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EXECUTIVE SUMMARY 

PURPOSE 

The CPUC’s Mid-Term Reliability (MTR), Decision (D.21-06-035), orders the procurement of 11,500 

megawatts (MW) of net qualifying capacity (NQC) and requires standardized effective load carrying 

capability (ELCC) values. These standardized values allow for load serving entities (LSEs) to know the 

compliance value of various incremental resource types and allows for the CPUC to be confident that 

incremental procurement will fill their identified procurement need. This report presents updates to the 

ELCC values to be used for compliance with the CPUC’s MTR Decision. The ELCC values for 2023 (“Tranche 

1”) and 2024 (“Tranche 2”) compliance dates were finalized in a report by the CPUC in October of 2021. 

This report presents updates to the previously reported ELCC values for 2025 (“Tranche 3”) and 2026 

(“Tranche 4”) compliance dates. Additionally, this report presents ELCC values for 2027 (“Tranche 5”) and 

2028 (“Tranche 6”), based on the January 13, 2023, Integrated Resource Planning (IRP) Proposed Decision 

that proposes additional MTR procurement. The study also presents a comparison to previous ELCC 

studies and sensitivities that consider drivers of ELCC uncertainty. E3 and Astrapé produced this study as 

technical consultants to the CPUC using Astrapé’s Strategic Energy and Risk Valuation Model (SERVM) 

stochastic loss of load probability (LOLP) model. 

BACKGROUND 

Many renewable energy resource types, such as wind and solar resources, are non-dispatchable and 

variable in output, and dependent upon external conditions such as weather. Energy-limited resources 

such as battery storage have constraints on their ability to be discharged and are subject to charging 

limitations based on available excess energy from other generators. Consequently, the ability of these 

resources to serve load is not the same as a traditional, firm1 dispatchable resources. Therefore, a measure 

of their equivalent capacity is needed so that these resources can be properly accounted for in resource 

adequacy (RA) assessments and procurement. The emerging industry standard for this purpose is ELCC. 

This study examined the incremental ELCC of energy storage, solar photovoltaic (PV), and wind in the 

California Independent System Operator (CAISO) footprint to provide ELCC assumptions to LSEs for 

compliance with the CPUC’s MTR Decision.2 This study’s primary focus was on Tranches 3 and 4: pertaining 

to requirements of 1,500 additional megawatts (MW) by 2025 and 2,000 additional MW by 2026. 

Additionally, the study reflects the proposed changes to MTR in the January 13, 2023, IRP Proposed 

Decision, whereby the 2,000 MW long-lead time (“LLT”) resource tranche is delayed until 2028, a new 

2,000 MW Tranche in 2026 replaces that LLT volume, and another 2,000 MW tranche is added in 2027.  

 
1 A “firm” resource can operate indefinitely when called upon.  

2 D.21-06-035, available at: https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M389/K603/389603637.PDF   

https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M389/K603/389603637.PDF
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METHODOLOGY 

ELCCs are calculated by determining the reliability improvement contributed to the system by incremental 

resources in terms of the amount of additional load that can be served because of that improvement in 

reliability, calculated relative to a perfect capacity firm generator with no outages.3 Thus, ELCC provides a 

consistent metric through which renewable and energy-limited resources can be directly compared with 

one another and with dispatchable generation resources based on their ability to fill the CAISO’s mid-term 

capacity shortfall.  

This study began with a resource portfolio intended to represent the expected CAISO resource portfolio 

in 2025, prior to the MTR procurement in 2025 and later years. This portfolio was determined by adding 

to the MTR baseline portfolio: 1) resources procured by LSEs in compliance with the D.19-11-016 

procurement order and 2) expected cumulative LSE resource additions for compliance with MTR Tranches 

1 and 2 in 2023 and 2024. The additions to the MTR baseline reflect LSE procurement data for D.19-11-

016 and MTR Tranches 1 and 2 contracts, received from LSEs by CPUC staff on 8/1/2022. Recognizing that 

solar and energy storage resources significantly interact with each other and are likely to form the bulk of 

resource additions, E3 and Astrapé designed a “surface” of incremental solar and storage additions. Wind 

resources were studied at various points in this surface, aligned with MTR Tranches. This surface covered 

the existing MTR Tranches 3 and 4, as well as the additional 4,000 MW procurement volume recently 

proposed in the IRP proceeding and captured in Tranches 5 and 6.4  

This analysis used the CPUC Energy Resource Modeling (ERM) team’s latest SERVM version,5 with its 

existing load and resources data across 1998-2020 weather years, and made a variety of updates including 

minor refinements of the MTR baseline, wind shape adjustments, hydro de-trending and de-coupling, and 

load shape adjustments consistent with 2021 Integrated Energy Policy Report (IEPR) load. For this analysis, 

the ELCC of incremental resource additions was determined by comparing the reliability improvement 

achieved with the equivalent reliability of a perfect capacity generator (represented by a combustion 

turbine – CT – with no forced or planned outages).6 

 
3 In the academic literature the comparison is performed against flat blocks of load. However, in practice in the 
industry, the comparison is often made to generation modeled without forced or planned outages.   

4 The four tranches described in this report refer to the four years of procurement ordered in the MTR decision – 

2023-2026 – and are separate and distinct from the three tranches of procurement ordered in the short-term 

reliability decision (2021-2023), although Tranche 1 of MTR procurement coincides with Tranche 3 of the short-

term reliability decision procurement. 

5 As described in “Energy Division Study for Proceeding R.21-10-002: Loss of Load Expectation and Slice 

of Day Tool Analysis for 2024” available at: 

https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M501/K409/501409211.PDF  

6 Per the FAQ document released by CPUC staff on August 24, 2021, “for resource types for which staff publish 
ELCCs for by the end of August 2021, per OP 15, the ELCC is annual and should be used to determine compliance 
with OP 1 and OP 3. For other resource types, LSEs should use the September NQC according to RA program  

 

https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M501/K409/501409211.PDF
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RESULTS 

The ELCCs by MTR Tranche are presented in Table 1. By 

Tranche 3, energy storage resources provide less than 80% 

incremental ELCC due to the existing CAISO storage 

penetration from past procurement, including Tranches 1 

and 2. Energy storage ELCC decline can be partially offset 

with longer duration storage additions. Solar ELCCs are 

generally very low due to the late evening net peak but 

continue to provide value through their interactive effects 

with other resources, including providing mid-day charging 

energy. While solar ELCCs monotonically decline with increases in solar penetration in isolation, solar 

ELCCs can increase when storage penetrations increase and energy constraints become binding. This is 

the effect observed in the increase in solar ELCC between Tranche 3 and 4, and the continued (albeit 

small) incremental reliability value of solar through 2028. The assumed addition of both solar and storage 

helps to maintain the reliability value of both resources. In-state wind ELCCs are generally low, reflecting 

updated wind shapes showing lower summer afternoon output. Out-of-state wind and offshore wind 

show higher ELCCs than in-state wind due to their higher output during net peak conditions. The results 

presented in Table 1 are applicable to storage technologies other than batteries and pumped storage 

hydro, provided that such storage resources have comparable round-trip efficiencies and durations. 

 

 

 

 

 

 

 

 

 
rules at the time of contract signing.” The FAQ document is available at: https://www.cpuc.ca.gov/industries-and-
topics/electrical-energy/electric-power-procurement/long-term-procurement-planning/more-information-on-
authorizing-procurement/irp-procurement-track  

“Marginal” vs. “Incremental” ELCCs: 

marginal ELCCs refer to the ELCC benefit of 

adding one additional MW to a system (or 

another reasonably small amount). 

Incremental ELCCs refer to the ELCC 

benefit of a larger incremental addition or 

the subsequent benefits of multiple 

increments of additions. 

https://www.cpuc.ca.gov/industries-and-topics/electrical-energy/electric-power-procurement/long-term-procurement-planning/more-information-on-authorizing-procurement/irp-procurement-track
https://www.cpuc.ca.gov/industries-and-topics/electrical-energy/electric-power-procurement/long-term-procurement-planning/more-information-on-authorizing-procurement/irp-procurement-track
https://www.cpuc.ca.gov/industries-and-topics/electrical-energy/electric-power-procurement/long-term-procurement-planning/more-information-on-authorizing-procurement/irp-procurement-track
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Table 1. Incremental ELCCs by MTR Tranche 

 
From prior study, for 

reference only 
Updated values  
from this study 

Additional Proposed 
MTR Tranches7 

 Tranche 1 Tranche 2 Tranche 3 Tranche 4 Tranche 5 Tranche 6 
 2,000 MW 6,000 MW 1,500 MW 2,000 MW 2,000 MW 2,000 MW 

 2023  2024  2025  2026  2027 2028 

4-Hour Battery 96.3% 90.7% 75.1% 76.6% 74.0% 76.5% 

6-Hour Battery 98.0% 93.4% 79.6% 80.3% 80.5% 83.3% 

8-Hour Battery 98.2% 94.3% 84.0% 84.0% 87.1% 90.1% 

8-Hour PSH N/A 76.8% 82.6% 82.6% 85.7% 88.7% 

12-Hour PSH N/A 80.8% 86.6% 86.6% 89.7% 92.7% 

Solar - Utility and BTM PV 7.8% 6.6% 6.6% 7.0% 7.5% 8.8% 

Wind CA 13.9% 16.5% 12.0% 13.2% 14.0% 14.7% 

Wind WY 28.9% 28.1% 31.0% 33.0% 31.7% 30.9% 

Wind NM 31.1% 31.0% 30.0% 35.0% 33.7% 31.9% 

Wind Offshore N/A N/A 48.0% 46.0% 44.0% 44.7% 
 

Compared to the MTR ELCC study released in October 2021, the changes to Tranche 3 and 4 ELCC 

values were generally small. The largest change was to the wind ELCC values resulting from 

improvements to the wind shapes used in this study. These improvements led to lower in-state 

wind ELCCs and higher offshore wind ELCCs. The ELCC Comparison to Past Studies section of this 

report explains why and how ELCC values shift from study to study, highlighting the importance of 

regular updates to long-term ELCC forecasts as the load shapes, system portfolio, and weather 

trends evolve over time. The fact that ELCC values evolve as system portfolios change and as new 

weather and operational data becomes available is a key benefit of the methodology that supports 

continuous improvement in the CPUC’s reliability planning, though it is recognized that the variable 

nature of ELCC values poses a challenge to multi-year forward procurement efforts. 

Sensitivity analyses were conducted to consider the sensitivity of solar and storage ELCCs to key 

portfolio and operational parameter inputs. These analyses show that the solar and storage ELCCs 

presented in the table above could change by up to +/- 10 percentage points under various 

assumptions of future load shapes and battery operations. Further collaboration with the California 

Energy Commission (CEC) on multi-year weather and load datasets may reduce uncertainty in the 

CAISO load shape, and as batteries grow on the CAISO system, expanded operational data -- 

including forced outage rates/durations and ability to dispatch optimally to reduce loss of load risk 

-- will reduce the uncertainty in storage ELCCs.  

  

 
7 The years and volumes shown here are based on the January 13, 2022 Proposed Decision. Tranche 5 consists of 
2,000 MW in 2027 and Tranche 6 consists of 2,000 MW – assumed to be 1,000 MW long duration storage and 
1,000 MW firm zero carbon renewables – in 2028. 
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BACKGROUND AND METHODOLOGY 

MTR PROCESS AND NEED FOR INCREMENTAL ELCCS 

The MTR Decision requires that at least 11,500 MW of additional net qualifying capacity (NQC) be 

procured by all the LSEs subject to Commission jurisdiction. The capacity requirements are divided into 

four “tranches”: 2,000 MW by 2023, 6,000 additional MW by 2023, 1,500 additional MW by 2025, and 

2,000 additional MW by 2026. Two additional procurement tranches are now proposed in the IRP 

proceeding for 2,000 MW in 2027 and 2,000 MW in 2028. The very large amount of capacity ordered 

(approximately a third of the system managed peak demand) requires a robust method for ensuring that 

incremental reliability contributions used by LSEs in their evaluations and compliance filings will be 

sufficient to completely fill the procurement need identified.  

Unlike traditional resources, the system reliability contributions of renewable and energy-limited 

resources decline with greater penetrations of such resources. This is because energy-limited resources 

do not have the same dispatch flexibility that traditional resources have to meet changing system 

dynamics and are subject to “saturation effects.” For example, as solar is added to the system, the 

injections into the system from the solar resources cause a shift in the timing of the net load peak as 

demonstrated in Figure 1. Incremental solar produces less energy during the new net load peak period 

and has a corresponding lower reliability contribution. 

Figure 1. Illustrative Net Load Shift Due to Solar Penetration 

 

The orange line in Figure 1. Illustrative Net Load Shift Due to Solar Penetration  depicts the net load 

assuming no solar (i.e., gross load less other modifiers such as wind, energy efficiency, etc.), and the 

different colored lines below the no solar line depict net loads at various penetrations of solar. The figure 

clearly depicts a time shift in the “net load peak” of the system. As the new net load peak approaches 
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dusk, the contribution that the next increment of solar provides for meeting that new peak is smaller than 

that of previous increment. The result is that over time, as solar is added to the system, the average ELCC 

– the total reliability value of all the solar resources – decreases. These dynamics are often referred to as 

“saturation effects.”  

In addition to ELCC dynamics within a resource type (e.g., solar), there are ELCC dynamics between 

resource types, which are referred to as “diversity impacts.” This concept is illustrated in Figure 2 below, 

which shows that solar and energy storage added together provide more than the sum of their parts. 

Energy storage shifts the peak back to the higher solar production hours, during which solar can both 

charge energy storage and narrow the residual net peak period that storage must serve as solar 

production wains.  

Figure 2. Schematic of “Diversity Impacts” between Solar and Energy Storage8 

 
 

Due to these saturation effects and diversity impacts, the average ELCC of the portfolio does not 

accurately reflect the true reliability benefit of the next increment of a resource added to the system.  

Therefore, for all renewable and energy-limited resources, the only way to truly capture the reliability 

benefit of these incremental resources is to calculate the incremental ELCC of adding new resources, 

which will be different than the average ELCC of the entire portfolio. Loss of load probability (LOLP) 

modeling is used for ELCC calculations because it accurately captures reliability contributions across a 

broad range (years or decades) of system conditions and because it robustly captures interactive effects 

between incremental resources and the existing system fleet. This study used Astrapé’s stochastic LOLP 

reliability model SERVM for these ELCC calculations.  

SERVM ELCC CALCULATION METHODOLOGY 

ELCCs are calculated using SERVM by determining how much additional load can be served by the 

renewable/energy limited resources while maintaining a targeted reliability benchmark, expressed in 

 
8 N. Schlag, Z. Ming, A. Olson, L. Alagappan, B. Carron, K. Steinberger, and H. Jiang, "Capacity and Reliability Planning 
in the Era of Decarbonization: Practical Application of Effective Load Carrying Capability in Resource Adequacy," 
Energy and Environmental Economics, Inc., Aug. 2020 
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terms of Loss of Load Expectation (LOLE). The resource adequacy framework of SERVM ensures that the 

reliability impact of the renewable/energy-limited resources are evaluated across a broad range of 

weather patterns via historical weather years, economic growth scenarios, and outage conditions. 

SERVM models renewable resources as an 8,760-hour per year injection profile into the system. A 

separate injection profile is modeled for each weather year considered. Battery and pumped storage 

hydro (PSH) resources are modeled with an initial generation schedule determined day-ahead, but which 

can be altered under emergency conditions. Battery resources, however, can dispatch more flexibly and 

serve ancillary services at a wider range of dispatch levels. These resources are modeled along with all 

other dispatchable resources using an 8,760-hour chronological, economic dispatch modeling approach.  

To determine the reliability benefit of a portfolio of renewable/energy-limited resources, the 

representative 2025 starting portfolio is first calibrated to a presumed target level of reliability by adding 

or removing perfect capacity. For this study, the system was calibrated to the reliability standard LOLE of 

0.1 days/year. The study tranche being considered (e.g., the first tranche of modeled storage additions) is 

then added to the system to determine the improvement in LOLE. The system is then returned to the 

target 0.1 days/year LOLE by removing a portion of the previously added perfect capacity. The difference 

in LOLE between the base case condition and the study tranche condition is the reliability benefit provided 

by the test portfolio. This process is illustrated in Figure 3 below. 

 

Figure 3. ELCC Calculation Process Visual 

 

The amount of perfect capacity removed to achieve 0.1 days/year LOLE will be less than the nameplate 

capacity of the study tranche and represents the equivalent capacity value of the study tranche. Dividing 
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the equivalent capacity value by the nameplate capacity of the tranche results in the incremental ELCC 

(expressed in percent). 

When assessing ELCC, either the addition of perfect load (i.e., flat load) or the removal of perfect capacity 

(i.e., a dispatchable generator with no forced or planned outages) can be used. There is no industry 

standard approach, and both methods have been used widely in the industry; however, the method used 

may capture different interactive effects on energy-limited resources (such as energy storage). Prior ELCC 

studies performed by Astrapé for California have used the addition of perfect blocks of load to compare 

the reliability contributions of incremental generation.9 That method leaves existing generation with 

forced outages in the fleet and tends to exacerbate negative interactions across resource classes. For 

instance, adding energy storage may require existing firm10 generation to operate more mid-day to charge 

the storage. The additional load associated with the “perfect load” LOLE tuning method adds load in all 

hours, which requires dispatchable generation to operate to charge the battery and then even more 

dispatchable generation to operate to serve the mid-day load added. This increased operation leads to 

more outages and commensurately lower ELCCs for storage. Wind resources have similar effects since 

they have less energy prior to the peak than during the peak.  

Figure 4. Flat Load Addition Effect on Firm Generator Operations 

 

In contrast, the perfect capacity method typically entails a firm capacity comparison resource with no 

availability limits. This resource could be modeled as a “first in the stack” firm resource (i.e., a baseload 

resource dispatched before other dispatchable resources), or a “last in the stack” firm resource (i.e., a 

 
9 https://www.astrape.com/wp-content/uploads/2022/03/2021-Joint-IOU-ELCC-Study-Final-Report.pdf   
10 The term “conventional” in this report refers to resources that can be turned on and off to reflect market 

conditions and do not have energy/duration constraints, such as gas power plants. 

https://www.astrape.com/wp-content/uploads/2022/03/2021-Joint-IOU-ELCC-Study-Final-Report.pdf
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peaking resource dispatched after other dispatchable resources when required to avoid loss of load). 

The “first in the stack” method is akin to adding load in every hour and therefore can have the same 

impacts on renewable and storage resources as noted above for the flat load method. The “last in the 

stack” method has fewer system interactions since the perfect resource being added is only operated in 

a manner to avoid loss of load risk versus operating in a way that changes the operations of the rest of 

the existing fleet. This translates into a slightly higher ELCC for storage and renewable resources, since 

no additional system outages are introduced in off-peak hours by the need to serve incremental load 

additions. The “last in the stack” perfect capacity method was chosen for this analysis because it aligns 

with the method used by the CPUC ERM team in their ELCC calculations, and while results are similar 

between both “first in the stack” and “last in the stack” methods, the selected approach most accurately 

reflects the reliability contribution of these resources in the system as it is projected to exist. Using the 

“last in stack” perfect capacity method can require removing existing firm generation from the baseline 

system used in this study.  

STUDY DESIGN 

This study was designed similarly to the previous MTR ELCC study released on 10/21/2021. The 

following key steps were utilized:  

1. Complete SERVM methodology and input updates to the latest CPUC model version 

2. Update the CAISO portfolio to reflect the MTR baseline portfolio plus projected LSE resource 

additions through 2024 in compliance with D.19-11-016 procurement order and MTR Tranches 1 

and 2 

3. Design a “surface” of incremental solar and storage additions to represent expected mid-term 

capacity additions in 2025, 2026, 2027, and 2028 

4. Model the individual and combined additions of solar and storage capacity 

5. Interpolate storage ELCCs for the resource additions needed to fill the remaining need in each 

MTR tranche after accounting for the ELCC of modeled solar additions 

6. Allocate diversity impacts between solar and storage using the “delta method”  

7. Model wind and long duration energy storage (LDES) ELCCs within each tranche of solar and 4-

hour battery storage additions 

The key SERVM input and methodology changes are described in the “Input Assumptions” section of this 

report below, which included offshore wind shapes, neighbor modeling, load shape adjustments, and 

hydro modeling. CAISO portfolio updates to the baseline 2022 portfolio provided by CPUC staff included 

the following changes: 

• Add forecasted incremental utility-scale solar, energy storage, and other resource additions 

within the MTR baseline (resources contracted by 6/30/2020) and add any additional resources 

required for D.19-11-016 compliance 

• Add projected MTR Tranche 1 and Tranche 2 LSE additions (i.e., forecasted additions through 2026 

based on in-development contracts executed and approved by 8/1/2022 date) 
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• Remove planned resource retirements (OTC gas units, Diablo Canyon11, Intermountain, etc.) and 

age-based retirements   

• Update load forecast and load modifiers according to the 2021 IEPR forecast (including 

consumption, behind-the-meter (BTM) PV, additional achievable energy efficiency (AAEE), time-

of-use (TOU), and electric vehicle (EV) loads) 

Loads were held constant at the 2030 level, because load changes between 2025 and 2030 are expected 

to have minimal impact on ELCCs and changing loads between study tranches would have introduced 

another variable to disentangle from the aggregated impact of increasing solar and storage penetration. 

The final CAISO portfolio onto which incremental resources were added is described in   

 
11 Per SB846, Diablo Canyon is excluded from this analysis. "The bill would require that the PUC not include, and 
disallow a load-serving entity from including in their adopted resource plan, the energy, capacity, or any attribute 
from the Diablo Canyon powerplant in the integrated resource plan portfolios beyond specified dates, and would 
require the Energy Commission not consider the energy, capacity, or any attribute from the Diablo Canyon 
powerplant in meeting the above state policy." 
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Table 3 below. 

The solar and storage ELCC surface design assumed incremental utility-scale solar based on the 2022 

updated 38 MMT Preferred System Plan (PSP) portfolio, adopted in D.22-02-004, while incremental BTM 

PV additions were based on the 2021 IEPR forecast. Indications are that using a 30 MMT PSP portfolio 

would not materially change the results before 2028. Storage additions were designed to capture a range 

of additions of both 4-hour and 8-hour duration storage that would enable interpolating to determine the 

nameplate storage additions needed to fill each tranche with energy storage ELCC MW. The solar and 

storage capacities in each tranche are described further in tables in the Solar and Storage Surface Inputs 

section below. The solar and storage additions assumed to fill each MTR tranche are shown in Figure 5. 

Solar and storage additions by MTR tranche 

Figure 5. Solar and storage additions by MTR tranche 

 

Once the solar and storage additions for each MTR tranche were interpolated from solar and storage ELCC 

surface points, in-state wind storage was modeled as incremental to the assumed solar and storage 

starting points for each tranche. In other words, the Tranche 4 in-state wind ELCCs were modeled as the 

incremental ELCC on top of a portfolio of resources that included the Tranche 3 solar and storage 

additions. This captured the interactive effects between the solar and storage additions on wind 

incremental ELCCs. 

As noted in Figure 5. Solar and storage additions by MTR tranche, resource additions modeled to build the 

ELCC surface in all years except for 2028 are comprised only of solar and 4-hour batteries. Resource 
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additions in 2028 (Tranche 6) are comprised of 1 NQC gigawatt (GW) of zero-carbon firm capacity, 1 NQC 

GW of long duration energy storage (LDES, modeled as 8-hour battery storage), and 2.7 GW of solar 

nameplate capacity.  

When solar and storage are added together, they provide diversity benefits that make a portfolio of solar 

and storage resources contribute more to reliability than the sum of their individual ELCCs. These diversity 

benefits were allocated between solar and storage with the delta method, using the portfolio ELCC and 

the estimated first-in and last-in marginal ELCCs for solar and storage within each MTR tranche on the 

surface. E3 developed the delta method, illustrated in Figure 6. Delta Method ELCC Allocation 

Methodology, to credit each resource in a portfolio of resources in a manner that reflects the nature of 

their synergistic, antagonistic, or neutral interactions with the portfolio by adjusting last-in ELCC based on 

its difference from its first-in ELCC. The method allocates interactive effects while balancing the goals of 

reliability, fairness, efficiency, and acceptability. It is intended to be scalable across a portfolio of multiple 

resource types but can be used as well on a portfolio with two resource types (as modeled here for solar 

and storage). 

Figure 6. Delta Method ELCC Allocation Methodology12 

 

 
12 For additional background information on E3’s Delta Method see the following: N. Schlag, Z. Ming, A. Olson, L. 
Alagappan, B. Carron, K. Steinberger, and H. Jiang, "Capacity and Reliability Planning in the Era of Decarbonization: 
Practical Application of Effective Load Carrying Capability in Resource Adequacy," Energy and Environmental 
Economics, Inc., Aug. 2020. 
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The ELCC results are referred to as “incremental” ELCC. Marginal ELCCs refer to the ELCC benefit of adding 

one additional MW to a system (or another reasonably small amount). Incremental ELCCs refer to the 

ELCC benefit of a larger incremental addition or the subsequent benefits of multiple increments of 

additions. Because larger levels of additions are considered in this study, including multiple increments of 

solar and storage, the ELCC results are referred to as “incremental” ELCCs. 

Key areas of uncertainty contained within the study design include the assumed solar capacity additions 

(both BTM and utility-scale), modeled vs. actual performance of energy storage resources in the CAISO 

market, and the impact of recent extreme weather on SERVM’s CAISO load shapes and resource 

availability. Sensitivity runs examined the magnitude of each of these factors. 
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INPUT ASSUMPTIONS 

SUMMARY OF INPUT UPDATES FROM 2021 MTR ELCC STUDY 

Several input updates were made to the SERVM model since the 2021 MTR ELCC study. A summary of 

changes is shown in the table below, with additional details on input development in the following 

sections. 

Table 2. Summary of changes vs Previous MTR Study 

Input 2021 MTR ELCC Study 2023 MTR ELCC Study 

Weather Years 1998-2017 1998-2020 

Solar Profiles 

Aligned with 2021 database 

created by Energy Division in 

support of RA and IRP 

proceedings 

Aligned with 2022 database 

created by Energy Division in 

support of RA and IRP 

proceedings13 

CA and Out of State Wind 

Profiles 

Astrapé developed synthetic 

profiles using historical CAISO 

settlement data 

Aligned with 2022 database 

created by Energy Division in 

support of RA and IRP proceedings 

Offshore Wind Profiles 

Aligned with 2021 database 

created by Energy Division in 

support of RA and IRP 

proceedings 

Aligned with 2022 database 

created by Energy Division in 

support of RA and IRP proceedings, 

with additional adjustments for 

system losses 

Imports Fixed Import Profiles 

Explicit neighboring zones modeled 

with net peak aggregated import 

limit 

Hydro Modeling 

Aligned with 2021 database 

created by Energy Division in 

support of RA and IRP 

proceedings 

Detrending of total hydro energy in 

earlier weather years and 

decoupling historic hydro dispatch 

from specific weather years 

Load Profiles 

Aligned with 2021 database 

created by Energy Division in 

support of RA and IRP 

proceedings 

Aligned with 2022 database 

created by Energy Division in 

support of RA and IRP proceedings 

with additional shape adjustment 

 
13 Available here: https://www.cpuc.ca.gov/industries-and-topics/electrical-energy/electric-power-

procurement/long-term-procurement-planning/2022-irp-cycle-events-and-materials/unified-ra-and-irp-modeling-

datasets-2022 
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to better align with IEPR 2021 

managed peak forecasts 

IMPORTS 

Fixed import shapes from the previous MTR study were replaced with explicit modeling of external regions 

one transmission tie away from CAISO to capture the generator outage and load diversity benefit available 

to CAISO. Loads and resources were updated to reflect the most recent estimates of variable-energy 

resource (solar, battery, wind) penetration levels in neighboring regions as indicated in the WECC 2032 

Anchor Data Set (ADS). Perfect capacity additions and load adders were applied as necessary across each 

individual neighboring region such that the total annual LOLE was shown to be between 0.05 and 0.15. 

Reliability was tuned to approximately 0.1 LOLE since the objective of including neighboring systems in 

this reliability study is to capture the benefits of resource diversity and generator outage diversity. If 

neighboring zones were above 0.1 LOLE, California would be “subsidizing” the neighbor’s reliability – 

carrying too much capacity to meet its own needs to keep neighbors at 0.1. If neighboring zones were 

below 0.1 LOLE, those zones would be subsidizing California’s reliability needs. This approach assumes 

that the Northwest and Southwest regions will in the long run trend towards load and resource balance 

(i.e., 0.1 LOLE), adding capacity if they are under-reliable today and retiring capacity if they are over-

reliable.  

Modeled regions include the following:  

• Northwest  

o Bonneville Power Administration-Transmission (BPAT) 

o Portland Gas & Electric  

o PacifiCorp West  

• Southwest  

o Arizona Public Service Company  

o Nevada Power Company  

o Western Area Power Administration (Lower Colorado)  

o Salt River Project  

• Non-CAISO California  

o Imperial Irrigation District  

o Los Angeles Department of Water and Power  

o Turlock Irrigation District  

o Sacramento Municipal Utility District  

An additional transmission import constraint was applied to the hourly modeling in SERVM, which limited 

the total unspecified imports (aggregate value across all of CAISO) from all neighboring regions during the 

anticipated sales peak period. The sales peak period was defined as hour ending 17 through 22 for each 

day of the year. The aggregated import limit was set to 4,000MW for all ELCC simulations. 
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HYDRO 

SERVM models hydro units by specifying operating constraints by month using historical hourly and 

monthly hydro generation data. Key input variables include maximum capacity values, daily scheduled 

flow range (minimum and maximum hydro dispatch levels based on an average load day), and total 

monthly hydro energy. SERVM utilizes a proportional load following algorithm to determine ideal dispatch 

to schedule more during high load hours and less during low load hours while still respecting monthly 

energy and maximum capacity value constraints.  

All hydro input variables for CAISO and the modeled neighboring regions were updated using the most 

recent historical hourly hydro generation data from CAISO, BPAT, and the United States Energy 

Information Administration (EIA) between 2018-2021. In addition, 23 years of historical total monthly 

hydro energy production (1998-2020) from EIA was analyzed. Using the 2018-2021 hourly data, 

relationships were established between monthly hydro energy production and the following variables: 

daily maximum dispatch, daily minimum dispatch, and monthly maximum capacity. These relationships 

based on recent hourly data provide a realistic understanding of how hydro resources are currently being 

dispatched within CAISO and its neighbors. Historical monthly energy data from historical weather years 

further in the past can then be used to determine the associated monthly maximum, daily average 

maximum, and daily average minimum by month for those weather years. The relationships for CAISO 

hydro resources are shown in the figure below as an example.  

Figure 7. Historical CAISO Hydro Data 

 

Before applying the relationships above to the historical monthly hydro energy data from EIA between 

1998-2020, the monthly hydro energy values were detrended to reflect the declining total energy 

Max output 

on August 14 

& 15, 2020 
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available from hydro resources in recent years. This decreased the total monthly hydro energy for weather 

years in the more distant past to avoid overestimating the expected availability from hydro in the future. 

Figure 8 below shows the original monthly energy values and the “detrended” values that were utilized 

in the updated SERVM input parameters.  

Figure 8. Original and Updated "Detrended" CAISO Hydro Energy Availability 

 

Emergency hydro units were also modeled as an improvement to the MTR ELCC analysis. These units 

reflect the additional maximum dispatch capability of existing hydro resources that would be expected 

to be utilized during emergency conditions. The difference between actual monthly maximum hydro 

dispatched and the trended dispatch values were compared to determine the availability of additional 

emergency hydro capacity. Historical months below 1.5 terawatt-hour (TWh) of total hydro energy 

production were modeled with 817 MW of emergency hydro capacity (677 MW for Pacific Gas and 

Electric (PGE) and 140 MW for Southern California Edison (SCE). Above 1.5 TWh of total hydro energy, 

the total capacity of emergency hydro decreased linearly as total hydro energy increased. Emergency 

hydro availability is limited to 20 hours of dispatch. Emergency hydro capacity was not considered to be 

available for historical months where the total hydro energy exceeded 2.48 TWh. The figure below 

demonstrates the observed historical dispatch values that were seen to be greater than the trendline for 

CAISO hydro resources. 
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Figure 9. Historical CAISO Hydro Maximum Output 

 

Lastly, to get a better statistical sampling of hydro resource performance across all modeled weather year 

and load forecast error combinations, hydro performance was decoupled from the historical weather year 

in SERVM simulations. Instead of modeling 1998 hydro performance alongside the load and renewable 

profiles associated with the 1998 weather year, the 1998 hydro conditions were modeled across all 

weather years (and so on for each hydro performance year). The chart below shows the correlation 

between historical hydro energy production and the CAISO annual gross load peak. This low correlation 

implies that a high load weather year is just as likely to experience a high amount of hydro energy 

production as it is to experience a low amount of energy production.  

Figure 10. CAISO Annual Hydro Production vs. Annual CAISO Peak 
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The resulting combination of weather years (load), hydro performance year, and load forecast errors that 

were applied to each ELCC scenario is summarized in the formula below. 

23 𝑤𝑒𝑎𝑡ℎ𝑒𝑟 𝑦𝑒𝑎𝑟𝑠 ⋅ 23 ℎ𝑦𝑑𝑟𝑜 𝑦𝑒𝑎𝑟𝑠 ⋅ 5 𝑙𝑜𝑎𝑑 𝑓𝑜𝑟𝑒𝑎𝑐𝑠𝑡 𝑒𝑟𝑟𝑜𝑟𝑠

= 2,645 𝑢𝑛𝑖𝑞𝑢𝑒 𝑐𝑎𝑠𝑒𝑠 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑝𝑒𝑟 𝑠𝑐𝑒𝑛𝑎𝑛𝑎𝑟𝑖𝑜  

CALIFORNIA AND OUT-OF-STATE WIND PROFILES 

Creation of wind production profiles requires a production curve that translates wind speed data into 

hourly generation (MWh) from wind turbines. For onshore and out of state wind production curves, staff 

created a curve based on historical MWh wind generation data sourced from CAISO and other sources 

based on historic availability.  

For the 2021 MTR ELCC study, wind speed data was sourced from the National Climate Data Center ISD-

Lite database. For the 2023 MTR ELCC study, wind speed data was updated using the NASA MERRA2 

dataset which consists of greater availability and granularity of weather data. Due to the growing diversity 

of wind generator locations and the very specific locational differences between wind speeds, the more 

granular data set was needed. In addition, due to the need for creation of 23 years of weather history, it 

was critical to use a dataset that covers the entire set of simulated weather years. In this case, staff used 

weather data from 1998 through 2020 to create sufficient weather variability.  

Astrapé provided support in this development to calibrate wind production on peak load days with 

historical production data. The updated wind profiles reflect slightly lower output on average during 

summer afternoons for in-state wind, which is the primary contributor to slightly lower ELCCs. 

OFFSHORE WIND PROFILES 

The offshore wind profiles were updated by the Energy Division using available weather data and applying 

the NREL offshore wind output response curve. For the 2021 MTR ELCC study, wind production curves 

were sourced from NREL data, due to the lack of existing wind generation (MWh) data from offshore wind 

generators. Wind speed data was sourced from the National Climate Data Center ISD-Lite database. 

For the 2023 MTR ELCC study, wind profiles were updated using the NASA MERRA2 dataset. This change 

in source for historical wind speed data was due to the need for greater availability and granularity of 

weather data. Due to the growing diversity of locations which will be sites for wind generators, and the 

very specific locational differences between wind speeds, the more granular data set was needed. In 

addition, due to the need for creation of 23 years of weather history, it was critical to use a dataset that 

covers the entire set of weather years needed. In this case, staff used weather data from 1998 through 

2020 to create sufficient weather variability. Astrapé applied an additional derating factor across all hours 
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of the year by approximately 12% to account for environmental, technical, electrical, and availability 

losses as defined by the National Renewable Energy Laboratory (NREL)14. 

Figure 11. Daily Average Wind Output Comparison (2023 MTR ELCC Study vs. 2021 MTR ELCC Study) 

 

LOAD PROFILES 

The load shapes utilized in this analysis were based on the synthetic load shapes for weather years 1998-

2020 developed as part of the IRP and RA proceedings using 2021 IEPR 2021 forecast data. An additional 

adjustment to the load shapes was applied to align with the 2021 IEPR managed peak load forecast by 

adjusting afternoon hours (HE16-24) for high load days in summer months (June through September). The 

normalized load shapes before and after the adjustment are shown in the figure below. A sensitivity was 

performed to understand the impact this load adjustment had on the ELCC values for Tranche 3. 

 
14 https://www.nrel.gov/docs/fy22osti/82341.pdf 
 

https://www.nrel.gov/docs/fy22osti/82341.pdf
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Figure 12. Average Normalized September Load (> 45 GW Daily Peak) 

 

SUMMARY OF KEY INPUTS 

MTR BASELINE PORTFOLIO 

The Baseline Portfolio used in SERVM is provided in   
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Table 3. Base Resource Mix. This portfolio reflects the baseline portfolio used to determine the MTR 

Decision’s 11.5 GW capacity need and procurement target, as well as projected LSE resource additions 

through 2024 for compliance with the D.19-11-016 procurement order and MTR Tranches 1 and 2. The 

study year of 2030 was selected for developing the solar and storage ELCC matrix with the necessary 

amount of perfect capacity added to calibrate the base case to 0.1 LOLE. To ensure all ELCC values within 

the matrix were calculated using the method described in the methodology section above (i.e., adding 

incremental resources and removing perfect capacity), a small amount of thermal resources were 

replaced with perfect capacity. This avoided the potential for modeling an incremental resource addition 

in later tranches with a reliability value that exceeded the amount of perfect capacity available in the 

system to remove. The selection of the 2030 study year did not impact the established presumed 

penetration for key resources such as solar, wind, and battery storage. 
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Table 3. Base Resource Mix 

Unit Category Nameplate 

Capacity (MW) 

Battery Storage 12,093 

Biogas 223 

Biomass/Wood 442 

CC 14,771 

Coal 0 

Cogen 335 

CT 7,329 

DR 2,392 

Geothermal 1,376 

Hydro15 4,568 

ICE 259 

Nuclear 635 

PSH 1,483 

Utility Solar + 

BTMPV 

40,305 

Wind 7,286 

 

SOLAR AND STORAGE SURFACE INPUTS 

The proposed solar and storage surface for use in 2022-23 IRP inputs and assumptions is shown in Error! 

Reference source not found., which provides a heatmap indicating the marginal/incremental storage 

ELCCs and the marginal/incremental solar ELCCs for various penetrations of solar and storage. This large 

surface was generated from SERVM for use in RESOLVE capacity expansion, whereby the optimization is 

granted wide freedom to test the reliability and economics of traversing in multiple directions across the 

surface.  

The battery ELCC and solar ELCC heatmaps are nearly a perfect inverse of one another, clearly displaying 

the fact that the diversity benefits associated with adding solar and storage in tandem are critical to 

supporting the ELCC of the other resource as penetrations increase. RESOLVE is likely to find that – for 

 
15 2020 Weather Year value 
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solar and storage as reliability assets – the least-cost solution to meeting long-term reliability needs is to 

add a combination of solar and storage such that the incremental storage ELCC is maintained as much as 

possible. This involves straddling the diagonal line that bifurcates each table between the zones where 

incremental ELCC is maintained (e.g., where solar can support batteries to be sufficiently charged). 

Eventually, even these diversity impacts become saturated as the net load peak may shift outside of the 

traditional days or seasons when solar energy is abundant. At this point, the economic solution to long-

term reliability needs is to diversify the portfolio by adding other resources, most critically adding or 

maintaining firm capacity – that can operate on demand through low solar periods – but also adding anti-

correlated renewables to solar such as onshore, out-of-state, and offshore wind. 

Figure 13. Proposed RESOLVE Solar and Storage Surface + the Subsection Studied in this Report 

 

From this larger solar and storage surface used for long-term planning, a smaller solar and storage surface 

was developed to drill down with greater precision on the specific MTR tranches ordered by the CPUC. 

Notably this is a key region of the surface where solar and storage interactive effects become pronounced 

and storage ELCCs decline dramatically without additional concurrent solar additions.  

The nameplate solar and storage additions added by each tranche are provided in Table 4. The utility solar 

additions were assumed to be all single-axis tracking. The solar and surface ELCC design assumed 

incremental utility-scale and BTM solar additions in 2025, 2026, 2027, and 2028 based on the average 

annual additions of 2,700 MW between 2025 and 2030 in the 2022 updated 38 MMT PSP and 2021 IEPR 

forecast. This led to 2,700 MW of utility-scale and BTM solar being added to the MTR baseline portfolio 

each year for each year of the analysis period (2025-2028). Storage additions were added to allow 

interpolation such that the combined solar and storage ELCC added was sufficient to fill the tranche. 

Recognizing that the ELCC contributions of incremental storage additions are less than 100%, the 

incremental storage nameplate simulated to fill each tranche was higher than the tranche size in NQC. 
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Table 4. Cumulative Nameplate Solar and Storage Additions by Tranche 

Tranche 
Incremental  

Solar (MW) 

Incremental 

4 hour Storage (MW) 

Incremental  

8 hour Storage (MW) 

Tranche 3 (2025) 2,700 1,500 | 3,500 | 5,000 750 | 1,500 

Tranche 4 (2026) 5,400 1,500 | 3,500 | 5,000 750 | 1,500 

Tranche 5 (2027) 8,100 3,500 | 5,000 | 7,000  750 | 1,500 

Tranche 6 (2028) 10,800 3,500 | 5,000 | 7,000 | 10,000 750 | 1,500 

 

Table 5 shows the post interpolation storage nameplate required to fill each tranche. The portfolio ELCCs 

for the levels simulated were curve fitted to a second order polynomial, which was then used to forecast 

the required 4-hour storage resources needed to meet the procurement targets, after accounting for the 

solar added and interactive benefits between solar additions and storage additions. 

Table 5. Assumed Cumulative Nameplate Storage Additions by Tranche 

Tranche 

 Cumulative 

Procurement Target 

(NQC MW)16 

Cumulative 4 Hour 

Storage (MW) 

Cumulative 

8 Hour Storage (MW) 

Tranche 3 (2025) 1,500 1,759 0 

Tranche 4 (2026) 3,500 4,123 0 

Tranche 5 (2027) 5,500 6,553 0 

Tranche 6 (2028) 7,50017 6,553 1,110 

  

 

 

 

 

 

 

  

 
16 MTR procurement volumes incremental to the 8,000 MW ordered in Tranches 1 and 2. 

17 Tranche 6 includes 1,000 NQC MW of zero-carbon firm capacity additions. 
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RESULTS 
 

The incremental ELCCs by MTR Tranche are presented in Table 6. 

Table 6. Incremental ELCCs by MTR Tranche 

 
From prior study, for 

reference only 
Updated values  
from this study 

Additional Proposed 
MTR Tranches18 

 Tranche 1 Tranche 2 Tranche 3 Tranche 4 Tranche 5 Tranche 6 

 2,000 MW 6,000 MW 1,500 MW 2,000 MW 2,000 MW 2,000 MW 

 2023  2024  2025  2026  2027 2028 

4-Hour Battery 96.3% 90.7% 75.1% 76.6% 74.0% 76.5% 

6-Hour Battery 98.0% 93.4% 79.6% 80.3% 80.5% 83.3% 

8-Hour Battery 98.2% 94.3% 84.0% 84.0% 87.1% 90.1% 

8-Hour PSH N/A 76.8% 82.6% 82.6% 85.7% 88.7% 

12-Hour PSH N/A 80.8% 86.6% 86.6% 89.7% 92.7% 

Solar - Utility and BTM PV 7.8% 6.6% 6.6% 7.0% 7.5% 8.8% 

Wind CA 13.9% 16.5% 12.0% 13.2% 14.0% 14.7% 

Wind WY 28.9% 28.1% 31.0% 33.0% 31.7% 30.9% 

Wind NM 31.1% 31.0% 30.0% 35.0% 33.7% 31.9% 

Wind Offshore N/A N/A 48.0% 46.0% 44.0% 44.7% 
 

SOLAR ELCC 

As the penetration of solar increases, the net load peak shifts towards evening hours when solar output 

is generally a small fraction of its nameplate capacity due to low solar angles. With continued solar growth, 

the net peak can shift to nighttime hours when solar output is zero. Even in this extreme case when the 

net peak after solar and wind output is after sunset, solar achieves positive ELCC by allowing energy-

limited resources such as storage, hydro, or demand response programs to charge or conserve energy 

before the net peak. The positive ELCC which solar derives from its interactions with other resources on 

the system is termed “diversity benefit,” and contributes significantly to the increasing ELCC values for 

solar from 2025 to 2028 in Table 6. 

The interactions of solar with the other resource classes modeled are complex and change with the 

penetration of each resource class (i.e., the ELCC of each resource class is highly dependent on where the 

portfolio lies on the broader solar and storage surface).19 For example, the solar ELCC increases slightly 

between Tranche 3 and Tranche 4. Despite adding 2.7 GW of solar in Tranche 3, the concurrent additions 

 
18 The years and volumes shown here are based on the January 13, 2022 Proposed Decision. Tranche 5 consists of 
2,000 MW in 2027 and Tranche 6 consists of 2,000 MW – assumed to be 1,000 MW long duration storage and 
1,000 MW firm zero carbon renewables – in 2028. 

19 Solar interactive effects are also secondarily dependent on the penetrations of wind, the types and outage rates 
of thermal plants, hydro modeling, and other factors. 
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of 1,759 MW of batteries drives the solar energy value to become slightly more important for battery 

charging in Tranche 4 than Tranche 3. This trend continues into later study years as continued solar 

additions do not result in a steep decline in incremental solar ELCCs due to the addition of a sufficient 

amount of battery storage.  

(Note that while solar output during net load peak is affected by both its longitude and technology 

attributes (such as tracking utility-scale PV vs. BTM PV), interactive effects in the system mute some of 

these differences. This study did not calculate distinct ELCCs by solar category or by location. The 2022 

LSE Plan ELCC analysis20 conducted an ELCC analysis by solar category which can provide an indication of 

which solar resources provide more or less than the resource average modeled here). 

STORAGE ELCC 

Storage ELCC values are predominately determined by storage resources’ ability to serve load during 

extreme conditions without exhausting their store of energy. Storage ELCCs are therefore a function of 

both storage resources’ maximum store of energy (relative to their maximum discharging capacity; in 

short, by their maximum discharge duration) and by their ability to charge from energy provided by both 

firm generators and renewables prior to net load peak hours. Diversity benefits with solar therefore also 

contribute significantly to the storage ELCC values reported in Table 6.  

As a result of increasing penetration of solar relative to storage and the associated diversity benefit, 

storage ELCC values increase slightly over the 2025-2028 study period despite continued battery 

additions. However, it should be noted that this increase in battery storage ELCC values throughout the 

study period does not indicate an expected trend in ELCC values beyond 2028. Through the development 

of related analyses, it has been shown that storage ELCC values can have a significant decline as 

penetration increases depending upon the system’s position within the solar+storage ELCC surface. 

Storage with longer maximum discharge duration, for instance 8-hour duration battery storage, has 

consistently higher ELCC than 4- hour duration storage. The ELCC of 8-hour duration pumped hydro 

storage is lower than the ELCC of 8-hour battery storage due to its lower round trip (charging and 

discharging) efficiency. 

The incremental value of long duration storage is not simply driven by differences in energy duration. 

Long duration storage is modeled with forced outage risk during both charging and discharging periods. 

An 8-hour battery storage resource that must charge for over 8 hours a day to be able to discharge for 8 

hours a day carries considerably more outage risk than a firm generator with the same EFOR21 that only 

operates for 8 hours a day. Also, at very high storage penetrations, long duration storage can become 

 
20 https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/energy-division/documents/integrated-resource-

plan-and-long-term-procurement-plan-irp-ltpp/2022-irp-cycle-events-and-materials/20220729-updated-fr-and-

reliability-mag-slides.pdf 

21 Equivalent Forced Outage Rate (EFOR) is defined by operating hours, not by all hours. 

https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/energy-division/documents/integrated-resource-plan-and-long-term-procurement-plan-irp-ltpp/2022-irp-cycle-events-and-materials/20220729-updated-fr-and-reliability-mag-slides.pdf
https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/energy-division/documents/integrated-resource-plan-and-long-term-procurement-plan-irp-ltpp/2022-irp-cycle-events-and-materials/20220729-updated-fr-and-reliability-mag-slides.pdf
https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/energy-division/documents/integrated-resource-plan-and-long-term-procurement-plan-irp-ltpp/2022-irp-cycle-events-and-materials/20220729-updated-fr-and-reliability-mag-slides.pdf


34 
 

charging constrained when excess dispatchable capacity is not available for the full period required to 

fully charge; in this analysis the primary constraining effect was the forced outage risk and not the charging 

constraint.  

WIND ELCC 

Wind output is generally negatively correlated with hot weather and the associated higher loads and this 

is generally reflected in ELCC values that are materially lower than wind resources’ annual or seasonal 

capacity factors. Locational diversity provides some reliability value for wind resources -- although at the 

existing wind penetrations in California, incremental additions within the state likely bring limited diversity 

value. Projects located outside the state or offshore are subject to different climatological conditions, 

which provides additional diversity in output and result in higher incremental ELCCs. The ELCCs change 

only slightly between 2025 and 2028 as the solar+storage portfolio grows, indicating that there are 

minimal interactive effects for wind and solar+storage. The greater driver of wind ELCC reductions would 

be if more wind is added over the MTR timeframe in place of the modeled solar+storage additions. 

APPROACH FOR OTHER RESOURCES NOT MODELED 

The CPUC’s MTR decision requires the following method for determining incremental capacity value for 

resources not covered in this or next year’s study: 

“For all other resource types, counting will be in accordance with the 
system resource adequacy NQC counting rules at the time the contract 
for the new resource or capacity added to an existing resource is 
executed.” (D.21-06-035, p. 71). 

If new resources have project-specific constraints that might impair their ability to meet the NQC counting 

rules (such as the resource type specific “technology factors” published in the CPUC’s NQC List), these 

resources may require additional analysis to determine their capacity value. As an example, a new 

geothermal resource may have project specific characteristics (such as working fluid temperatures, 

cooling system types, or certain project locations) that make them susceptible to temperature based de-

rates during the summer net peak conditions.  

These project-specific characteristics may cause a resource to deviate from the RA program NQC counting 

rules and, if so, the CPUC could utilize a process to evaluate that project’s expected performance. For 

instance, if LSEs submitting new resources using the RA NQC counting rules can provide their forecasted 

output (or potential maximum output) during summer net-peak conditions (5-10pm in June through 

September), that output can be compared against the RA technology factors to determine their 

reasonableness for that specific project. Since the Commission has suggested using the September NQC 

value specifically, this assessment could even be limited to the month of September. 
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ELCC COMPARISON TO PAST STUDIES 

WHY RESOURCE INCREMENTAL ELCC VALUES CHANGE 

The CPUC frequently conducts ELCC studies for various use cases associated with reliability planning. To 

aid stakeholder understanding about why changes occur between study vintages, this section describes 

drivers of change generally and then examines this study’s results as compared to prior studies’ results. 

Table 7 shows the reasons why ELCCs change between studies and their general magnitude, informed by 

the authors’ past experience as well as the sensitivity analysis performed for this report. To be clear, the 

dynamic nature of ELCC values is an expected part of the ELCC methodology and does not necessarily 

represent a failure in method or process. Reflecting the varying contribution of resources as the 

forecasted portfolio or other assumptions change allows for ELCC values to adapt as new weather and 

operational data become available.  

This dynamic nature of ELCCs is best utilized within the context of an ELCC-based need definition (i.e., a 

perfect capacity planning reserve margin based on the total ELCC MW needed to reach 0.1 LOLE). This 

need definition remains quite stable over time even as the portfolio mix evolves and resource ELCCs 

change. It is also important to note that recent IRP ELCC studies typically report marginal or incremental 

ELCC values that tend to be more sensitive to change, while the underlying total capacity contribution of 

all resources is more stable.  

Table 7. Why ELCC Values Change Between Studies 

Change Reason for ELCC Impact Examples General 

Magnitude 

Portfolio 

Changes 

Due to interactive effects within 

and between resources, the 

resource portfolio is the primary 

input into ELCC calculations 

Changing marginal ELCCs 

used for LSE IRPs based on 

the changing CAISO resource 

portfolio 

High 

Resource shape 

changes 

Resource shapes are the most 

direct factor impacting solar and 

wind ELCCs 

Updated wind shapes Medium-High 

Load shape 

changes 

Load shape changes impact the 

load shape to which resources 

are dispatched when ELCCs are 

calculated 

Re-calibration of SERVM load 

shapes when updating IEPR 

vintage 

Medium 

New weather 

years added 

New weather years can impact 

the periods of extreme weather 

that drive reliability events, and 

therefore ELCCs  

Addition in this study of the 

August 2020 extreme 

weather event 

Medium 



36 
 

Changes to 

other input 

parameters 

Due to interactive effects 

between resources, other input 

parameters may impact resource 

ELCCs 

Hydro modeling, neighbor 

modeling, forced outage 

rates 

Low-Medium 

Methodological 

Changes 

ELCC study methods may change 

slightly between different studies 

Type of LOLE tuning method 

used (perfect capacity vs. 

firm load) 

Low 

 

CHANGES TO STORAGE ELCC 

Figure 15. 4-hour Duration Battery Storage ELCC Comparison shows a comparison of incremental 4-hour 

duration battery storage ELCC values from this 2023 MTR ELCC study (covering a 2025-2035 study period), 

the 2021 MTR ELCC study (covering a 2023-2026 study period), and the 2022 LSE plan ELCC forecast study 

(covering a 2024-2035 study period). Each of these studies used SERVM to calculate ELCC values, however 

each study made different assumptions about CAISO loads and resources. Table 2 provides a detailed 

description of the various inputs and assumptions that differ between these ELCC studies and which 

account for the differences in their core ELCC results, primarily updated resources using preliminary MTR 

procurement data. 

For battery storage, the ELCC values published in this study are close but slightly higher than those 

published in the 2021 MTR ELCC study for 2025-2026 (MTR Tranches 3 and 4), which is likely driven by the 

higher levels of solar penetration relative to storage that were modeled in this study for those years. The 

total solar penetration modeled in the 2025-2026 timeframe in this study was approximately 4 GW higher 

than in the 2021 MTR ELCC study. The 2022 LSE ELCC forecast results exhibit a higher starting ELCC and a 

declining ELCC trend, while this study demonstrates a lower starting ELCC and generally stable ELCC trend. 

Several inputs are different between the two studies. Input differences in this study that correspond with 

lower storage value include: a smaller proportion of tracking solar, higher storage penetration, and lower 

wind penetration. Input differences in this study that correspond with higher storage value include: higher 

afternoon gross loads to calibrate with IEPR shape and higher solar penetration. Since the magnitude of 

these impacts vary across the study years, the composite impact is a difference in both the starting 

magnitude and the trend in ELCCs. The increasing storage ELCC in this study was validated through net 

load analysis which showed incremental solar providing the requisite energy in critical hours to restore 

some lost capacity value for incremental storage additions.  

Through the various scenarios analyzed, the ratio of storage capacity value created to solar capacity added 

was between 7-13%. Figure 14 illustrates this effect showing that with 10,000 MW of additional solar, the 

steepening effect on net load creates the potential for approximately 700 MW of additional capacity value 

from the storage fleet. The lower mid-day net load also allows for greater charging energy sufficiency. 

Proposed RESOLVE updates to incorporate a solar and storage ELCC surface will allow RESOLVE to 
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economically optimize the additions of solar and storage based on the diversity benefits captured within 

that ELCC surface.22 

 

Figure 14. Solar Additions Effect on Storage Potential 

 

 

 
22 See Sept 2022 IRP I&A MAG: https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/energy-

division/documents/integrated-resource-plan-and-long-term-procurement-plan-irp-ltpp/2022-irp-cycle-events-

and-materials/iamag09222022.pdf 
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Figure 15. 4-hour Duration Battery Storage ELCC Comparison 

 

CHANGES TO SOLAR ELCC 

The solar ELCC values published in this study are very similar to those published in 2021’s report. Solar 

ELCC values generally remain between ~5-7% in the 2025-2026 timeframe. The 2022 LSE ELCC forecast 

results have slightly higher solar ELCC values than those published in this report.23 Solar ELCC results follow 

similar trends over time: starting around 6-9% in 2025, declining to ~3-5% by 2030, but not falling to zero. 

Figure 16. Solar ELCC Comparison 

 

 
23 The LSE plan solar marginal ELCC values shown here are an average of the utility-scale and BTM marginal ELCCs 
provided for LSE plans. 
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CHANGES TO WIND ELCC 

For Tranche 3 and 4, wind ELCC values for California land-based wind projects have decreased relative to 

the values published in the 2021 MTR ELCC Study. This change is driven by differences in the wind profile 

inputs used to model wind in SERVM, as discussed in the “Input Assumptions” section. Wind ELCC values 

are well aligned between this study and the 2022 LSE ELCC forecast in the 2025-2027 timeframe, but begin 

to diverge in later study years. This is likely due to the LSE ELCC forecast including significant growth in 

wind by 2030 per the updated PSP portfolio, leading to saturation effects in the wind ELCC. This study 

assumed greater growth of solar and storage resources, which is consistent with preliminary MTR 

procurement data from LSEs. This further emphasizes the portfolio dependency of ELCC calculations and 

the need to maintain forecasts that continue to reflect the best data available from LSEs and the market 

on the technologies most likely to be added in the CAISO. 

Offshore wind ELCCs have increased relative to values published in 2021’s MTR ELCC Study. This is driven 

by higher production shown in updated offshore wind profiles during critical net load periods in the late 

afternoon. The summer average capacity factors are similar between the vintages of offshore wind 

profiles, but the current profiles demonstrate a more consistent output across the day, resulting in higher 

ELCCs. 

Out-of-state (Wyoming and New Mexico) wind ELCC values are close to or slightly greater than those 

published in 2021’s MTR ELCC Study. The out-of-state wind ELCC declines in later years, and generally 

follows a trend similar to that observed in ELCC values published in the Reliability Filing Requirements for 

Load Serving Entities’ 2022 Integrated Resource Plans - Results of PRM and ELCC Studies (2022 LSE plan 

ELCC forecast study).24 

Offshore wind ELCC values are close to those published in the 2022 LSE plan ELCC forecast study, and are 

greater than those published in the 2021 MTR ELCC study in part due to the aforementioned changes to 

the modeling approach taken for offshore wind. 

 
24 Available here: https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/energy-

division/documents/integrated-resource-plan-and-long-term-procurement-plan-irp-ltpp/2022-irp-cycle-events-

and-materials/20220729-updated-fr-and-reliability-mag-slides.pdf 



40 
 

Figure 17. In-state Wind ELCC Comparison 

 

Figure 18. Wyoming Out-of-State Wind ELCC Comparison 
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Figure 19. New Mexico Out-of-State Wind ELCC Comparison 

 

 

Figure 20. Offshore Wind ELCC Comparison 
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SENSITIVITIES 

Several sensitivities were performed to understand how the following might impact the reliability 

contribution of solar and battery storage25: 

• No new solar growth 

• Low BTM PV IEPR forecast 

• Alternate afternoon load shape 

• Weather year re-weighting  

• Pessimistic battery operation assumption 

As demonstrated by variable battery and solar ELCCs produced across several studies over the past several 

years, the reliability contribution of these resource classes is highly contingent on input assumptions that 

are evolving in real-time as new extreme weather data and new operational data becomes available. The 

sensitivities described here are designed to provide insight into the relative impact that specific 

uncertainties have on the value of these resources. Recognition of the impact of different input 

assumptions should encourage some conservatism in procurement volumes and flexibility to update ELCC 

values over time rather than rigid implementation of one study vintage.  

Reliability planning entails rigorous study of many variables, using robust simulations based on historical 

weather correlations. It provides actionable insights into reliability risk but should not be construed as 

analysis without uncertainty. Unfortunately, some uncertainty in resource performance, such as the 

correlation of renewables with new emerging extreme weather events and the uncertain operations of 

new technologies like battery storage, are an inherent challenge of the energy transition. ELCC methods 

are no less subject to these uncertainties than other capacity accreditation methods. Compared to the 

use of average or exceedance-based output over historical periods, ELCC methods are likely less 

susceptible to uncertainties due to their use of more precise historical correlations in large datasets 

considering a broad range of weather conditions instead of averaged values that may obscure historical 

correlations (e.g., how windy it is in the evening on extreme heat days). 

The following sections provide a qualitative and quantitative exploration of the various risks associated 

with different input assumptions. The results indicate that load shapes, battery operating heuristics, 

weather year weighting, and different resource portfolios can impact the incremental ELCC of solar and 

storage by +/- 10 percentage points, while other input assumptions do not have a significant impact on 

ELCCs.26 

 
25 Wind ELCC sensitivities were not performed as the changes to the wind shapes described in the sections above 

are the main driver for wind ELCC changes between this study and the 2021 MTR ELCC Study. Additionally, the 

calculation of the incremental wind ELCC for each tranche at different levels of solar and battery demonstrates the 

minor impact on wind ELCC values for the portfolios studied. 

26 Note that compared to total portfolio ELCC value, incremental ELCCs can be more sensitive to input assumptions 
as a function of how saturated variable and use-limited resources are on critical load days. The level of uncertainty 
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NO NEW SOLAR GROWTH 

To demonstrate the declining incremental ELCC value of 4-hour battery storage that occurs when solar 

resources are not procured in tandem, the battery storage incremental ELCCs were calculated assuming 

the 2025 level of solar penetration. This analysis was meant to be indicative and not necessarily aligned 

with specific MTR tranches. As shown in the figure below, battery storage ELCC values decline rapidly from 

approximately 75% to 50% if there are no solar additions beyond the 2025 level of solar capacity (~40 GW 

of utility-scale and BTM solar), whereas additional solar procurement, indicated in Figure 21 by both the 

10.8 and 16.2 GW, respectively, results in a positive interactive effect that maintains ELCCs between 70-

80% even at high levels of battery penetration. 

Figure 21. Incremental 4 Hour Battery Storage ELCC at Multiple Levels of Solar Additions above the 40 
GW 2025 Baseline 

 

LOWER BTM SOLAR GROWTH 

The impact of assuming low BTM PV growth per the 2021 IEPR forecast on solar and battery storage ELCC 

was calculated for Tranche 3, in which the solar addition was reduced from 2.7G W to 2.1 GW. The overall 

impact was found to be minor and is summarized in the table below. The values in Table 8 represent the 

“Last In” ELCC values and do not account for diversity impacts. This decrease in battery ELCC and the slight 

increase in solar ELCC shown in the 3.5 GW level below would grow over time if less BTM PV is added to 

the system than the 2021 IEPR forecasted (e.g., if less rapid growth in BTM results by recent net energy 

metering changes). 

 
stated here is not necessarily expected when considering the total ELCC of a portfolio of resources, instead of 
incremental ELCCs based on a specific point on the portfolio ELCC surface. 
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Table 8. Low BTM PV Incremental ELCC Sensitivity Results 

 Incremental 4-Hour Battery ELCC (%) Incremental Solar ELCC (%) 

4-Hour Battery 

Penetration (GW) 
Base Case Low BTM PV Base Case Low BTM PV 

1.5 79% 76% 7% 6% 

3.5 77% 73% 9% 10% 

IEPR AFTERNOON LOAD SHAPE ADJUSTMENT 

In the 2023 MTR ELCC Analysis, the base case ELCC values were simulated with an adjusted load profile 

(see SERVM with Load Adjustment in the figure below). The pre-adjusted load profiles were sourced from 

the 2022 RA and IRP SERVM analyses (see SERVM without Load Adjustment in the figure below). A 

sensitivity was performed with the pre-adjusted load profiles to understand how this load adjustment 

impacted the battery storage ELCC values. As described in the input assumptions section of this report, 

this adjustment was made to reflect the IEPR load shapes and to calibrate the historical weather based 

SERVM load shapes with the median IEPR load demand from its single year 8760 hourly forecast.  

The increase in loads during critical reliability hours and an increase in the gross peak load duration 

suggests that the Load Adjustment would have had a detrimental impact on storage ELCC values. 

However, additional analysis showed that the duration of the net load peak was decreased due to high 

solar performance in weather years with a dominating impact on LOLE results (e.g., 2020). This reduction 

in the net load duration resulted in an increased ability for batteries to shave the peak and an increase in 

their ELCC by ~10%. Commensurately, solar ELCCs drop slightly with the small shift in the timing of the net 

load peak. The net load shape impact is shown in Figure 22 below. 
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Figure 22. Average Daily Net Load Profile Comparison (September, Daily Peak > 40 GW) 

 

Table 9. IEPR Afternoon Load Shape Adjustment ELCC Sensitivity Results 

 Incremental 4-Hour Battery ELCC (%) Incremental Solar ELCC (%) 

4-Hour Battery 

Penetration (GW) 
Base Case 

Without IEPR 

Adjustment 
Base Case 

Without IEPR 

Adjustment 

1.5 79% 69% 7% 8% 

3.5 77% 69% 9% 10% 

 

WEATHER YEAR RE-WEIGHTING 

An exploratory analysis was conducted to estimate the potential impact of increased frequency of 

extreme weather events on the overall reliability value of solar and storage. This was accomplished by 

eliminating weather years prior to 2011 and only utilizing the most recent ten historical weather years 

(2011-2020) for determining the weighted average LOLE. All weather years were given an equal 

probability weighting except for 2020, which was given a higher weighting of 20%. The roughly doubling 

of the probability weighting for 2020 acknowledges the fact that in the recent history not currently 

incorporated into the SERVM analysis (i.e., September 2022 heat wave event), CAISO has experienced 

gross peak load deviations higher than those anticipated in the 23-year distribution of weather scenarios 

currently modeled. The 2022 weather event was 12.5% higher than the IEPR median peak forecast. This 
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compares to the highest value of ~10% above the 23 year median managed peak load modeled in the 

current SERVM weather dataset for 2020 weather.  

Once included in the SERVM model, the 2022 weather year may drive a higher total reliability need to 

minimize outages to less than 1 day in 10 years. The probability re-weighting assumes that a 2020-like 

year will happen more often in part to account for the 2022 event, which occurred only two years after 

the extreme weather of 2020. The final probability weighting values are shown in Table 10 below.  

Table 10. SERVM Weather Year Probability Weighting 

Weather Year Base Case 
Weather Year 
Re-Weighting 

Sensitivity 

1998 4.35% 0% 

1999 4.35% 0% 

2000 4.35% 0% 

2001 4.35% 0% 

2002 4.35% 0% 

2003 4.35% 0% 

2004 4.35% 0% 

2005 4.35% 0% 

2006 4.35% 0% 

2007 4.35% 0% 

2008 4.35% 0% 

2009 4.35% 0% 

2010 4.35% 0% 

2011 4.35% 8.9% 

2012 4.35% 8.9% 

2013 4.35% 8.9% 

2014 4.35% 8.9% 

2015 4.35% 8.9% 

2016 4.35% 8.9% 

2017 4.35% 8.9% 

2018 4.35% 8.9% 

2019 4.35% 8.9% 

2020 4.35% 20% 

While the magnitude of the load variability is significant, the shape of the net load profile in 2020 on high 

load days is similar to the net load profile that in other extreme weather years. 
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Figure 23. Normalized Net Load Shapes on Extreme Days 

 

Because the shape (i.e., duration) of the net load peak period is expected to be a primary driver in a 

battery storage resource’s contribution to ELCC, the similarity of the net load shapes between 2020 and 

prior weather years implies that the reliability contribution of energy-limited resources would be similar 

to base case results. However, the distribution of LOLE days also changes with this sensitivity. Essentially 

all LOLE is concentrated in 2020 in this sensitivity, and a single day from the 2020 weather year has LOLE 

in almost every iteration. In other words, this day is so extreme that the addition of any type of capacity 

(energy constrained or not constrained) has little effect on LOLE. 

 The large gap in reliability between the most extreme day and subsequent days means that energy 

constraints on incremental units are unlikely to surface new reliability events, resulting in higher 

incremental ELCCs (6-7 percentage points higher than base case results). Ideally, instead of shortening the 

historical weather dataset used, adjustments could be made to a longer dataset to account for climate 

impacts. This approach would lead to less concentration of LOLE (and therefore the dynamics that drive 

ELCC values) in fewer modeled extreme weather days. For these reasons, these sensitivity results should 

be viewed as indicative of ELCCs under August 2020 conditions, rather than a comprehensive indication 

of ELCCs under climate impacts. 
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Table 11. Weather Year Re-Weight ELCC Sensitivity Results 

 Incremental 4-Hour Battery ELCC (%) Incremental Solar ELCC (%) 

4-Hour Battery 

Penetration (GW) 
Base Case 

Weather Year Re-

Weight 
Base Case 

Weather Year Re-

Weight 

1.5 79% 85% 7% 12% 

3.5 77% 84% 9% 16% 

In addition to analyzing the effect of batteries on LOLE, we also analyzed their effect on Expected 

Unserved Energy (EUE27). Since the extreme day in 2020 nearly always has EUE, the effect of adding 

storage on the volume of EUE may provide additional insight into the capacity value of storage in a more 

extreme weather environment. On this extreme day, while adding storage and removing perfect capacity 

does not substantially change LOLE, 4-hour batteries are not as effective at reducing EUE as perfect 

capacity is. The EUE-based analysis showed that 3.5GW of 4-hour batteries have an incremental ELCC of 

61%28 - a reduction of approximately 5% from the base case.  

PESSIMISTIC BATTERY OPERATION 

The way in which battery storage resources are dispatched in the SERVM model can impact the final 

reliability contribution of the resource class. While uncertainty of system conditions can influence the 

value of certain resource classes, batteries are generally flexible enough to change their schedule to 

mostly mitigate this impact. Consequently, the primary concern around the impact of battery operation 

on its reliability value is its operating flexibility, not the magnitude of uncertainty in system conditions.  

Battery storage resources are scheduled in SERVM using an algorithm that considers available resources 

and the day ahead net load profile. However, random generator outages may occur that are not 

accounted for in the day ahead schedule. Also, the availability of energy to purchase from the market is 

not known with certainty in the model at the time of setting the original schedule. Additionally, real time 

market signals can cause batteries to discharge earlier in the day (as was seen on September 6, 2022), 

although CAISO is actively seeking to resolve its market optimization to avoid this situation (the issue seen 

on September 6 was resolved by September 7 and 8, 2022). 

In the base case, batteries are able to adjust their charging and discharging schedule in order to resolve 

reliability issues caused by random generator outages or changes to market availability. In the pessimistic 

battery operation sensitivity, batteries were not allowed to reschedule their dispatch, leading to dispatch 

inefficiencies that may occur during actual grid operation if operators are not allowed — or battery owners 

 
27 Average total quantity of unserved energy (MWh) over a year due to system demand plus reserves exceeding 

available generating capacity 

28 ELCC calculated by removing perfect capacity until the EUE level before the incremental addition of 

battery storage is reached. 
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are not given proper signals — to change operating schedules (e.g., a battery may discharge fully earlier 

in the day assuming ample supply from thermal resources later in the day, which did not actually 

materialize due to random generator outages). The results from this sensitivity are shown in the table 

below. The last-in battery ELCC values decreased by approximately 10% from the base case at higher 4-

hour battery penetration levels, suggesting an earlier declining ELCC curve for battery storage resources. 

Solar ELCCs are higher since the additional energy can resolve some of the effects of the imperfect 

foresight on the battery value, by reducing the total energy the storage must discharge to avoid a loss of 

load event. 

Table 12. Pessimistic Battery ELCC Sensitivity Results 

 Incremental 4-Hour Battery ELCC (%) Incremental Solar ELCC (%) 

4-Hour Battery 

Penetration (GW) 
Base Case 

Pessimistic 

Battery 
Base Case 

Pessimistic 

Battery 

1.5 79% 77% 7% 10% 

3.5 77% 66% 9% 14% 
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CONCLUSIONS AND LESSONS LEARNED 

CONCLUSIONS  

• The updated MTR ELCCs are shown in Table 1. 

• Incremental ELCCs for mid-term reliability procurement require mapping a specific part of the 

multi-dimensional ELCC surface that changes as a function of solar, wind, storage, and demand 

response penetrations. This study focuses on mapping the interactive effects of adding solar and 

storage resources to fill the MTR need, based on their prevalence in RESOLVE modeling results 

and the preliminary MTR compliance data received by the CPUC. 

• ELCCs for Tranches 3 and 4 are generally close to last year’s MTR study except for wind ELCCs, 

which used updated wind shapes that lead to lower ELCCs for in-state wind and higher ELCCs for 

offshore wind. 

• Between 2025 and 2028, solar and storage ELCCs tend to stabilize at ~75% incremental ELCC for 

4-hr storage and ~6-8% incremental ELCC for solar. This is due to the diversity benefits of adding 

the two resources in parallel. Critically, the maintenance of this storage ELCC is dependent on the 

continued growth of solar modeled in this study (utility-scale and/or BTM). Sensitivities showed 

that 4-hr storage incremental ELCCs drop quickly to as low as ~50% without the concurrent growth 

of solar. Storage, in turn, is responsible for the continued, albeit small, incremental ELCC value of 

solar. 

• Longer duration storage provides additional reliability value over 4-hr batteries. This additional 

value tends to be ~8-14 percentage points incremental ELCC for 8-12hr storage. Long-duration 

pumped storage and battery storage provide very similar value, though pumped storage’s higher 

round trip losses and operating constraints cause a small decrement at the same duration. 

• Sensitivities show that resource portfolio, extreme weather frequency, and operational 

assumptions can each drive +/- ~10 percentage point impacts to incremental ELCCs. This is in part 

due to the sensitivity of incremental ELCCs in the section of the solar and storage ELCC surface 

considered in this study. This uncertainty is inherent in rapidly changing extreme weather patterns 

and limited data for new resources, such as battery storage. ELCCs are no more uncertain than 

other capacity accreditation methods in this regard – in fact, they are probably less uncertain, 

since they are probabilistic and rely on longer historical records of correlations than deterministic 

planning approaches. 

RECOMMENDATIONS FOR FURTHER RESEARCH 

• Refresh of ELCC forecasts as CAISO portfolio evolves: A static forecast of incremental ELCCs is 

necessary for procurement processes like MTR. ELCCs were calculated in this study using the 

updated PSP, the 2021 IEPR, and preliminary MTR procurement resource mixes. This was done 

assuming a CAISO system at 0.1 days/yr LOLE. If either the mix of resources or the state’s effective 

reliability standard changes, ELCCs will change accordingly. Just as a marginal ELCC forecast was 

provided in the current IRP cycle for LSE planning, future IRP cycles can benefit from regularly 
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updating ELCC forecasts when the view of the long-term system portfolio evolves as market 

dynamics and resource costs change over time. 

• Incorporate 2021 and 2022 weather into SERVM: September 2022 saw the highest ever peak 

load in the CAISO, so incorporating the extreme weather and load from that year will be critical 

to studying reliability going forward. Hourly CAISO sales data and hourly demand response 

dispatch data needed to incorporate some of these weather years will likely be available in late 

2023. 

• Continue coordinating with the CEC on weather and load modeling, including climate impacts: 

an exploratory scenario of weather year re-weighting was presented in this study. CPUC staff are 

also undertaking more scientific approaches to perform Climate Informed Forecasting that links 

future Global Warming Levels to downscaled climate model outputs. Further coordination with 

the CEC IEPR load development process is necessary to align the weather years, climate impacts, 

and load shapes between SERVM’s weather year and load dataset and the IEPR. Past comparisons 

indicate a disconnect between the current IEPR shapes, load variability across the IEPR’s 30-year 

weather dataset, and SERVM’s 1998-2020 weather year dataset.  

• Continue making updates to battery operational data as more storage is added to the system: 

understanding how optimally batteries operate in real-world conditions compared to their 

modeled behavior will be critical for modeling reliability as batteries grow to become a major part 

of the CAISO’s reliability stack. Specifically, data updates for forced outage rates and mean time 

to repair of lithium-ion batteries should be updated as the sample size of past outages increases 

and operators learn how to manage outage risk. 
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LIST OF ACRONYMS 
 

AAEE Additional Achievable Energy Efficiency 

AZ APS Arizona Public Service Company 

BANC Balancing Authority of Northern California 

BPA Bonneville Power Administration 

BTM PV Behind the Meter Photovoltaic 

CAISO California Independent System Operator 

CC Combined Cycle 

CFE Comisión Federal de Electricidad 

CPUC California Public Utilities Commission 

CT Combustion Turbine 

DR Demand Response 

EFOR Equivalent Forced Outage Rates 

EIA Energy Information Administration 

ELCC Effective Load Carrying Capability 

ERM Enterprise Risk Management 

EV Electric Vehicle 

GW Gigawatts 

ICE Internal Combustion Engine 

IEPR 

IID 

Integrated Energy Policy Report 

Imperial Irrigation District 

IRP Integrated Resource Plan 

LADWP Los Angeles Department of Water and Power 

LOLE Loss of Load Expectation 

LOLP Loss of Load Probability 

LSEs Load-Serving Entities 

MMT Million Metric Ton 

MTR Mid-Term Reliability 

MW Megawatts 
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NERC GADS 
North American Electric Reliability Corporation Generator 

Availability Data System  

NEVP Nevada Power Company 

NQC Net Qualifying Capacity 

PACW 

PRM 

PacifiCorp West 

Planning Reserve Margin 

PSH Pumped Storage Hydro 

PV Photovoltaic 

RA Resource Adequacy 

RSP Reference System Portfolio 

SERVM Strategic Energy and Risk Valuation Model 

SRP Salt River Project 

TIDC Turlock Irrigation District 

TOU Time-of-Use 

WALC Western Area Power Administration - Lower Colorado Region 

WECC Western Electricity Coordinating Council 

Wind CA California Wind 

Wind NM New Mexico Wind 

Wind WY Wyoming Wind 

 

 

 

 

 

 

 

 

 

 


