Implementing UCAP-Light Counting for Thermal Facilities

SCOTT MURTISHAW, INDEPENDENT ENERGY PRODUCERS ASSOCIATION

CPUC RESOURCE ADEQUACY REFORM TRACK WORKSHOP 3 AUGUST 17, 2022

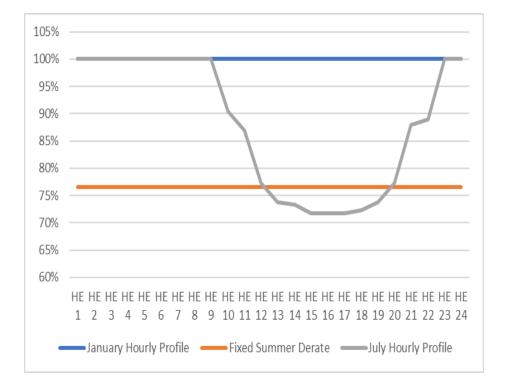
REVIEW OF CAISO'S UCAP PROPOSAL

- In the Future of RA Report, CAISO proposed a full UCAP counting methodology for thermal resources
- Under the proposal, CAISO would calculate hourly unavailability factors as the sum of a unit's unavailable capacity due to forced and urgent outages divided by it's Pmax
 - Hourly factors only calculated for the top 20% of hours with the tightest supply conditions
- Seasonal availability factors calculated separately for summer and winter seasons
 - ▶ 1 the average of the hourly unavailability factors in each season

IEP PROPOSAL FOR UCAP-LIGHT

IEP proposes a similar approach using only outages reported under the "Ambient Due to Temp" category

- Diminished capacity due to ambient derates can be averaged over tight supply hours like UCAP
- Due to data limitations, illustrative examples are shown using a single day for winter and an average of one hot and one typical summer day
- Availability factor calculated based on Pmax; when Pmax – derate > NQC, availability = 100%

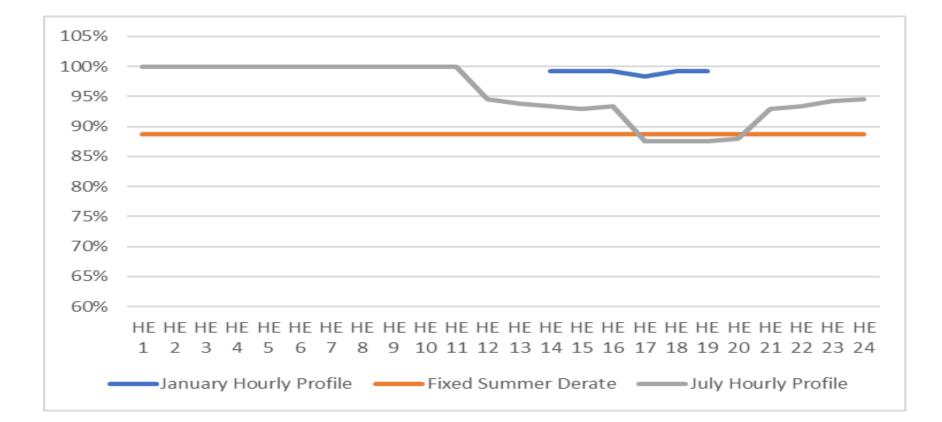

Avg Ambient Availability, 4 pm to 9 pm

Plant	Location	NQC S/W	Pmax	Avg July 9 and 16, 2021	Jan 5, 2022
		191/			
Marsh Landing 1	Antioch, CA	203	204	98.0%	97.4%
La Paloma Unit 1	Kern County	260	267	95.3%	96.1%
	Fresno	108/			
Midway Peaking	County	120	120	88.7%	99.0%
Desert Star Energy	Searchlight,				
Center	NV	419	495	76.6%	100.0%

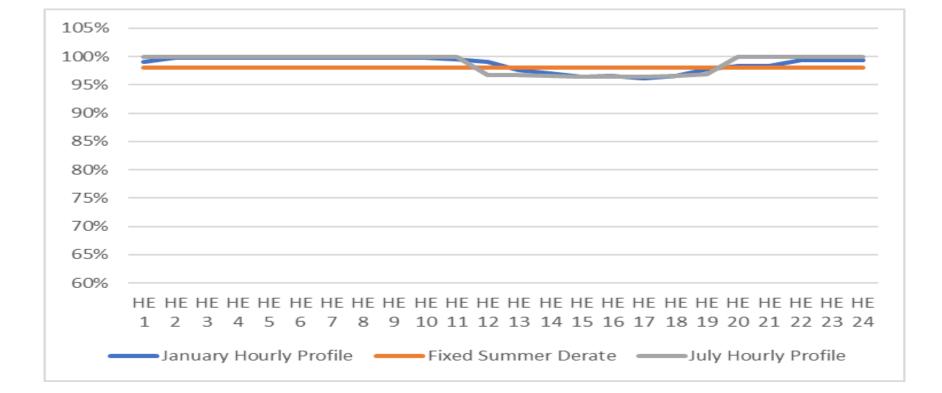
Hourly Generation Shape Alternative

- Plants that are particularly susceptible to ambient temperature effects have pronounced diurnal generation profiles in the summer
- LSEs may find that an hourly ambient temperature-adjusted profile is more valuable than a fixed derate across all hours
- Nighttime and early morning output is higher than fixed derate would suggest
- Hourly generation shape could complement solar output

Desert Star Hourly Profile



Hourly profile has higher capacity than fixed derate from HE 20 to HE 12


6

Some LSEs may benefit from plants sacrificing mid-day capacity in exchange for higher capacity in other hours

Midway Peaking Hourly Profile

Marsh Landing 1 Hourly Profile

Hourly Shape Allows Plants to Offer More Capacity Outside Net Peak

- Large differences between max hourly summer and fixed summer capacities for some plants
 - Mostly benefits inland plants
- Desert Star: 23.4% (HE 1 HE 9, HE 23 HE 24)
- Midway Peaking: 11.3% (HE 1 to HE 11)
- ▶ Marsh Landing 1: 2.0% (HE 1 HE 11, HE 20 HE 24)