

### Challenge Statement

**Energy Division** 

Forest Kaser, Julian Enis, Rosanne Ratkiewich, Patrick Saxton, Joyce Steingass, Jessica Tse, Daniel Tutt



### **Presentation Outline**



# Why Replace Diesel?

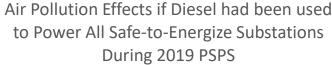


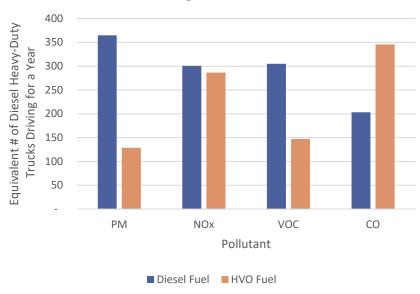
### Climate Effects of Diesel Generation

#### Scale:

- If all the safe-to-energize load during every 2019 PSPS event were powered using diesel, it would be equivalent to:
  - About 0.009 percent of California's total yearly emissions.
  - About 0.06 percent of California's yearly emissions from the electricity sector.

Or adding about 9000 new cars to the road during that year.




## Air Quality Effects of Diesel Generation

#### Scale:

- If all the safe-to-energize load during every 2019 PSPS event were powered using diesel, it would be equivalent to:
  - About 300 Heavy Duty
    Diesel Trucks driving over the course of a year.\*
  - About 6000 additional Heavy Duty Diesel Trucks driving on an average 2019 PSPS day.\*\*





<sup>\* 100,000</sup> mi per truck per year \*\* 270 mi per truck per day



# The Impacts of Losing Power

- Expectation to keep the lights on.
- Access and Functional Needs Populations may depend on power.
- Critical Facilities depend on power.
- Loss of power can have economic and other widespread impacts.



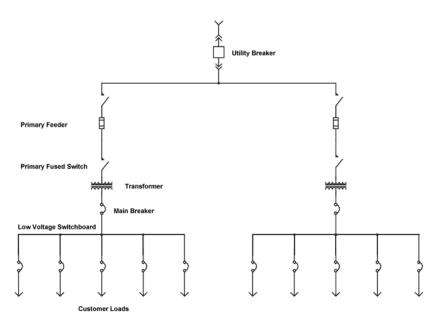




## The Technical Problem



# Not Just Backup Generation...








# **Network and Protection Requirements**

- Existing protection equipment detects faults through the large bursts of current.
- Protection near the substation needs longer periods of high current to trip.
- Many modern inverter-based technologies are limited in how much current they can supply, even for short periods.
- Protection systems could be upgraded to work with these new technologies, but it's costly.



Expanded Radial System with one utility source and multiple primary feeders



# Cold Load Pickup Requirements

- In the case of partial outages, substation generation may need to provide power to a distribution line that has gone "cold"
- In this case, the cold load generally takes more power and current to start up than it does to run continuously.
- Not all generation sources can provide the needed bursts in power and current while maintaining voltage and frequency requirements.





# **Power Quality Requirements**

| Requirement                                                         | Related Rules                                                                              | Description                                                       |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Load Acceptance (e.g. Block load pickup)                            | ISO 8528-1                                                                                 | Industry-adopted ratings for generator performance standards.     |
| Frequency                                                           | Electric Rule 2                                                                            | Supply alternating current service at approximately 60Hertz.      |
| Voltage                                                             | Electric Rule 2, Rule 21, and IEEE 1453                                                    | Supply power at a voltage within a defined operating range.       |
| Short Circuit Current<br>and Short Circuit<br>Interrupting Capacity | Electric Rule 2, Rule 21,<br>Distribution Interconnection<br>Handbook                      | Supply enough current to trip protection devices.                 |
| Blackstart                                                          | Specific to temporary generation                                                           | Ability to start when islanded from the grid.                     |
| Cold Load Pickup                                                    | Specific to islanded generation                                                            | Supply high current and power when energizing distribution lines. |
| Ground grids                                                        | Interconnection Handbook;<br>IEEE Std. 80, Guide for Safety in<br>AC Substation Grounding" | Worker safety. Address step, touch, and ground potential.         |

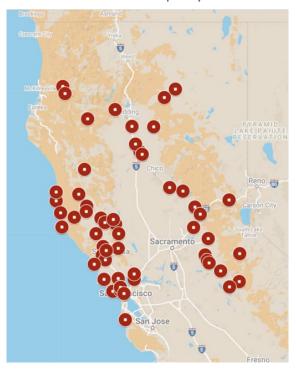


# The Logistical Problem



# Not Just Backup Generation...

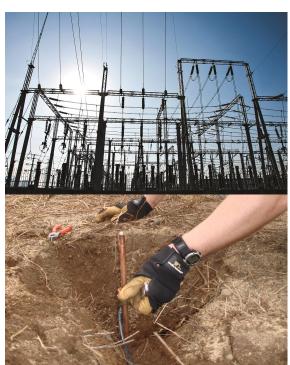









# Within 48 Hours: Deployment to Substation


Statewide Deployment



Delivery to Substation



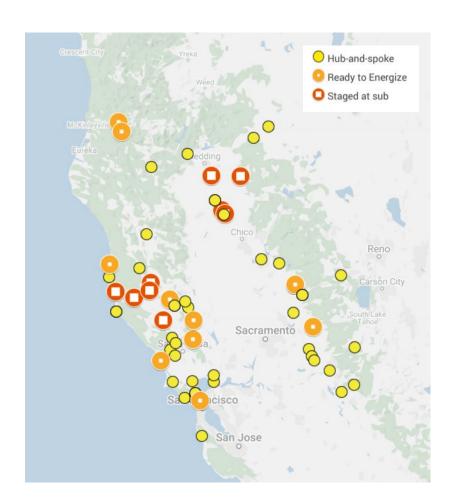
Interconnection





# During the Event: Fueling and Control

- Fuel must be provided over the course of the event. Many substations do not have direct access to natural gas pipelines.
- It's dangerous to bring flammable, gaseous fuels into substations.
- If any equipment needs troubleshooting or maintenance, experts must be available to conduct it.
- Equipment controls must coordinate with the larger utility control of the grid.






# Cost, Timing and Uncertainty



### Permanent vs Portable



Not fully up-to-date information, for illustration purposes.

- About 350 MW of portable diesel engines are being used to cover a potential 900 MW of load.
- Where and when this generation will be needed is uncertain, since it depends on the weather.
- Permanent installations at substations avoid the difficulties of deployment, but also can't cover many substations at once.
- Most cost figures used this afternoon reflect a direct MW-for-MW replacement of diesel, but in many cases reserved diesel generation covers multiple substations.



### The Extent and Timeline for PSPS is Uncertain

The extent and location of PSPS, and thus the amount and location of needed generation, may vary with:

- Improved modeling: meteorology, fire spread, transmission operability
- Infrastructure hardening: pole replacement, covered conductors, undergrounding
- Segmentation of transmission and distribution system
- Enhanced management of power flow
- Advanced sensors and protection equipment

These longer-term uncertainties raise the possibility of stranded costs for any longer-term investment.



### **Estimated Diesel Cost for 2020**

| Total Cost for Fire Season           | \$210,000 - \$500,000 | per MW       |
|--------------------------------------|-----------------------|--------------|
| Reservation Cost for Generation and  | \$26                  | per kW-Month |
| Necessary Equipment                  |                       |              |
| Estimated Operational Cost (with     | \$270                 | per kW       |
| multiple PSPS events)                |                       |              |
| Reservation Cost for Generation Only | \$19                  | per kW-Month |

Note: Some proponents used diesel cost assumptions about 1.5x higher than our high estimates.



# Overview of Challenge Statement



### Overview

- Energy Division developed a Challenge Statement detailing the various technical, logistical and other challenges laid out above.
- The Challenge Statement aimed to:
  - Clarify the main hurdles that any particular solution might face;
  - Avoid limiting the set of possible solutions.
- Proponents received this Challenge Statement along with concrete data on three substations: Alto, Fort Bragg, and Covelo.
- Challenge statement included objectives and a series of questions to be answered.



# Challenge Statement Objectives

- Maximize the benefits to customers in safe-toenergize areas subject to transmission outages.
- Minimize the need to reserve a large fleet of diesel generation for the purpose of providing substation-scale power in 2021.

Rationale: During PSPS events, transmission outages may require otherwise-safe substations to be deenergized. The large majority of diesel generation is slated to serve these substations.



# **Challenge Statement Questions**

**Primary Question:** Does your solution replace diesel generators by supplying power to all customers at a substation level?

#### **Secondary Questions**

- Temporary/Portable or Permanent/Stationary? (safely and quickly deployable to multiple locations or fixed in place)
- Islanding Duration? (can sustain electrical island for 48 and/or 96 hours)
- Ready by 2021? (including all labor and equipment)
- MW by Year? (how many MW can be deployed over time)



### **Key Questions**

- Are there clean and portable non-diesel solutions that meet the technical and logistical requirements of powering substations and are ready to deploy by 2021?
- To what extent should permanent solutions be considered, given the uncertainties and risk of large stranded costs?
- How should costs and responsibility for providing power during a PSPS outage be allocated?