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I. Introduction 
The Energy Resource Modeling Team (ERM Team) proposes a new method for derating 
thermal powerplants based on forecast ambient temperatures, and requests approval 
for its use in planning activities. We are proposing implementing this method in future 
CPUC modelling efforts that are used to produce analyses for the CPUC Resource 
Adequacy Proceeding R.21-10-002. 

1. Background 
The ERM Team uses Strategic Energy & Risk Valuation Model (SERVM) developed by 
Astrapé Consulting to forecast energy prices and grid reliability under various scenarios. 
These forecasts inform California Public Utilities Commission’s decision-making processes 
regarding utility rates, capital projects, and programs across various proceedings, 
including the Resource Adequacy and Integrated Resource Planning proceedings. 

SERVM uses numerous input data sources, including the capacities of generation 
facilities for each scenario. The input capacities for thermal power plants (i.e., gas 
turbine, combined cycle, and cogeneration) which the ERM Team currently applies in 
SERVM scenarios, are modeled as being insensitive to environmental factors—available 
capacities are assumed constant, unvaryingly equal to each plant’s rated capacity, 
and independent of ambient temperature. This static capacity has created minor 
inconsistencies with current operation, as power plants are currently impacted by high 
temperature under the current climate regime. However, in a warming climate 
scenario, the ranges of ambient temperatures under which generators operate are 
projected to increase, and this may exacerbate the inconsistency between real 
operating conditions and modeled outcomes in planning studies. That inconsistency 
could potentially lead to underestimating forecast reliability risks associated with 
extreme temperatures. In response to these inconsistencies, the ERM Team has 
developed a methodology to account for the impact of climate change and its 
concomitant impact on ambient temperatures on the effective capacity of thermal 
generators. We are proposing this model for use in CPUC Resource Adequacy 
Proceeding R.21-10-002. 

The proposed model is based on literature and findings relevant to California’s 
regulatory framework and SERVM’s input data structures. Synthetic temperature profiles 
will be developed that account for the impacts of climate change (CPUC Staff 2022), 
which will then be used to modify effective generator capacities under changing 
ambient temperature conditions in our SERVM model. 

The model presented in this proposal aims to satisfy the following criteria: 

• Grounded in scientific principles; 
• Matches real-world performance of thermal power plants; 
• Flexible to use with a variety of generation resources; 
• Simple to understand; and  
• Integrates with SERVM. 
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The proposed model consists of a piecewise-linear derating framework based on the 
academic literature regarding turbine dynamics as discussed in Section II. In Section III, 
we present a method by which the proposed model parameters are calibrated 
according to recorded curtailments due to ambient temperatures using data from 
CAISO. Finally, Section IV discusses the calibrated piecewise-liner model we propose to 
use in our reliability models. 

2. Expected Effects 
Applying the proposed model will result in lower forecast available capacities from 
thermal power plants compared to the currently used model which does not derate 
capacities based on weather. Forecast derated capacities are expected to range 
from 90% to 100% of the rated capacity. We propose implementing the derate model 
only for Combustion Turbine and Combined Cycle resources at this time, using the 
current-climate weather data for the RA proceeding. Later this year, we plan to use 
climate-informed weather forecasts reflective of climate change to test a forecast of 
future capacity availability. 

Figure 1 shows monthly statistics for forecast derates for combustion turbines near a 
weather station in Sacramento (KSAC) based on historic weather data from 1998 
through 2020. This chart shows quartiles, 1st, and 99th percentile derates across all 23 
years. As expected, the derates are small in the winter months and greater during the 
summer. The 1st percentile derates depicted at the bottom of the red area represent 
unusually high temperatures for the given month and drop as low as 92%, while the 99th 
percentile derates at the top of the dark blue area represent very low temperatures 
and don’t fall below 97%. 50th percentile derates, shown as the boundary between the 
orange and light blue areas, correspond to median temperatures, and, for this weather 
station, stays between 95% and 100%. Note that the model limits forecast capacity to a 
maximum of 100%, resulting in the significant skew toward lower capacities during 
winter months when derated capacities are most likely to be truncated. 
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Figure 1 – Monthly Percentile Modeled Ambient Derates for Combustion Turbines near Sacramento based on Weather 

Years 1998-2020 

Figure 2 below presents the distribution of predicted derates across the 24 instances of 
August across all historical weather years. The ranges of percentiles are shown as 
colored horizontal lines matching the areas in Figure 1, representing a slice through 
August in the previous figure, with a more detailed continuous distribution in black. and 
shows that the distribution of ambient derates is skewed even when capacities are not 
truncated. 

 
Figure 2 – Modeled Derate Distribution for Combustion Turbines near Sacramento in Months of August in Historic Weather 

Years 1997-2020 
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3. Approach 
Thermal Powerplant Ambient Derate 
Staff conducted a literature review focusing on articles and books investigating the 
relationship between ambient temperature and output power of natural gas and 
steam turbines. We analyzed results from several published experiments which 
ultimately informed the proposed model. The qualitative and quantitative findings from 
this review supports a general model for derating thermal powerplants inverse linear 
function of ambient temperature, i.e., available capacity decreases as ambient 
temperature increases. Reflecting the methods by which thermal powerplants are 
rated in California, we further propose to limit the model to between 0% and 100% 
rated capacity, resulting in a piecewise-linear model. Details of the proposed model 
are presented in Section IV. 

Defining Resource Classes 
While the general derate approach could be applied to individual generating units, 
practical constraints such as the limited availability of weather data collocated with 
generators and observations of similarities among resources suggest that grouped 
applications are appropriate. For this reason, we propose defining classes of resources 
based on the type of generator and the location of the resource.   

The currently proposed model will apply to generators of two unit types—Combustion 
Turbine and Combined Cycle—near any of 55 known weather stations, resulting in 110 
distinct classes available for use in derate forecasting. 

Historic Curtailment Calibration 
Having established the general properties of a model according to published scientific 
research on turbine-driven physical processes, the ERM team proceeded to calibrate 
the model for California’s generators by adjusting the model parameters according to 
historic derating data. This data is published by CAISO as prior-trade curtailments 
available through their public website (California Independent System Operator 2021). 
The curtailment reports indicate the affected generation unit, the size of the curtailment 
in MW, the dates and times curtailments are applied, and the reason for the 
curtailment, allowing us to match historic curtailments due to temperature with historic 
weather and assess whether and to what degree the two are correlated. The results for 
individual curtailed generators were aggregated by unit type to determine appropriate 
derate model parameters for each resource class. The parameters consist of a slope 
and a rated temperature below which the forecast capacity is defined to be 100%. The 
procedure for determining these parameters is discussed in Section III Curtailment 
Evaluation and Model Calibration. 

Integration with Synthetic Weather Cases 
Current-climate ambient temperatures are consistent with past historical conditions 
which have resulted in relatively small derates to effective generator capacities. We 
therefore do not consider ambient temperature derating in our current modeling 
methodologies. Our forecasting efforts typically look out 10 years into the future during 
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which time we expect changes to ambient temperatures to be significant enough to 
have greater impacts on generator effective capacities. CPUC staff are testing this 
hypothesis by developing synthetic future climates scenarios under a range of future 
Global Warming Level for use with SERVM. Global Warming Level is defined as the 
difference in current global atmospheric temperatures relative to preindustrial global 
temperatures. The approach for developing these synthetic climates start with the 
existing 23 weather years of hourly temperatures used in the current SERVM model 
(1997-2020 weather years), and then modifying, or perturbing, the existing historical 
profiles by a factor reflecting changes in hourly temperatures due to climate change. 
Climate change information comes from the Coupled Model Intercomparison Project 
version 6 (CMIP6) data repository. This approach leverages an existing hourly historical 
weather dataset that is currently being used within both the Integrated Resource 
Planning and Resource Adequacy proceedings at the CPUC.  Details of this approach 
are covered in a separate paper (CPUC Staff 2022). 

While staff continue developing climate-informed synthetic weather cases, we propose 
to use the ambient derate model with the historic weather data currently used with 
other SERVM inputs. We anticipate applying the model to the synthetic weather cases 
in future modeling later this planning cycle. 

4. SERVM Production Cost Model 
The SERVM model is a stochastic production cost model, relying on hourly dispatch and 
resource information to determine a Loss of Load Expectation (LOLE) over a given 
distribution of uncertainty (weather, generator performance, etc.).  The proposed 
ambient derate model will be applied to several power plant classes assigned 
according to technology and location, based on the proportions of their rated gas 
turbine and steam turbine capacities and the temperatures at which they are rated. It 
will be implemented as a script with input parameters for power plant capacities 
attributed proportionally to the gas and steam turbines representative of the class. 
Other parameters of the script include minimum cut-off temperature and the hourly 
forecast ambient temperatures, with outputs averaged across the power plants in each 
class weighted by total capacity. The script will output hourly profiles of derated 
capacity expected to be available at each hour in a format compatible with SERVM, 
which will be loaded into SERVM similar to existing weather profile functionality. 

5. Results 
Throughout the relevant literature, we noted a common finding that thermal power 
plant power capacity is inversely and linearly related to ambient temperature, though 
the extent to which temperature influences power capacity is dependent upon several 
variables including the configuration of the plant, i.e., which kinds of turbines are used. 
Our proposed model takes this into account, yielding power capacity as a function of 
ambient temperature in degrees Celsius, gas turbine capacity in MW, and steam 
capacity in MW. Additionally, in accordance with how thermal power plants are tested 
for rated capacity in California, we impose a maximum capacity of 100% for ambient 
temperatures below that at which the rating test was performed, as well as a minimum 
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capacity of 0%. The resulting model therefore produces a piecewise-linear function of 
ambient temperature for each power plant configuration. 

II. Literature Review 
1. Articles 
We first reviewed several papers addressing experiments regarding improvements to 
thermal power plants, especially for use in hot weather environments. Mohanty and 
Venkatesh propose a novel intake air cooling and heat recovery system which would 
drop the inlet air temperature to improve the performance of the gas turbine (B. 
Mohanty 1995). Notably, this paper presents a set of typical gas turbine parameters, 
including power output, as functions of ambient temperature—the power plant in 
question has an ISO rating of 100MW at 15°C, and decreases 688.78 kW for each 
increase of one degree Celsius. Elsewhere, the paper explains “a rise in the ambient 
temperature by 1°C results in 1% drop from the gas turbine rated capacity.” While the 
intake air cooler design and analysis is not applicable to the current project, the 
background information and data provide a good baseline for a range of parameters 
for a potential ambient temperature derating model. Farouk et al. present data 
collected over a period of two years from a 74MW combined cycle power plant, 
including temperature and thermal efficiency (Naeim Farouk January 2013). While this 
paper provides both average input and output energy for each month, the plant was 
not operating at its peak, and the data do not lend themselves to calculating the 
effect of ambient temperature on maximum capacity in particular. 

Other papers investigate various thermodynamic behaviors of thermal power plants in 
detail, albeit for different purposes. Glazer et al. models each process in a combined 
cycle power plant and runs the model in a simulation using NIST-Refprop 9.0 software 
(V. Glazar July 2019). The simulation allows the authors to evaluate the capacity and 
efficiency of the power plant for a wide variety of environmental conditions. Similarly, 
Lee et al. develop a model that combines thermodynamic process simulation and 
statistical prediction (Jae Hong Lee February 6, 2017). As an input to their model, Lee et 
al. apply a power correction factor curve which is linear in the shown temperature 
range of -10 °C and 40°C. Mohanty and Venkatesh build up a detailed model from first 
principles, detailing each of the thermodynamic formulas used in simulating the 
physical processes in and around each turbine, and developing their own MATLAB 
script to simulate a theoretical power plant (Dillip Kumar Mohanty August, 2014). Their 
code is unavailable and would require a MATLAB license in order to execute. While 
these papers provide limited datasets from their experiments and their approaches look 
promising, the anticipated time and effort required to run similar simulations for an array 
of power plants in order to generate the correction factor curves suited for our 
purposes is beyond the scope of this project. 

The Department of Energy’s handbook on gas turbine and combined cycle 
powerplants contains a wealth of qualitative information regarding the design and 
function of these power plants, as well as the history of gas turbines both in stationary 
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and aerospace applications (Soares 2006). The Handbook also outlines many 
characteristics of thermal power generation, including a negative correlation between 
ambient temperature and power output. While confirming patterns we observe 
elsewhere in literature regarding the effects of ambient temperatures on thermal power 
capacity, the Handbook emphasizes gas turbine operation and properties without 
providing similar detail regarding the steam processes in combined cycle power 
generation, and generally lacks quantitative information that could be incorporated 
into an ambient derating model. 

Finally, Şen et al. take an empirical approach to assessing the impact of elevated 
ambient temperatures on combined cycle power plants (Günnur Şen November 5, 
2018). This paper presents a case study of a combined cycle power plant and provides 
the power output of each turbine—four gas turbines feeding into two steam turbines—
across a range of temperatures between 8°C and 23°C, which allows for analysis at 
varying levels of granularity—i.e., individual turbines, gas or steam turbines only, either of 
the two blocks of two gas turbines and one steam turbine, or full facility. We perform 
linear regression analyses on the data from this paper to determine curve parameters 
applicable to our proposed derate model. 

2. Summary of Findings 
Combined cycle powerplants consist of one or more gas turbo-compressors operating 
in a Joule-Brayton thermodynamic cycle paired with a typically smaller number of 
steam turbines operating in a Rankine cycle (Dillip Kumar Mohanty August, 2014). These 
plants often are designed with of multiple modular “blocks” of gas and steam turbines 
arranged, which provide benefits in construction and allow greater operational 
flexibility and efficiency when ramping power output up or down (Soares 2006). Across 
many of the articles we reviewed, a consensus emerged that there is an inversely 
proportional relationship between ambient temperature and power capacity, though 
the slope of the correlation varies among cases. In Şen et al., it is evident that the gas 
and steam turbines react to ambient temperature changes. The results of our linear 
regression of various aggregated generation components are presented in Table 1, 
and show that, while the two blocks—each consisting of two gas turbines and one 
steam turbine—behave very similarly to each other, there is a significant difference 
between the slopes of the best-fit lines between the gas- and steam-powered 
generators. These coefficients correspond to an equation of the form 𝑦 = β0𝑥0 + β1𝑥1 
where 𝑥0 = 1 and 𝑥1 = 𝑇𝑎𝑚𝑏. 
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Table 1 – Linear Regression Coefficients for Combined Cycle Power Capacity vs. Temperature 

Coefficient 

% Total 
Capacity 
Block 1 

% Total 
Capacity 
Block 2 

% Total GT 
Capacity 

% Total ST 
Capacity % Total Cap. 

β0: 114.14% 113.95% 113.76% 115.27% 114.05% 

β1: -0.96% -0.97% -0.94% -1.05% -0.96% 

 

These results demonstrate that the power capacity of a steam turbine is more readily 
influenced by the ambient temperature than a gas turbine. These results align with 
intuition, given the broader range of temperatures across which the gas turbine’s Joule-
Brayton cycle operates vs. the steam engine’s Rankine cycle—flue gasses from a gas 
turbine are typically several hundred degrees higher than the inlet temperatures for a 
steam turbine (A. Ganjehkaviri March 22, 2014). Figure 3, provided by Mohanty and 
Venkatesh, shows both cycles in a single temperature-entropy diagram. In this type of 
diagram, the area surrounded by a cycle is equal to its theoretical work output. 
Increasing the ambient temperature effectively raises the lowest points of both cycles, 
reducing each cycle’s rate of work output. Since the Rankine cycle has a lower 
maximum temperature versus the Brayton cycle, and includes an isothermal process 
which occurs at its minimum temperature, the two types of turbines are likely to respond 
differently to changes in ambient temperatures. 
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Figure 3 – Temperature-Entropy Diagram of a Combined Joule-Brayton (Gas) and Rankine (Steam) Cycle Power Plant 

 

III. Curtailment Evaluation and Model Calibration 
To evaluate the findings that inform the proposed model against real-world data, we 
analyzed a set of derate events due to ambient temperatures from CAISO’s prior trade 
day curtailment report (California Independent System Operator 2021). At time of 
writing, these reports are publicly available via CAISO’s website from June 18, 2021, 
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through the prior day. CPUC maintains an internal database with geospatial data for 
the generation resources included in CAISO’s report, which allows us to match each 
with a weather station. We then combine historical hourly weather data for each 
weather station and hourly generator curtailments, and thereby determine best-fit 
regression curves to describe the relationships between ambient dry- and wet-bulb 
temperatures and percent curtailment, and to compare the results against the 
proposed model. 

1. Procedure 
Staff performed the following tasks in evaluating curtailments due to ambient 
temperature: 

1. Identify appropriate weather stations for each generator resource listed in 
Forced_AmbientTemp.csv 
a. ERM team developed a database of weather data from a set of weather 

stations identified in the table named “latlonmap”. 
b. Prepare a Python/psycopg2/postgresql script to determine distances between 

generation resources and weather stations and identify the closest pairs. 
c. Run script and verify outputs. 

2. Obtain contemporary weather data for curtailments. 
a. The ERM weather database on EZDB does not include the days for which CAISO 

has published prior trade day curtailments, so the data for the identified weather 
stations must be obtained from NOAA at 
www.ncei.noaa.gov/access/search/dataset-search 

b. Generate a table of place names for each weather station id paired with 
resources in the previous step, saved to WeatherStationIDsToNames.csv 

c. Search for the relevant data files on the NOAA website using the place names 
and select them for download. 

d. Downloading files requires a NOAA account and takes a few minutes to process. 
The link to download is delivered to the email address associated with the NOAA 
account. 

e. Download weather data files. 
3. Calculate wet-bulb temperatures. 

a. Parse the weather data to extract hourly dry-bulb temperatures, dew points, and 
atmospheric pressures. 

b. Temperatures (including dry-bulb and dew point) are stored as strings containing 
the observed temperature in degrees C multiplied by ten, followed by a comma 
and a single-digit observation quality code. The temperatures must be extracted 
from the string and converted into floating point numbers, using only 
observations of sufficient quality. 

c. Atmospheric pressures are stored in the MA1 field as strings containing four 
comma-separated values: an altimeter setting pressure, an altimeter quality 
code, an absolute pressure observation, and a pressure quality code. The 
absolute pressures must be extracted from the string and converted into floating 
point numbers, using only observations of sufficient quality. 
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d. Calculate wet-bulb temperatures using the metpy library's iterative solver with 
the parsed temperature and pressure values. 

e. Prepare a Python script to perform these operations. 
f. Run the script and verify outputs. 

4. Merge the curtailment and weather data on hourly intervals and correlate ambient 
air temperatures with curtailment amount; and calculate linear regression 
coefficients. 
a. The curtailment data is presented in inconsistent intervals, and must be 

normalized in order to compare against weather data 
b. Use the mapping between generation resources and weather stations from step 

3 as intermediary between the data sets. 
c. Filter out very high curtailments greater than 30% which are unlikely to be solely 

attributable to ambient temperature and are considered outside the scope of 
this modelling effort. 

d. Calculate linear regression coefficients 𝛽0 and 𝛽1, and goodness-of-fit measures, 
R-Squared, for each resource individually to find the best-fit function for 

predicted curtailment, �̂�, as a function of temperature, 𝑇, as shown in Equation 1 
below. 

 

min
𝛽0,𝛽1∈ℝ

(∑ (𝐶𝑖 − �̂�(𝑇𝑖; 𝛽0, 𝛽1))
2

𝑁

𝑖=0

)  

where �̂� = 𝛽0𝑇𝑖 + 𝛽1 

Equation 1 – Curtailment as function of Temperature 

 
such that the squared residuals (i.e., the difference between observed and 
predicted curtailments) are minimized across N observations: 
Prepare a Python script to perform these operations. 

e. Run the script and verify outputs. 
5. Apply resource-level regression coefficients to normalize temperatures. 

a. Set a target curtailment rate between 0 and the maximum curtailment of 30% as 
set in the previous filtering step. 

b. Calculate the temperature adjustment factor, Δ𝑇, according to Equation 2 
based on a target curtailment 𝐶∗, the resource-level regression slope 𝛽0, and the 
regression intercept value, 𝛽1. Add the result to the observed temperature, 𝑇0. 
 

Δ𝑇 = 𝑇0 +
(𝛽1 − 𝐶∗)

𝛽0
 

Equation 2 – Temperature Normalization 

 
6. Filter out poorly fit resources and perform linear regression on all resources of a given 

unit type. 
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a. Use normalized temperatures (either dry- or wet-bulb) to align the curtailment 
datasets for each resource. 

b. Evaluate the linear regression coefficients and goodness-of-fit parameters for 
each unit-type. 

c. Adjusting the target curtailment in the previous step changes how well the 
resources line-up. Evaluate the linear regressions with various target curtailments 
to find the target curtailment with yields the best fit for each unit type. 

2. Limitations 
The weather stations selected for this exercise are pulled from a relatively small set used 
in the climate forecasting model. This means that some weather stations are up to 
180 km from generator resources to which they are paired. For this reason, we will focus 
our attention on resources with the nearest weather stations. Since the proposed model 
is expected to use similarly sparse weather stations, this analysis may help inform that 
design decision. 

Additionally, the number of observations for each resource is dependent upon how 
consistently curtailments are reported to CAISO, both in terms of frequency of reporting 
and accuracy in attribution. Forced curtailments due to ambient temperature may 
involve circumstances external to the physical processes addressed in the proposed 
model. We thus further narrow our attention to resources with higher numbers of 
reported hours of curtailment. Finally, this analysis ignores non-curtailed hours (i.e., 
curtailment of 0 MW. This omission is consistent with the proposed model, which assumes 
constant capacity for temperatures below a threshold, thus we are limiting the scope of 
this exercise to the non-zero curtailment regime. 

3. Results 
The curtailments reported to CAISO are subtractive, meaning the listed MW are a 
reduction from each resource’s capacity. This is inverse from the proposed model, 
which applies a derate factor to be multiplied by the specified capacity to determine 
available capacity. 

The map in Figure 4 depicts the locations of each of the curtailed generation resources 
and weather stations, indicated by squares and triangles, respectively. 
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Figure 4 – Locations of Curtailed Thermal Generation Resources (Squares) and Weather Stations (Triangles) 

 
Table 2 summarizes a regression analysis of curtailed resources with at least 300 hours of 
curtailments between June 18, 2021, and September 19, 2022. The regression 
coefficient representing the slope of the best fit line evaluated through least-squares 
regression analysis, and the R-squared term indicating goodness of fit. The maximum R-
squared value of 1.0 would indicate that the predicted curtailments perfectly match 
the observed, while 0.0 would indicates temperature has no predictive value in 
calculating curtailment). 
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Table 2 – Curtailment Regression Results by Generation Resource 

Resource ID Unit Type 

Number of 

Observations 

Dry-Bulb 

Slope 

Dry-Bulb 

Intercept 

Dry-Bulb 

R2 

Wet-Bulb 

Slope 

Wet-Bulb 

Intercept 

Wet-Bulb 

R2 

AGRICO_7_UNIT COMBINED 
CYCLE 1,568 0.09% 5.38% 0.021 0.35% 1.81% 0.058 

ALAMIT_2_PL1X3 COMBINED 
CYCLE 3,442 0.06% -0.26% 0.165 0.16% -1.59% 0.272 

ARCOGN_2_UNITS COMBINED 
CYCLE 75 0.10% 1.57% 0.203 0.10% 2.18% 0.083 

DELTA_2_PL1X4 COMBINED 
CYCLE 8,115 0.19% 0.58% 0.167 0.39% -1.37% 0.328 

DUANE_1_PL1X3 COMBINED 
CYCLE 148 -0.02% 7.66% 0.003 0.00% 7.22% 0.000 

ELKHIL_2_PL1X3 COMBINED 
CYCLE 10,105 0.16% 2.77% 0.384 0.32% 2.02% 0.419 

ELSEGN_2_UN1011 COMBINED 
CYCLE 7,441 0.03% -0.35% 0.036 0.03% -0.32% 0.036 

ELSEGN_2_UN2021 COMBINED 
CYCLE 496 -0.04% 1.54% 0.042 -0.13% 2.93% 0.117 

GILROY_1_UNIT COMBINED 
CYCLE 9,154 0.02% 9.26% 0.003 0.06% 8.82% 0.013 

HARBGN_7_UNITS COMBINED 
CYCLE 129 -0.13% 24.78% 0.009 -0.02% 21.79% 0.000 

HIDSRT_2_UNITS COMBINED 
CYCLE 9,641 0.15% 2.10% 0.180 0.32% 0.66% 0.384 

HNTGBH_2_PL1X3 COMBINED 
CYCLE 3,777 0.06% -0.36% 0.113 0.14% -1.58% 0.212 

LAPLMA_2_UNIT 1 COMBINED 
CYCLE 10,353 0.09% 2.57% 0.111 0.13% 2.30% 0.157 

LAPLMA_2_UNIT 2 COMBINED 
CYCLE 9,191 -0.10% 9.34% 0.069 -0.04% 8.11% 0.007 

LAPLMA_2_UNIT 3 COMBINED 
CYCLE 10,259 0.03% 3.73% 0.020 0.03% 3.73% 0.021 

LAPLMA_2_UNIT 4 COMBINED 
CYCLE 10,422 -0.03% 9.35% 0.011 0.03% 8.38% 0.005 

LAROA2_2_UNITA1 COMBINED 
CYCLE 6,529 0.19% 1.13% 0.229 0.34% -0.56% 0.354 

LEBECS_2_UNITS COMBINED 
CYCLE 6,878 0.05% 0.81% 0.101 0.11% 0.35% 0.125 

LGHTHP_6_ICEGEN COMBINED 
CYCLE 54 -0.35% 18.28% 0.674 -0.85% 26.09% 0.549 

LMEC_1_PL1X3 COMBINED 
CYCLE 10,156 0.01% 3.20% 0.001 0.03% 3.01% 0.003 

MAGNLA_6_ANAHEIM COMBINED 
CYCLE 956 0.16% 0.08% 0.177 0.39% -3.41% 0.239 

METEC_2_PL1X3 COMBINED 
CYCLE 8,269 0.09% 1.16% 0.090 0.21% 0.03% 0.157 

MOSSLD_2_PSP1 COMBINED 
CYCLE 780 -0.01% 1.89% 0.001 -0.02% 2.03% 0.006 

MOSSLD_2_PSP2 COMBINED 
CYCLE 735 0.01% 1.40% 0.003 0.02% 1.33% 0.004 

MRCHNT_2_PL1X3 COMBINED 
CYCLE 9,048 0.44% 0.82% 0.258 0.68% -0.81% 0.406 

NGILAA_5_SDGDYN COMBINED 
CYCLE 11,992 0.30% 1.21% 0.385 0.48% 0.01% 0.657 

OTMESA_2_PL1X3 COMBINED 
CYCLE 10,130 0.32% -1.78% 0.445 0.40% -1.82% 0.543 

PALOMR_2_PL1X3 COMBINED 
CYCLE 4 0.00% 5.22% 0.000 0.00% 5.22% 0.000 

SBERDO_2_PSP3 COMBINED 
CYCLE 6,123 0.10% 0.43% 0.088 0.26% -1.71% 0.201 

SBERDO_2_PSP4 COMBINED 
CYCLE 6,831 0.14% 0.05% 0.148 0.30% -1.85% 0.279 

SCHLTE_1_PL1X3 COMBINED 
CYCLE 9,041 0.16% 2.83% 0.350 0.34% 1.56% 0.462 

SGREGY_6_SANGER COMBINED 
CYCLE 15 0.00% 6.83% 1.000 0.00% 6.83% 1.000 

SUNRIS_2_PL1X3 COMBINED 
CYCLE 11,227 0.11% 4.68% 0.469 0.22% 4.26% 0.483 

SUTTER_2_CISO COMBINED 
CYCLE 5,770 0.15% 0.83% 0.124 0.36% -0.98% 0.132 
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Resource ID Unit Type 

Number of 

Observations 

Dry-Bulb 

Slope 

Dry-Bulb 

Intercept 

Dry-Bulb 

R2 

Wet-Bulb 

Slope 

Wet-Bulb 

Intercept 

Wet-Bulb 

R2 

TERMEX_2_PL1X3 COMBINED 
CYCLE 6,814 0.12% 0.94% 0.199 0.22% -0.33% 0.355 

VERNON_6_MALBRG COMBINED 
CYCLE 8 0.00% 2.16% 1.000 0.00% 2.16% 1.000 

AGRICO_6_PL3N5 COMBUSTION 
TURBINE 1,883 -0.09% 11.28% 0.010 -0.03% 8.99% 0.000 

ALMEGT_1_UNIT 1 COMBUSTION 
TURBINE 8,908 0.18% 7.53% 0.084 0.19% 8.09% 0.066 

ALMEGT_1_UNIT 2 COMBUSTION 
TURBINE 9,666 0.19% 5.75% 0.083 0.23% 5.99% 0.079 

BARRE_6_PEAKER COMBUSTION 
TURBINE 4,062 0.39% -0.87% 0.240 0.84% -6.47% 0.438 

BASICE_2_UNITS COMBUSTION 
TURBINE 5,038 -0.01% 2.62% 0.001 -0.03% 2.92% 0.003 

BDGRCK_1_UNITS COMBUSTION 
TURBINE 10,393 0.00% 7.94% 0.000 0.01% 7.83% 0.000 

BEARMT_1_UNIT COMBUSTION 
TURBINE 10,403 0.18% 2.76% 0.510 0.36% 2.09% 0.490 

BOGUE_1_UNITA1 COMBUSTION 
TURBINE 2,087 0.11% 1.14% 0.157 0.33% -1.41% 0.196 

BORDER_6_UNITA1 COMBUSTION 
TURBINE 91 0.00% 13.68% 0.000 0.09% 11.77% 0.022 

CALPIN_1_AGNEW COMBUSTION 
TURBINE 1,681 0.05% 1.27% 0.105 0.06% 1.28% 0.055 

CARLS2_1_CARCT1 COMBUSTION 
TURBINE 3,656 0.08% 1.01% 0.027 0.16% -0.12% 0.049 

CENTER_6_PEAKER COMBUSTION 
TURBINE 2,773 -0.05% 5.55% 0.009 -0.07% 5.59% 0.004 

CENTRY_6_PL1X4 COMBUSTION 
TURBINE 324 -0.04% 10.06% 0.005 -0.33% 15.64% 0.089 

CHALK_1_UNIT COMBUSTION 
TURBINE 10,498 0.03% 7.24% 0.026 0.06% 7.12% 0.025 

COCOPP_2_CTG1 COMBUSTION 
TURBINE 8,686 0.18% 0.10% 0.290 0.28% -0.77% 0.434 

COCOPP_2_CTG2 COMBUSTION 
TURBINE 8,413 0.17% 0.02% 0.272 0.27% -0.83% 0.414 

COCOPP_2_CTG3 COMBUSTION 
TURBINE 9,792 0.25% 1.32% 0.394 0.36% 0.60% 0.540 

COCOPP_2_CTG4 COMBUSTION 
TURBINE 8,394 0.19% -0.09% 0.297 0.31% -1.13% 0.473 

CSCGNR_1_UNIT 1 COMBUSTION 
TURBINE 10 -0.20% 12.94% 0.472 -0.59% 18.12% 0.549 

CSCGNR_1_UNIT 2 COMBUSTION 
TURBINE 30 0.00% 7.07% 0.000 0.00% 7.07% 0.000 

DOUBLC_1_UNITS COMBUSTION 
TURBINE 10,600 0.12% 0.75% 0.619 0.24% 0.30% 0.603 

DREWS_6_PL1X4 COMBUSTION 
TURBINE 282 0.03% 11.94% 0.006 0.11% 10.60% 0.016 

ESCNDO_6_PL1X2 COMBUSTION 
TURBINE 1,343 0.05% 3.03% 0.026 0.11% 1.91% 0.050 

ESCNDO_6_UNITB1 COMBUSTION 
TURBINE 86 0.00% 8.39% 1.000 0.00% 8.39% 1.000 

ETIWND_6_GRPLND COMBUSTION 
TURBINE 3,232 -0.07% 6.09% 0.015 -0.09% 6.06% 0.005 

GILRPP_1_PL1X2 COMBUSTION 
TURBINE 42 0.04% 2.63% 0.209 0.11% 1.86% 0.254 

GILRPP_1_PL3X4 COMBUSTION 
TURBINE 23 0.00% 2.60% 1.000 0.00% 2.60% 1.000 

GRNLF2_1_UNIT COMBUSTION 
TURBINE 524 -0.02% 5.00% 0.006 -0.07% 5.60% 0.008 

GWFPWR_1_UNITS COMBUSTION 
TURBINE 10,369 0.24% -0.43% 0.508 0.52% -2.26% 0.602 

HINSON_6_LBECH2 COMBUSTION 
TURBINE 10 0.00% 11.11% 0.000 0.00% 11.11% 0.000 

INDIGO_1_UNIT 1 COMBUSTION 
TURBINE 311 0.25% 0.94% 0.296 0.62% -4.13% 0.644 

INDIGO_1_UNIT 2 COMBUSTION 
TURBINE 306 0.27% 3.33% 0.204 0.66% -2.00% 0.500 

INDIGO_1_UNIT 3 COMBUSTION 
TURBINE 346 0.25% 4.84% 0.181 0.64% -0.47% 0.426 
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Resource ID Unit Type 

Number of 

Observations 

Dry-Bulb 

Slope 

Dry-Bulb 

Intercept 

Dry-Bulb 

R2 

Wet-Bulb 

Slope 

Wet-Bulb 

Intercept 

Wet-Bulb 

R2 

KERNFT_1_UNITS COMBUSTION 
TURBINE 10,557 0.14% 0.93% 0.533 0.29% 0.27% 0.542 

KNGCTY_6_UNITA1 COMBUSTION 
TURBINE 5,794 0.07% 2.11% 0.047 0.13% 1.57% 0.072 

LARKSP_6_UNIT 1 COMBUSTION 
TURBINE 347 0.03% 3.89% 0.070 0.07% 3.37% 0.158 

LARKSP_6_UNIT 2 COMBUSTION 
TURBINE 376 0.05% 3.13% 0.083 0.14% 1.93% 0.233 

LECEF_1_UNITS COMBUSTION 
TURBINE 9,924 0.03% 3.21% 0.027 0.04% 3.14% 0.030 

LIVOAK_1_UNIT 1 COMBUSTION 
TURBINE 10,345 0.30% 6.75% 0.547 0.58% 5.78% 0.517 

LMBEPK_2_UNITA1 COMBUSTION 
TURBINE 67 0.03% 2.58% 0.016 0.00% 3.26% 0.000 

LMBEPK_2_UNITA2 COMBUSTION 
TURBINE 185 0.08% 0.41% 0.081 0.27% -1.73% 0.057 

LMBEPK_2_UNITA3 COMBUSTION 
TURBINE 178 0.06% 0.60% 0.071 0.18% -0.94% 0.057 

LODI25_2_UNIT 1 COMBUSTION 
TURBINE 12,494 0.20% 7.03% 0.341 0.37% 6.24% 0.347 

MIRLOM_6_PEAKER COMBUSTION 
TURBINE 3,932 0.23% -0.01% 0.169 0.55% -4.14% 0.340 

MKTRCK_1_UNIT 1 COMBUSTION 
TURBINE 8,557 0.02% 6.60% 0.018 0.03% 6.79% 0.005 

MNDALY_6_MCGRTH COMBUSTION 
TURBINE 3,891 0.33% 4.22% 0.123 0.72% -0.62% 0.319 

OMAR_2_UNIT 4 COMBUSTION 
TURBINE 9 0.00% 10.67% 1.000 0.00% 10.67% 1.000 

OTAY_6_PL1X2 COMBUSTION 
TURBINE 1 0.00% 24.16% N/A 0.00% 24.16% N/A 

PIOPIC_2_CTG1 COMBUSTION 
TURBINE 10,353 0.25% -0.06% 0.360 0.40% -1.15% 0.582 

PIOPIC_2_CTG2 COMBUSTION 
TURBINE 10,240 0.24% -0.96% 0.342 0.39% -2.07% 0.552 

PIOPIC_2_CTG3 COMBUSTION 
TURBINE 9,143 0.27% -0.88% 0.302 0.45% -2.52% 0.506 

PNOCHE_1_PL1X2 COMBUSTION 
TURBINE 3,013 0.00% 5.59% 0.000 0.22% 1.70% 0.021 

PNOCHE_1_UNITA1 COMBUSTION 
TURBINE 69 0.00% 15.38% 0.000 0.00% 15.38% 0.000 

RVRVEW_1_UNITA1 COMBUSTION 
TURBINE 122 0.34% -2.45% 0.162 0.54% -3.85% 0.070 

SIERRA_1_UNITS COMBUSTION 
TURBINE 10,636 0.12% 1.18% 0.591 0.24% 0.70% 0.577 

STIGCT_2_LODI COMBUSTION 
TURBINE 10,031 0.15% 4.10% 0.216 0.23% 3.94% 0.162 

SUNSET_2_UNITS COMBUSTION 
TURBINE 8,411 0.16% -0.33% 0.350 0.34% -1.32% 0.370 

TENGEN_2_PL1X2 COMBUSTION 
TURBINE 39 0.00% 5.47% 0.000 0.00% 5.47% 0.000 

UNVRSY_1_UNIT 1 COMBUSTION 
TURBINE 4 0.00% 16.05% 1.000 0.00% 16.05% 1.000 

VACADX_1_UNITA1 COMBUSTION 
TURBINE 66 0.00% 13.04% 1.000 0.00% 13.04% 1.000 

WALCRK_2_CTG3 COMBUSTION 
TURBINE 5 -0.60% 26.87% 0.514 -0.85% 25.79% 0.048 

WOLFSK_1_UNITA1 COMBUSTION 
TURBINE 2,076 0.07% 1.31% 0.039 0.17% 0.35% 0.024 

YUBACT_1_SUNSWT COMBUSTION 
TURBINE 1,035 0.00% 8.64% 0.000 -0.05% 9.32% 0.003 

YUBACT_6_UNITA1 COMBUSTION 
TURBINE 2,455 0.09% 0.92% 0.115 0.21% -0.15% 0.086 

ALAMIT_7_UNIT 3 STEAM 189 0.05% 3.16% 0.003 0.24% -0.12% 0.011 

ALAMIT_7_UNIT 4 STEAM 393 0.12% 2.59% 0.158 0.28% 0.18% 0.133 

ALAMIT_7_UNIT 5 STEAM 176 0.08% 3.40% 0.183 0.29% -0.14% 0.266 

CONTRL_1_OXBOW STEAM 547 0.00% 7.40% 0.001 -0.03% 7.82% 0.007 

CROKET_7_UNIT STEAM 15 -0.68% 32.32% 0.820 -3.39% 78.33% 0.509 
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Resource ID Unit Type 

Number of 

Observations 

Dry-Bulb 

Slope 

Dry-Bulb 

Intercept 

Dry-Bulb 

R2 

Wet-Bulb 

Slope 

Wet-Bulb 

Intercept 

Wet-Bulb 

R2 

HNTGBH_7_UNIT 2 STEAM 261 0.08% 1.76% 0.072 0.48% -5.80% 0.306 

INTMNT_3_ANAHEIM STEAM 220 0.00% 1.27% 0.000 0.00% 1.27% 0 

INTMNT_3_RIVERSIDE STEAM 121 0.01% 1.35% 0.001 -0.11% 3.37% 0.025 

MTNPOS_1_UNIT STEAM 289 0.05% 14.93% 0.018 0.33% 10.70% 0.108 

ORMOND_7_UNIT 1 STEAM 42 0.26% 6.86% 0.023 -0.77% 30.73% 0.015 

ORMOND_7_UNIT 2 STEAM 60 0.16% 5.38% 0.101 0.36% 2.28% 0.073 

REDOND_7_UNIT 5 STEAM 80 -0.01% 7.78% 0.001 0.07% 6.05% 0.001 

REDOND_7_UNIT 6 STEAM 441 0.11% 6.57% 0.047 0.08% 7.77% 0.003 

REDOND_7_UNIT 8 STEAM 170 -0.04% 8.92% 0.002 0.49% -2.43% 0.023 

ULTPFR_1_UNIT 1 STEAM 14 0.00% 6.17% 0.000 0.00% 6.17% 0.000 

Based on Table 2, wet-bulb temperatures appear to have a slightly stronger predictive 
relationship with curtailment for many generation resources, though in several cases the 
dry-bulb temperatures are more predictive. However, because the improvement is 
neither substantial nor uniform, dry-bulb temperatures are considered sufficient for 
calibration. 

The charts in Figure 5 show the reported hourly curtailments plotted with respect to the 
historic temperature at the nearest available weather station for all resources (including 
non-thermal power-plants), and the best fit line. Reported curtailments above 30% are 
excluded from the regression analysis, as such curtailment events are not of the kind 
intended to be modeled in this project. These plots demonstrate that many resources, 
especially among thermal generators, demonstrate a positive, linear correlation 
between temperature and curtailment. In some cases, there either exists insufficient 
data or the variables are too poorly correlated to draw conclusions about a 
relationship between ambient temperature and curtailment. 
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Figure 5 – Best Fit Lines for Curtailment as a function of Dry-Bulb Temperature for All Resources 

 

The regression coefficients 𝛽0 and 𝛽1calculated for each generation resource (see 
Equation 1), corresponding to the slope and vertical intercept of the best-fit lines, are 
used to normalize temperatures according to Equation 2. Adjusting the target 
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temperature, 𝑇∗, changes how the data from multiple resources overlap when 
aggregated to each unit type. An optimal 𝑇∗ is determined by performing linear 
regression analyses and calculating the goodness of fit for the normalized data with 
varying target temperatures. Figure 6 shows that for both dry- and wet-bulb 
temperatures, combustion turbines and combined cycle generators show best 
regression performance with a target curtailment between 4% and 6%. 

 
Figure 6 – Unit Type Regression Fitness vs. Target Curtailment Percentage 

 

Applying a target curtailment of 5.5% results in good alignment of combustion turbine 
curtailments vs. normalized temperatures as shown in Figure 7, which includes all 
combustion turbine resources with individual R-Squared values greater than 0.35. Note 
that two resources demonstrate a negative correlation between temperature and 
curtailment, resulting in a downward-sloping best-fit line, but these resources had very 
few observations on which to base regression analyses, so their contributions to the best 
fit by unit-type will be limited. 
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Figure 7 – Best Fit Curves for Multiple Combustion Turbine Resources with Normalized Dry-Bulb Temperatures with target 

intersections at 5.5% and 10.5% curtailment 

 

Finally, linear regression analyses are performed on the curtailments and normalized 
temperatures for each unit type to determine regression coefficients for forecasting 
class-wide curtailments as a function of ambient dry-bulb temperature. The results are 
shown in Figure 8, and the calibrated model parameters are presented in Table 3. 

 
Figure 8 – Best Fit Curves for Combined Cycle and Combustion Turbine Resources with Normalized Dry-Bulb Temperatures 

 

Table 3 – Calibrated Regression Parameters 

Unit Type Slope R-Squared 
Combined Cycle 0.1650% 0.406 
Combustion Turbine 0.2135% 0.719 

R.21-10-002  ALJ/DBB/sgu 



 

 22 

IV. Proposed Model and Justification 
1. Derate Model Definition 
Based on our review of the literature presented above, we propose a model which 
applies a piecewise-linear relationship between ambient temperature and power 
capacity for any given thermal powerplant. Given the observed differences in how gas 
turbines respond to varying ambient temperature versus steam turbines, this model 
accounts for each power plant’s tributary power sources. This model will be based on a 
correction factor which, when applied to a plant’s rated power capacity, provides an 
approximation of capacity available at a given ambient temperature. The correction 
factor should, therefore, be 100% at the rating temperature of 15°C. 

Data from Şen et al. show that, between 8°C and 40°C, gas turbines capacity is 
attenuated at a rate of -0.94%/°C, and steam turbine capacity is similarly attenuated at 
approximately -1.05%/°C (Günnur Şen November 5, 2018). For lower temperatures, we 
note that various configurations of W501F 2x1 combined cycle plants discussed in the 
Department of Energy’s handbook on gas turbine and combined cycle powerplants 
have correction factors with variable slopes that, at -15°C, are substantially less steep 
than the slopes above 15°C (Soares 2006). Furthermore, we recognize that power plant 
capacities in California for resource adequacy planning purposes are determined by 
testing during the coldest day in February, which tends to occur when the ambient 
temperature is below the International Standards Organization rating temperature of 
15°C cited throughout the literature. We therefore propose our model plant to have a 
maximum capacity of 100% of their tested capacity for temperatures below the test 
temperature. We also propose a threshold of 0% for high temperatures well above any 
forecast ambient temperature where the correction factor would otherwise become 
negative. 

Historic curtailment data support the fundamental structure of the proposed model for 
thermal power plants—i.e., increased temperatures yield lower capacities (increased 
curtailments), and the relationship appears linear—however, combined cycle and gas 
turbine powerplants demonstrate significantly reduced sensitivity to temperature than 
the academic literature would suggest. Various factors may be contributing to the 
approximately five-fold reduction in temperature-sensitivity, including the incorporation 
of inlet air cooling devices which are not accounted for in the proposed model. By 
substituting the regression factors from our analysis of historic curtailment data into the 
engineering model derived from literature review, we can account for these factors, 
both known and unknown, and improve the model’s predictive power. This assumes 
that future thermal power plants behave similarly to the observed curtailments in the 
data set; any new technologies that may alter powerplants’ behavior in high 
temperatures may render this assumption invalid, but this nonetheless improves the 
forecast.  

Applying the regression analysis calibration data, we define a slope constant 𝐾, based 
on the unit type of the generator, 𝑃𝐺𝑇 and 𝑃𝑆𝑇, respectively. Equation 3 provides the 
constant for combined cycle and gas turbine generators. 
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𝐾 = {
−0.1650%/℃  for combined cycle

−0.2135%/℃ for gas turbine

Equation 3—Slope Constant 

We use the value of the slope constant 𝐾 in evaluating the ambient temperature 
correction factor, 𝐶𝐹, for temperatures between the temperature at which the 
maximum capacity test was conducted, 𝑇𝑃𝑁𝐷𝐶

, and the temperature at which this line
would drop below 0% capacity. For temperatures below 𝑇𝑃𝑁𝐷𝐶

 capacity is held constant
at 100%, and for high temperatures, capacity is constrained to a minimum of 0%. 

𝐶𝐹 =

{

100% |𝑇𝑎𝑚𝑏 < 𝑇𝑃𝑁𝐷𝐶

𝐾 ∙ 𝑇𝑎𝑚𝑏 + 100% − 𝐾 ∙ 𝑇𝑃𝑁𝐷𝐶
|𝑇𝑃𝑁𝐷𝐶

≤ 𝑇𝑎𝑚𝑏 <𝑇𝑃𝑁𝐷𝐶
−

100%

𝐾

0% |𝑇𝑃𝑚𝑎𝑥
−

100%

𝐾
≤ 𝑇𝑎𝑚𝑏

Equation 4—Correction Factor 

Figure 9 below shows an example correction factor curve for a hypothetical combined 
cycle power plant with rated power generation capacities of 100MW from gas turbine 
generators and 50MW from steam, tested at 8°C. The chart depicts the piecewise-linear 
correction factor function defined for three regions in the lower left. 

Figure 9—Power Capacity Correction Factor Curve for a Typical Gas Turbine Power Plant 

This proposed model will be applied to classes of power plants, consisting of one or 
more facilities of a given unit type (i.e., gas turbine or combined cycle) within regions of 
similar weather based on their geographic location. For each class, the Pmax 
temperature will be assumed to be the minimum daily-averaged temperature for the 
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associated weather station in the standard weather year. Class-wide derate factors will 
then be forecast based on climate-informed weather forecasts that incorporates both 
historical weather and CMIPS6 climate forecasts, and the percent derates will be 
applied to each resource within the class. 

2. Derate Model Justification
The proposed piecewise-linear correction factor model aligns with our findings in the 
literature about power capacity and provides flexibility to accommodate the variety of 
powerplants installed and planned throughout the Western United States. 

The literature recognizes a linear regime in power capacity vs. ambient temperatures 
for temperatures above freezing. Few papers, however, address lower temperatures. In 
California, the rated maximum power capacities of thermal power plants used in 
resource adequacy planning are determined based on performance tests conducted 
on a date of the power plant operator’s choosing, generally on a cold day in February 
(California Indenpendent System Operator 2020). Based on this consideration, our 
model caps the capacity factor at 100%, which means it is constant below the 
temperature at which capacity test was conducted. This is consistent with historic 
curtailments which are not reported at or below zero. 

The slopes for gas turbine and combined-cycle capacity factors are derived from 
historic weather and curtailment data. Unfortunately, we have insufficient data to 
calibrate the model for steam turbine generators at this time. 

While a full simulation and a model with many more parameters might more fully 
account for the diversity of generator configurations, the proposed model is 
appropriate for use in a long-horizon simulation using weather predictions with relatively 
high variability and low certainty. It allows for some tailoring based on readily available 
information without requiring extensive data collection for existing or future power 
plants. 

3. Sample Implementation
The following Python code represents an example implementation of the proposed 
model. The code defines two functions, named correction_factor and 
adjusted_capacity, both with three input parameters representing the ambient 
temperature, gas turbine rated capacity, and steam turbine rated capacity. The 
correction factor function provides a normalized value, returning 1.00 at an input 
ambient temperature of 15 degrees, while the adjusted capacity function multiplies the 
correction factor by the sum of the input gas and steam rated capacities. This 
implementation does not account for aggregating power plants into classes. 

def correction_factor( 

  ambient_temperature:float, 

  test_temperature:float, 

  unit_type:str 

) -> float: 

  gas_turbine_derate_factor = -0.001650 
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 combined_cycle_derate_factor = -0.2135 

  if ambient_temperature<test_temperature: 

correction_factor = 1.00 

  elif ambient_temperature<test_temperature-1/slope_K: 

if unit_type==’gas_turbine’: 

  correction_factor = gas_turbine_derate_factor * \ 

ambient_temperature + 1 – test_temperature * \ 

gas_turbine_derate_factor 

else: 

  correction_factor = combined_cycle_derate_factor * \ 

ambient_temperature + 1 – test_temperature * \ 

combined_cycle_derate_factor 

  else: 

correction_factor = 0.00 

  return correction_factor 

def adjusted_capacity( 

  ambient_temperature:float, 

  test_temperature:float, 

  unit_type:str, 

  rated_capacity:float 

) -> float: 

  cf = correction_factor( 

ambient_temperature, 

test_temperature, 

unit_type 

  ) 

  adjusted_capacity = cf * rated_capacity 

  return adjusted_capacity 
Figure 10—A Simple Implementation of the Proposed Model in Python 

The Pmax test specification does not include recording the ambient temperature at the 
time of testing, so this data will be collected from historical weather data referenced 
against the recorded test time and the location of the power plant. 

V. Conclusion
The proposed model satisfies this project’s stated objectives—it is derived from a broad 
survey of relevant literature and data and calibrated against reported curtailments and 
weather, it is simple enough to apply across many generation facilities while allowing 
tailoring for varying configurations without requiring additional data collection for each 
site, and it will be a relatively simple matter to implement the model in SERVM. CPUC 
Staff recommend using the model to forecast derated capacities of combustion 
turbine and combined cycle power plants in the upcoming R.21-10-002 planning cycle. 
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