesa                      | 230     | Li_Battery  | 100   | -    | 100   | Not Applicable | 3            | Not Applicable | Not Applicable | 1          | 1             | No  | No  | No       | No            | No               |
| Mesa                      | 115     | Li_Battery  | -     | -    | -     | Not Applicable | 3            | Not Applicable | Not Applicable | 1          | 3             | No  | No  | No       | No            | No               |

Southern PG&E Area – 2035 Criteria Alignment by Sub (2/2)

|                     |         |                  |              |              |               |                        | 2.<br>Transmission  |                            | 3b.            | 4.<br>Commercial      | 5. Prior Base     |     |     | O3 non-             | PM2.5               | High                 |
|---------------------|---------|------------------|--------------|--------------|---------------|------------------------|---------------------|----------------------------|----------------|-----------------------|-------------------|-----|-----|---------------------|---------------------|----------------------|
| Substation          | Voltage | Resource<br>Type | FCDS<br>(MW) | EODS<br>(MW) | Total<br>(MW) | Appropriate<br>Voltage | Capability<br>Limit | 3a. Available<br>Land Area |                | Interest –<br>Storage | Case –<br>Storage | LCR | DAC | attainme<br>nt zone | attainme<br>nt zone | curtailm<br>ent zone |
| Midway              | 230     | Li_Battery       | 110          | -            | 110           | Not Applicable         | 3                   | Not Applicable             | Not Applicable | 1                     | 1                 | No  | No  | Yes                 | No                  | Yes                  |
| Midway              | 500     | Li_Battery       | 800          | -            | 800           | Not Applicable         | 2*                  | Not Applicable             | Not Applicable | 1                     | 1                 | No  | No  | Yes                 | No                  | Yes                  |
| Midway              | 115     | Li_Battery       | -            | -            | -             | Not Applicable         | 3                   | Not Applicable             | Not Applicable | 2+                    | 3                 | No  | No  | Yes                 | No                  | Yes                  |
| Midway              | 230     | Solar            | 8            | 425          | 433           | 1                      | 3                   | 1                          | 2              | 2                     | 1                 |     |     |                     |                     |                      |
| Midway              | 500     | Solar            | -            | 815          | 815           | 1*                     | 1*                  | 1                          | 2              | 1                     | 1                 |     |     |                     |                     |                      |
| Midway              | 115     | Solar            | -            | -            | -             | 1                      | 3                   | 1                          | 2              | 2+                    | 3                 |     |     |                     |                     |                      |
| Morro Bay           | 230     | LDES             | 300          | -            | 300           | Not Applicable         | 3                   | Not Applicable             | Not Applicable | 2                     | 1                 |     |     |                     |                     |                      |
| Morro Bay (Proposed | 500     | Offshore W       | -            | -            | -             | Not Availabe           | 1                   | Not Availabe               | Not Availabe   | 2+                    | 1*                |     |     |                     |                     |                      |
| Moss Landing        | 500     | Li_Battery       | 475          | -            | 475           | Not Applicable         | 1                   | Not Applicable             | Not Applicable | 3+                    | 1                 | Yes | No  | No                  | No                  | Yes                  |
| Mustang             | 230     | Li_Battery       | 170          | -            | 170           | Not Applicable         | 3                   | Not Applicable             | Not Applicable | 1                     | 1                 | Yes | Yes | Yes                 | Yes                 | No                   |
| Mustang             | 230     | Solar            | 27           | 650          | 677           | 1                      | 3                   | 1                          | 1              | 2                     | 1                 |     |     |                     |                     |                      |
| Olive               | 115     | Li_Battery       | 30           | -            | 30            | Not Applicable         | 3                   | Not Applicable             | Not Applicable | 1                     | 1                 | No  | Yes | Yes                 | Yes                 | No                   |
| Olive               | 115     | Solar            | 40           | -            | 40            | 1                      | 3                   | 1                          | 1              | 1                     | 1*                |     |     |                     |                     |                      |
| Panoche             | 230     | Li_Battery       | 170          | -            | 170           | Not Applicable         | 3                   | Not Applicable             | Not Applicable | 2                     | 1                 | Yes | Yes | Yes                 | Yes                 | No                   |
| Panoche             | 230     | Solar            | 50           | 317          | 367           | 1                      | 3                   | 1                          | 1              | 2                     | 1                 |     |     |                     |                     |                      |
| Rio Bravo           | 115     | Li_Battery       | 55           | -            | 55            | Not Applicable         | 3                   | Not Applicable             | Not Applicable | 2                     | 1                 | No  | Yes | Yes                 | Yes                 | No                   |
| Rio Bravo           | 115     | Solar            | -            | 56           | 56            | 1                      | 3                   | 1                          | 1              | 1                     | 1                 |     |     |                     |                     |                      |
| Sisquoc             | 115     | Li_Battery       | 10           | -            | 10            | Not Applicable         | 3                   | Not Applicable             | Not Applicable | 1                     | 1                 | No  | No  | No                  | No                  | No                   |
| Templeton           | 230     | In-State Wi      | 159          | -            | 159           | 2                      | 3                   | 2                          | 2              | 3                     | 2                 |     |     |                     |                     |                      |
| Tranquility         | 230     | Li_Battery       | 755          | -            | 755           | Not Applicable         | 3                   | Not Applicable             | Not Applicable | 1                     | 1                 | No  | Yes | Yes                 | Yes                 | No                   |
| Tranquility         | 230     | Solar            | 370          | 793          | 1,163         | 1                      | 3                   | 1                          | 1              | 2                     | 1                 |     |     |                     |                     |                      |
| Westley             | 230     | Li_Battery       | 170          | -            | 170           | Not Applicable         | 3                   | Not Applicable             | Not Applicable | 1                     | 1                 | No  | Yes | Yes                 | Yes                 | No                   |
| Westley             | 230     | Solar            | 226          | 69           | 295           | 1                      | 3                   | 1                          | 1              | 2                     | 1*                |     |     |                     |                     |                      |
| Wheeler Ridge       | 115     | Li_Battery       | 157          | -            | 157           | Not Applicable         | 2                   | Not Applicable             | Not Applicable | 1                     | 1                 | No  | Yes | Yes                 | Yes                 | Yes                  |
| Wheeler Ridge       | 230     | Li_Battery       | 70           | -            | 70            | Not Applicable         | 3                   | Not Applicable             | Not Applicable | 2                     | 1                 | No  | Yes | Yes                 | Yes                 | Yes                  |
| Wheeler Ridge       | 115     | Solar            | 170          | 5            | 175           | 1                      | 2                   | 1                          | 1              | 1                     | 1                 |     |     |                     |                     |                      |
| Wheeler Ridge       | 230     | Solar            | 210          | 280          | 490           | 1                      | 3                   | 1                          | 1              | 2                     | 1                 |     |     |                     |                     |                      |

### Greater Tehachapi Area – 2035 Criteria Alignment by Substation

| 2035 M    | lapping A | Amount of Ir | n-Developi | ment and C | eneric |                | Busba           | ar Mapping C   | riteria Compl  | liance     |               | Addit | ional Ba | ittery Ma | apping C      | riteria  |
|-----------|-----------|--------------|------------|------------|--------|----------------|-----------------|----------------|----------------|------------|---------------|-------|----------|-----------|---------------|----------|
|           |           |              |            |            |        |                | 2. Transmission |                | 3b.            | 4.         |               |       |          |           | PM2.5<br>non- | High     |
| Substatio |           | Resource     | FCDS       | EODS       |        | Appropriate    | Capability      |                | Environment    | Commercial | 5. Prior Base |       |          | attainme  | attainme      | curtailm |
| n         | Voltage   | Туре         | (MW)       | (MW)       | (MW)   | Voltage        | Limit           | Land Area      | al Impacts     | Interest   | Case          | LCR   | DAC      | nt zone   | nt zone       | ent zone |
| Antelope  | 230       | In-State Wi  | i 3        | _ '        | 3      | 2              | 1*              | 1              | 3              | 1          | 1             |       |          |           |               |          |
| Antelope  | 230       | Li_Battery   | 424        | -          | 424    | Not Applicable | 1*              | Not Applicable | Not Applicable | 1          | 2             | Yes   | Yes      | Yes       | Yes           | Yes      |
| Antelope  | 230       | Solar        | 770        | 502        | 1,272  | 1              | 1*              | 1              | 1              | 2          | 1             |       |          |           |               | <u> </u> |
| Pastoria  | 230       | Li_Battery   | 80         | -          | 80     | Not Applicable | 1*              | Not Applicable | Not Applicable | 1          | 1             | No    | No       | Yes       | Yes           | No       |
| Pastoria  | 230       | Solar        | 40         | 67         | 107    | 1              | 1*              | 1              | 1              | 1          | 1*            |       |          |           |               | <u> </u> |
| Rector    | 230       | Solar        | -          | 100        | 100    | 1              | 1               | 1              | 1              | 2          | 1             |       |          |           |               |          |
| Vestal    | 230       | Li_Battery   | 358        | -          | 358    | Not Applicable | 1*              | Not Applicable | Not Applicable | 1          | 1             | Yes   | Yes      | Yes       | Yes           | No       |
| Vestal    | 230       | Solar        | 294        | 451        | 745    | 1              | 1*              | 1              | 1              | 2          | 1             |       |          |           |               |          |
| Whirlwind | 230       | In-State Wi  | i 101      | -          | 101    | 1              | 1*              | 1              | 2              | 1          | 1             |       |          |           |               |          |
| Whirlwind | 230       | LDES         | 500        | -          | 500    | Not Applicable | 1*              | Not Applicable | Not Applicable | 1          | 1             |       |          |           |               |          |
| Whirlwind | 230       | Li_Battery   | 959        | -          | 959    | Not Applicable | 1*              | Not Applicable | Not Applicable | 1          | 2             | No    | No       | Yes       | No            | Yes      |
| Whirlwind | 230       | Solar        | 761        | 1,279      | 2,040  | 1              | 1*              | 1              | 2              | 2          | 1             |       |          |           |               |          |
| Windhub   | 230       | In-State Wi  | i 11       |            | 11     | 2              | 1*              | 1              | 1              | 1          | 2             |       |          |           |               |          |
| Windhub   | 500       | Li_Battery   | 672        | -          | 672    | Not Applicable | 1*              | Not Applicable | Not Applicable | 1          | 1             | No    | No       | Yes       | No            | Yes      |
| Windhub   | 230       | Li_Battery   | 1,233      | -          | 1,233  | Not Applicable | 1*              | Not Applicable | Not Applicable | 3+         | 1             | No    | No       | Yes       | No            | Yes      |
| Windhub   | 500       | Solar        | 780        | 370        | 1,150  | 1*             | 1*              | 1              | 1              | 2          | 1             |       |          |           |               |          |
| Windhub   | 230       | Solar        | 569        | 1,084      | 1,653  | 1              | 1*              | 1              | 1              | 1          | 1*            |       |          |           |               |          |

### Greater LA Metro Area – 2035 Criteria Alignment by Substation

| 2035 Ma     | apping Amount of Ir      | n-Developn   | nent and G   | eneric        |                                                       | Busba | ar Mapping C               | riteria Comp   | liance                       |                       | Additi | ional Ba | ttery Ma                       | pping C                              | riteria                      |
|-------------|--------------------------|--------------|--------------|---------------|-------------------------------------------------------|-------|----------------------------|----------------|------------------------------|-----------------------|--------|----------|--------------------------------|--------------------------------------|------------------------------|
| Substation  | Resource<br>Voltage Type | FCDS<br>(MW) | EODS<br>(MW) | Total<br>(MW) | 1. Distance<br>to Trans. of<br>Appropriate<br>Voltage |       | 3a. Available<br>Land Area |                | 4.<br>Commercial<br>Interest | 5. Prior Base<br>Case | LCR    | DAC      | O3 non-<br>attainme<br>nt zone | PM2.5<br>non-<br>attainme<br>nt zone | High<br>curtailm<br>ent zone |
| Alamitos    | 230 Li_Battery           | 82           | -            | 82            | Not Applicable                                        | 1     | Not Applicable             | Not Applicable | 1                            | 1                     | No     | No       | Yes                            | Yes                                  | No                           |
| Barre       | 230 Li_Battery           | 20           | -            | 20            | Not Applicable                                        | 1     | Not Applicable             | Not Applicable | 1                            | 1                     | No     | Yes      | Yes                            | Yes                                  | No                           |
| Capistrano  | 138 Li_Battery           | 250          | -            | 250           | Not Applicable                                        | 1     | Not Applicable             | Not Applicable | 1                            | 1                     | Yes    | No       | Yes                            | Yes                                  | No                           |
| Chino       | 230 Li_Battery           | 10           | -            | 10            | Not Applicable                                        | 1     | Not Applicable             | Not Applicable | 1                            | 1                     | Yes    | No       | Yes                            | Yes                                  | No                           |
| Etiwanda    | 230 Li_Battery           | 101          | -            | 101           | Not Applicable                                        | 1     | Not Applicable             | Not Applicable | 1+                           | 1                     | Yes    | Yes      | Yes                            | Yes                                  | No                           |
| Goleta      | 230 Li_Battery           | 70           | -            | 70            | Not Applicable                                        | 1     | Not Applicable             | Not Applicable | 1                            | 1                     | No     | No       | No                             | No                                   | No                           |
| Hinson      | 230 Li_Battery           | 200          | -            | 200           | Not Applicable                                        | 1     | Not Applicable             | Not Applicable | 1                            | 1                     | Yes    | Yes      | Yes                            | Yes                                  | No                           |
| Johanna     | 230 Li_Battery           | 40           | -            | 40            | Not Applicable                                        | 1     | Not Applicable             | Not Applicable | 1                            | 1                     | Yes    | Yes      | Yes                            | Yes                                  | No                           |
| Laguna Bell | 230 Li_Battery           | 450          | -            | 450           | Not Applicable                                        | 1     | Not Applicable             | Not Applicable | 2+                           | 2                     | Yes    | Yes      | Yes                            | Yes                                  | No                           |
| Mira Loma   | 230 Li_Battery           | 150          | -            | 150           | Not Applicable                                        | 1     | Not Applicable             | Not Applicable | 2+                           | 1                     | No     | Yes      | Yes                            | Yes                                  | No                           |
| Moorpark    | 230 Li_Battery           | 500          | -            | 500           | Not Applicable                                        | 1     | Not Applicable             | Not Applicable | 1+                           | 1                     | Yes    | No       | Yes                            | No                                   | No                           |
| Moorpark    | 230 Solar                | -            | 500          | 500           | 1                                                     | 1     | 1                          | 1              | 1                            | 1                     |        |          |                                |                                      |                              |
| Pardee      | 230 Li_Battery           | 95           | -            | 95            | Not Applicable                                        | 1     | Not Applicable             | Not Applicable | 1                            | 1                     | No     | No       | Yes                            | Yes                                  | No                           |
| Santa Clara | 230 Li_Battery           | 35           | -            | 35            | Not Applicable                                        | 1     | Not Applicable             | Not Applicable | 1                            | 1                     | No     | No       | Yes                            | No                                   | No                           |
| Santa Clara | 230 Solar                | 125          | 125          | 250           | 1                                                     | 1     | 1                          | 1              | 3                            | 1                     |        |          |                                |                                      |                              |
| Talega      | 230 Li_Battery           | 100          | -            | 100           | Not Applicable                                        | 1     | Not Applicable             | Not Applicable | 1                            | 1                     | No     | No       | Yes                            | No                                   | No                           |
| Vincent     | 230 Li_Battery           | 1,454        | -            | 1,454         | Not Applicable                                        | 1     | Not Applicable             | Not Applicable | 1+                           | 1                     | No     | No       | Yes                            | No                                   | Yes                          |
| Vincent     | 230 Solar                | -            | 1,303        | 1,303         | 1                                                     | 1     | 1                          | 1              | 2                            | 1                     |        |          |                                |                                      |                              |
| Walnut      | 230 Li_Battery           | 200          | -            | 200           | Not Applicable                                        | 1     | Not Applicable             | Not Applicable | 1                            | 2                     | Yes    | Yes      | Yes                            | Yes                                  | No                           |

### Greater Kramer Area – 2035 Criteria Alignment by Substation

| 2035 Ma    | apping Amo | ount of I        | n-Developm       | ent and G    | eneric Reso  | ources        |                                                       | Busba | ar Mapping C   | riteria Comp                     | liance                       |                       | A   | dditional B | attery Map                     | ping Crite                           | ria                    |
|------------|------------|------------------|------------------|--------------|--------------|---------------|-------------------------------------------------------|-------|----------------|----------------------------------|------------------------------|-----------------------|-----|-------------|--------------------------------|--------------------------------------|------------------------|
| Substation | Voltage    | Out-of-<br>CAISO | Resource<br>Type | FCDS<br>(MW) | EODS<br>(MW) | Total<br>(MW) | 1. Distance<br>to Trans. of<br>Appropriate<br>Voltage |       |                | 3b.<br>Environment<br>al Impacts | 4.<br>Commercial<br>Interest | 5. Prior Base<br>Case | LCR |             | O3 non-<br>attainmen<br>t zone | PM2.5<br>non-<br>attainmen<br>t zone | High curtailme nt zone |
| Calcite    | 230        |                  | Li_Battery       | 185          | -            | 185           | Not Applicable                                        | 1     | Not Applicable | Not Applicable                   | 1                            | 2                     | No  | No          | Yes                            | No                                   | No                     |
| Calcite    | 230        |                  | Solar            | 200          | 230          | 430           | 1                                                     | 1     | 1              | 1                                | 1                            | 1*                    |     |             |                                |                                      |                        |
| Control    | 115        | Yes              | Geotherma        | 13           | -            | 13            | Not Availabe                                          | 1*    | Not Availabe   | Not Availabe                     | 1                            | 1                     |     |             |                                |                                      |                        |
| Coolwater  | 115        |                  | Li_Battery       | 104          | -            | 104           | Not Applicable                                        | 1*    | Not Applicable | Not Applicable                   | 1                            | 1                     | No  | Yes         | Yes                            | No                                   | No                     |
| Coolwater  | 115        |                  | Solar            | 150          | 204          | 354           | 1                                                     | 1*    | 1              | 2                                | 2                            | 1                     |     |             |                                |                                      |                        |
| Kramer     | 230        |                  | Li_Battery       | 700          | -            | 700           | Not Applicable                                        | 1*    | Not Applicable | Not Applicable                   | 1                            | 1                     | No  | No          | Yes                            | No                                   | No                     |
| Kramer     | 115        |                  | Li_Battery       | 75           | -            | 75            | Not Applicable                                        | 1*    | Not Applicable | Not Applicable                   | 1                            | 1                     | No  | No          | Yes                            | No                                   | No                     |
| Kramer     | 230        |                  | Solar            | 620          | 741          | 1,361         | 2                                                     | 1*    | 1              | 2                                | 2                            | 1                     |     |             |                                |                                      |                        |
| Kramer     | 115        |                  | Solar            | 90           | -            | 90            | 1                                                     | 1*    | 1              | 2                                | 1                            | 1                     |     |             |                                |                                      |                        |
| Pisgah     | 230        |                  | Li_Battery       | -            | -            | -             | Not Applicable                                        | 1     | Not Applicable | Not Applicable                   | 1                            | 1                     | No  | Yes         | Yes                            | No                                   | No                     |
| Pisgah     | 230        |                  | Solar            | 100          | -            | 100           | 1                                                     | 1     | 1              | 1                                | 2                            | 1                     |     |             |                                |                                      |                        |
| Roadway    | 115        |                  | Li_Battery       | 150          | -            | 150           | Not Applicable                                        | 1*    | Not Applicable | Not Applicable                   | 1                            | 2                     | No  | Yes         | Yes                            | No                                   | No                     |
| Roadway    | 115        |                  | Solar            | 111          | 120          | 231           | 1                                                     | 1*    | 1              | 2                                | 1                            | 1*                    |     |             |                                |                                      |                        |
| Victor     | 230        |                  | Solar            | -            | -            | -             | 1                                                     | 1*    | 1              | 2                                | 1+                           | 3                     |     |             |                                |                                      |                        |

### Southern Nevada/El Dorado Area – 2035 Criteria Alignment by Substation

|                 |         |       | Resource    | FCDS  | EODS  | Total | to Trans. of   | 2.<br>Transmission<br>Capability | 3a. Available  | 3b.<br>Environment | 4.<br>Commercial | 5. Prior Base |     |     | O3 non- | _       | High<br>curtailm |
|-----------------|---------|-------|-------------|-------|-------|-------|----------------|----------------------------------|----------------|--------------------|------------------|---------------|-----|-----|---------|---------|------------------|
| Substation      | Voltage | CAISO | Туре        | (MW)  | (MW)  | (MW)  | Voltage        | Limit                            | Land Area      | al Impacts         | Interest         | Case          | LCR | DAC | nt zone | nt zone | ent zone         |
| Beatty          | 138     |       | Geotherma   | 500   | -     | 500   | 3              | 2                                | Not Availabe   | Not Availabe       | 2                | 1             |     |     |         |         |                  |
| Carpenter Cany  | 230     |       | Li_Battery  | 80    | -     | 80    | Not Applicable | 2                                | Not Applicable | Not Applicable     | 2                | 1             | No  | No  | No      | No      | Yes              |
| Carpenter Cany  | 230     |       | Solar       | 250   | 215   | 465   | 1              | 2                                | 1              | Not Available      | 2                | 1             |     |     |         |         |                  |
| Desert View     | 230     |       | Li_Battery  | 40    | -     | 40    | Not Applicable | 2                                | Not Applicable | Not Applicable     | 2                | 1             | No  | No  | Yes     | No      | Yes              |
| Desert View     | 230     |       | Solar       | 100   | 50    | 150   | 1              | 2                                | 1              | Not Available      | 2                | 1             |     |     |         |         |                  |
| Eldorado        | 230     |       | Li_Battery  | 529   | -     | 529   | Not Applicable | 1                                | Not Applicable | Not Applicable     | 1                | 1             | No  | No  | No      | No      | Yes              |
| Eldorado        | 230     |       | Solar       | -     | 300   | 300   | 2              | 1                                | 1              | Not Available      | 1                | 1             |     |     |         |         |                  |
| Eldorado        | 500     | Yes   | Geotherma   | 315   | -     | 315   | Not Availabe   | 2                                | Not Availabe   | Not Availabe       | 2                | 1             |     |     |         |         |                  |
| Eldorado        | 230     | Yes   | Geotherma   | 40    | -     | 40    | Not Availabe   | 1                                | Not Availabe   | Not Availabe       | 1                | 1             |     |     |         |         |                  |
| Eldorado        | 500     | Yes   | OOS Wind,   | 2,500 | -     | 2,500 | Not Availabe   | 2                                | Not Availabe   | Not Availabe       | 1                | 1             |     |     |         |         |                  |
| Innovation      | 230     |       | Li_Battery  | 150   | -     | 150   | Not Applicable | 2                                | Not Applicable | Not Applicable     | 1                | 1             | No  | No  | No      | No      | Yes              |
| Innovation      | 230     |       | Solar       | 237   | 65    | 302   | 1              | 2                                | 1              | Not Available      | 1                | 1             |     |     |         |         |                  |
| Innovation      | 230     |       | In-State Wi | 93    | -     | 93    | 2              | 2                                | 1              | Not Available      | 3                | 2             |     |     |         |         |                  |
| Ivanpah         | 230     |       | Li_Battery  | 200   | -     | 200   | Not Applicable | 1                                | Not Applicable | Not Applicable     | 1                | 1             | No  | Yes | No      | No      | No               |
| Mohave          | 500     |       | Li_Battery  | 1,504 | -     | 1,504 | Not Applicable | 2                                | Not Applicable | Not Applicable     | 2+               | 1             | No  | No  | No      | No      | Yes              |
| Mohave          | 500     |       | Solar       | 150   | 1,370 | 1,520 | 1*             | 1                                | 2              | Not Available      | 1                | 1             |     |     |         |         |                  |
| Sloan Canyon (f | 230     |       | In-State Wi | 228   | 82    | 310   | 1              | 2                                | 2              | Not Available      | 1                | 1             |     |     |         |         |                  |
| Trout Canyon (f | 230     |       | Li_Battery  | 570   | -     | 570   | Not Applicable | 2                                | Not Applicable | Not Applicable     | 1+               | 1             | No  | No  | No      | No      | Yes              |
| Trout Canyon (f | 230     |       | Solar       | 525   | 1,106 | 1,631 | 2              | 2                                | 1              | Not Available      | 2                | 1             |     |     |         |         |                  |
| Valley (VEA)    | 138     |       | Li_Battery  | 40    | -     | 40    | Not Applicable | 2                                | Not Applicable | Not Applicable     | 1                | 1             | Yes | No  | No      | No      | No               |
| Valley (VEA)    | 138     |       | Solar       | 50    | -     | 50    | 1              | 2                                | 1              | Not Available      | 1                | 1*            |     |     |         |         |                  |

### Riverside & Arizona Areas – 2035 Criteria Alignment by Substation

|                     |         | Out of | Resource    | FCDS  | EODS  | Total | to Trans. of        | 2. Transmission     |                            | 3b.                    | 4.       | E Drien Bose          |     |     | O3 non-             | PM2.5<br>non-       | High                 |
|---------------------|---------|--------|-------------|-------|-------|-------|---------------------|---------------------|----------------------------|------------------------|----------|-----------------------|-----|-----|---------------------|---------------------|----------------------|
| Substation          | Voltage |        | Type        | (MW)  | (MW)  | (MW)  | Appropriate Voltage | Capability<br>Limit | 3a. Available<br>Land Area | Environment al Impacts | Interest | 5. Prior Base<br>Case | LCR | DAC | attainme<br>nt zone | attainme<br>nt zone | curtailm<br>ent zone |
| Colorado River      | 500     |        | Li Battery  | 58    | -     | 58    | Not Applicable      | 3                   | Not Applicable             | Not Applicable         | 1+       | 1                     | No  | No  | No                  | No                  | Yes                  |
| Colorado River      | 230     |        | Li Battery  | 995   | -     | 995   | Not Applicable      | 3                   | Not Applicable             | Not Applicable         | 1        | 1                     | No  | No  | No                  | No                  | Yes                  |
| Colorado River      | 500     |        | Solar       | 46    | 426   | 473   | 2                   | 3                   | 1                          | 1                      | 1        | 1                     |     |     |                     |                     |                      |
| Colorado River      | 230     |        | Solar       | 700   | 1,300 | 2,000 | 2                   | 3                   | 1                          | 1                      | 1+       | 1                     |     |     |                     |                     |                      |
| Devers              | 230     |        | Li_Battery  | 450   | -     | 450   | Not Applicable      | 3                   | Not Applicable             | Not Applicable         | 1+       | 1                     | Yes | No  | Yes                 | No                  | No                   |
| Devers              | 230     |        | Solar       | -     | 80    | 80    | 1                   | 1                   | 1                          | 2                      | 1        | 1                     |     |     |                     |                     |                      |
| Devers              | 230     |        | In-State Wi | 10    | -     | 10    | 2                   | 3                   | 1                          | 1                      | 2+       | 1                     |     |     |                     |                     |                      |
| El Casco            | 230     |        | Li_Battery  | 100   | -     | 100   | Not Applicable      | 3                   | Not Applicable             | Not Applicable         | 1        | 1                     | No  | No  | Yes                 | Yes                 | No                   |
| Lee Lake (Proposed) | 500     |        | LDES        | -     | -     | -     | Not Applicable      | 1                   | Not Applicable             | Not Applicable         | 3+       | 1                     |     |     |                     |                     |                      |
| Redbluff            | 500     |        | Li_Battery  | 500   | -     | 500   | Not Applicable      | 3                   | Not Applicable             | Not Applicable         | 1+       | 1                     | No  | No  | No                  | No                  | Yes                  |
| Redbluff            | 230     |        | Li_Battery  | 1,186 | -     | 1,186 | Not Applicable      | 3                   | Not Applicable             | Not Applicable         | 2+       | 1                     | No  | No  | No                  | No                  | Yes                  |
| Redbluff            | 500     |        | Solar       | 150   | 900   | 1,050 | 2                   | 3                   | 1                          | 1                      | 1        | 1                     |     |     |                     |                     |                      |
| Redbluff            | 230     |        | Solar       | 52    | 1,279 | 1,331 | 2                   | 3                   | 1                          | 1                      | 1+       | 1                     |     |     |                     |                     |                      |
| Redbluff            | 500     |        | LDES        | 700   | -     | 700   | Not Applicable      | 3                   | Not Applicable             | Not Applicable         | 2        | 1                     |     |     |                     |                     |                      |
| Valley              | 500     |        | Li_Battery  | 680   | -     | 680   | Not Applicable      | 3                   | Not Applicable             | Not Applicable         | 1        | 1                     | Yes | No  | No                  | No                  | No                   |
| Vista               | 230     |        | Li_Battery  | 200   | -     | 200   | Not Applicable      | 3                   | Not Applicable             | Not Applicable         | 1        | 1                     | No  | Yes | Yes                 | Yes                 | No                   |
| Delaney             | 500     |        | Li_Battery  | 1,240 | -     | 1,240 | Not Applicable      | 3                   | Not Applicable             | Not Applicable         | 2+       | 1                     | No  | No  | Yes                 | No                  | Yes                  |
| Delaney             | 500     |        | Solar       | 350   | 2,250 | 2,600 | 1*                  | 3                   | 1                          | Not Available          | 1+       | 1*                    |     |     |                     |                     |                      |
| Hassayampa          | 500     |        | Li_Battery  | 30    | -     | 30    | Not Applicable      | 3                   | Not Applicable             | Not Applicable         | 1        | 3                     | No  | No  | Yes                 | No                  | Yes                  |
| Hassayampa          | 500     |        | Solar       | 300   | 171   | 471   | 2                   | 3                   | 1                          | Not Available          | 1+       | 2                     |     |     |                     |                     |                      |
| Hoodoo Wash         | 500     |        | Li_Battery  | 535   | -     | 535   | Not Applicable      | 3                   | Not Applicable             | Not Applicable         | 2+       | 1                     | No  | No  | No                  | No                  | No                   |
| Hoodoo Wash         | 500     |        | Solar       | 250   | 776   | 1,026 | 1*                  | 3                   | 1                          | Not Available          | 1+       | 1                     |     |     |                     |                     |                      |
| Palo Verde          | 500     | Yes    | OOS Wind,   | 2,328 | -     | 2,328 | Not Availabe        | 3                   | Not Availabe               | Not Availabe           | 1        | 1                     |     |     |                     |                     |                      |

## San Diego & Greater Imperial – 2035 Criteria Alignment by Substation

| 2035 Ma      | pping Am | nount of | In-Develop       | ment and     | Generic <u>Re</u> | sources       |                                                       | Busb                                      | ar Mapping C   | riteria Comp   | liance |                       | Addit | ional Ba | ttery Ma | pping C                              | riteria                      |
|--------------|----------|----------|------------------|--------------|-------------------|---------------|-------------------------------------------------------|-------------------------------------------|----------------|----------------|--------|-----------------------|-------|----------|----------|--------------------------------------|------------------------------|
|              |          | Out-of-  | Resource<br>Type | FCDS<br>(MW) | EODS<br>(MW)      | Total<br>(MW) | 1. Distance<br>to Trans. of<br>Appropriate<br>Voltage | 2.<br>Transmission<br>Capability<br>Limit | 3a. Available  | 3b.            | 4.     | 5. Prior Base<br>Case | LCR   | DAC      | O3 non-  | PM2.5<br>non-<br>attainme<br>nt zone | High<br>curtailm<br>ent zone |
| Escondido    | 230      |          | Li_Battery       | 85           | -                 | 85            | Not Applicable                                        | 1*                                        | Not Applicable | Not Applicable | 1      | 1                     | Yes   | No       | Yes      | No                                   | No                           |
| Mission      | 138      |          | Li_Battery       | 50           | -                 | 50            | Not Applicable                                        | 1*                                        | Not Applicable | Not Applicable | 1      | 1                     | No    | No       | Yes      | No                                   | No                           |
| Otay Mesa    | 230      |          | Li_Battery       | 75           | -                 | 75            | Not Applicable                                        | 1*                                        | Not Applicable | Not Applicable | 2+     | 1                     | No    | No       | Yes      | No                                   | No                           |
| San Luis Rey | 230      |          | Li_Battery       | 70           | -                 | 70            | Not Applicable                                        | 1*                                        | Not Applicable | Not Applicable | 1      | 1                     | No    | No       | Yes      | No                                   | No                           |
| Silvergate   | 230      |          | Li_Battery       | 200          | -                 | 200           | Not Applicable                                        | 1*                                        | Not Applicable | Not Applicable | 1      | 1                     | Yes   | Yes      | Yes      | No                                   | No                           |
| Sycamore     | 138      |          | Li_Battery       | 400          | -                 | 400           | Not Applicable                                        | 1*                                        | Not Applicable | Not Applicable | 1      | 1                     | Yes   | No       | Yes      | No                                   | No                           |
| Encina       | 115      |          | Li_Battery       | _            | _                 | _             | Not Applicable                                        | 1*                                        | Not Applicable | Not Applicable | 1      | 3                     | No    | No       | Yes      | No                                   | No                           |
| Sycamore     | 230      |          | LDES             | 500          | -                 | 500           | Not Applicable                                        | 1*                                        | Not Applicable | Not Applicable | 2      | 1                     |       |          |          |                                      |                              |
| ECO          | 115      |          | Li_Battery       | 108          | -                 | 108           | Not Applicable                                        | 3                                         | Not Applicable | Not Applicable | 1      | 1                     | Yes   | No       | Yes      | No                                   | No                           |
| ECO          | 115      |          | Solar            | -            | 180               | 180           | 1                                                     | 3                                         | 2              | 1              | 1      | 1                     |       |          |          |                                      |                              |
| ECO          | 230      |          | In-State Wi      | -            | 360               | 360           | 2                                                     | 3                                         | Not Available  | Not Available  | 2+     | 2*                    |       |          |          |                                      |                              |
| ECO          | 115      |          | In-State Wi      | 135          | -                 | 135           | 1                                                     | 3                                         | 2              | 1              | 1*     | 1                     |       |          |          |                                      |                              |
| ECO          | 500      |          | In-State Wi      | -            | _                 | _             | 2                                                     | 3                                         | Not Availabe   | Not Availabe   | 2+     | 1                     |       |          |          |                                      |                              |
| IID System   | 230      | Yes      | Li_Battery       | 150          | -                 | 150           | Not Applicable                                        | 3                                         | Not Applicable | Not Applicable | 1      | 1                     | #N/A  | #N/A     | #N/A     | #N/A                                 | #N/A                         |
| IID System   | 230      | Yes      | Solar            | 20           | 100               | 120           | Not Available                                         | 3                                         | Not Available  | Not Available  | 1      | 1                     |       |          |          |                                      |                              |
| IID System   | 230      | Yes      | Geotherma        | 950          | _                 | 950           | Not Availabe                                          | 3                                         | 1              | 2              | 2      | 1                     |       |          |          |                                      |                              |
| IID System   | 161      | Yes      | Geotherma        | 50           | _                 | 50            | Not Availabe                                          | 3                                         | 1              | 2              | 1      | 1                     |       |          |          |                                      |                              |
| Imperial Va  | 230      |          | Li_Battery       | 175          | _                 | 175           | Not Applicable                                        | 3                                         | Not Applicable | Not Applicable | 1+     | 1                     | Yes   | No       | No       | No                                   | No                           |
| Imperial Va  | 230      |          | Solar            | 100          | 563               | 663           | 1                                                     | 3                                         | 1              | 1              | 1+     | 1                     |       |          |          |                                      |                              |
| Ocotillo     | 500      |          | In-State Wi      | -            | _                 | _             | 2                                                     | 3                                         | 2              | 1              | 2+     | 1                     |       |          |          |                                      |                              |