

Resource Counting for Preferred Resources

NP Energy on behalf of the Natural Resources Defense Council

Disclaimer

This presentation was prepared by NP Energy on behalf of the Natural Resources Defense Council (NRDC). Positions and analysis are offered for stakeholder review and policy development and may not reflect positions ultimately proposed or endorsed by NRDC in regulatory comments.

NP

Presentation Overview

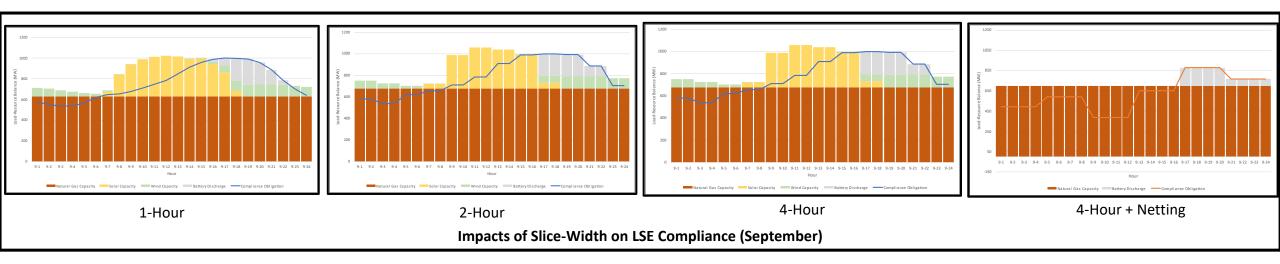
Presentation Segments:

- Resource Counting: An Hourly Exercise
- Resource-Specific Exceedance Process and Benefits

> Key Takeaways:

- > Resource counting and structural design are inextricably linked
- Hourly accounting improves reliability precision, reduces barriers for preferred resources, and reduces compliance costs for LSEs
- Resource-specific exceedance aligns LSE and developer incentives with reliability
- Resource-specific exceedance and hourly counting are technically and administratively manageable

NP


Resource Counting: An Hourly Exercise

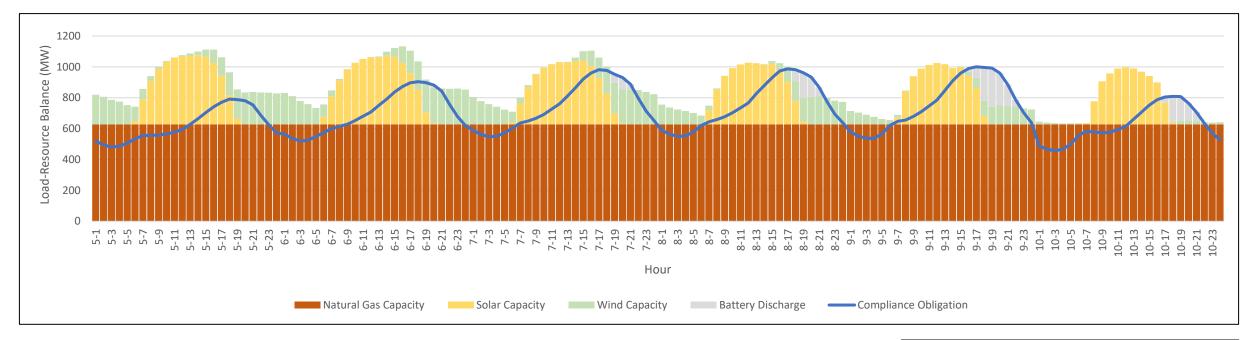
Resource Counting Is Inextricably Linked to Structural Design

NP

Slice Width – 1-, 2-, or 4-Hour Slices

Slice-width has an outsized impact on resource counting.

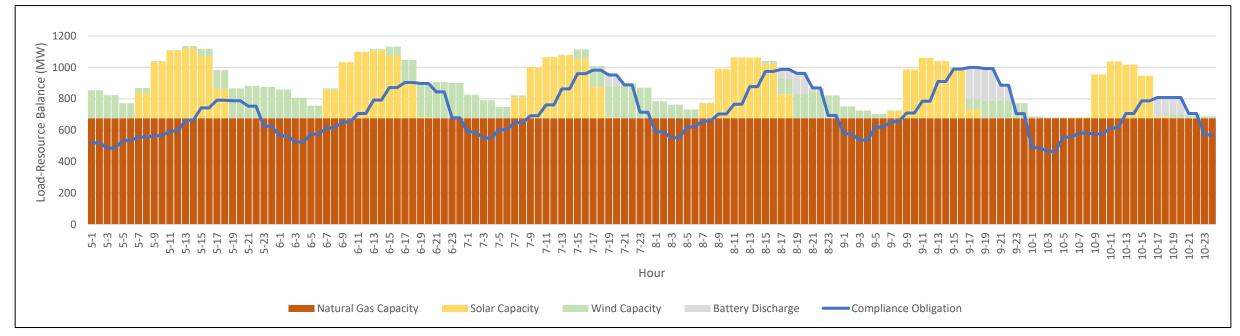
Should slice width align with the hourly variability and limitations of preferred resources (solar, wind, storage, DR, EE)?


NP

How do Slices Impact an LSE's RA Portfolio? A Compliance Thought Exercise.

- LSE A wants to minimize natural gas in its RA portfolio. Showing a natural gas resource as RA:
 - Is expensive (+portfolio cost)
 - Diverts funds from alternative investments (-renewables and storage)
 - Increases the likelihood the shown resource operates (+emissions)
- LSE A has the following preferred resource portfolio to show:
 - 1000MW Peak Compliance Obligation
 - 500 MW Solar PV
 - 400 MW Wind
 - 250MW / 1000MWh Storage

1-Hour / 24-Slice (May-October)


With hourly accounting, LSE A needs to "top up" its preferred resource portfolio with **628MW** of 24/7 resources.

LSE A's preferred resource portfolio provides the equivalent to **372MW** of its RA obligation.

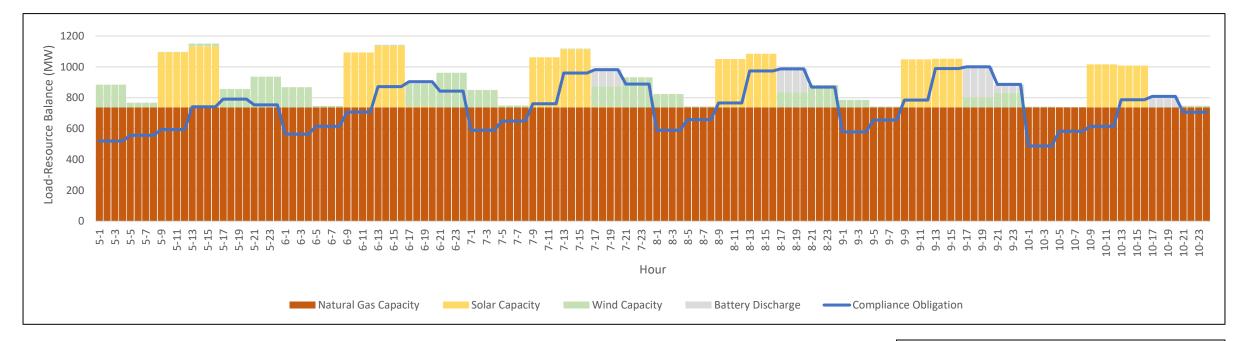
LSE A Obligation + Portfolio

- 1000MW Peak
- 500MW Solar
- 400MW Wind
- 250MW/1000MWh Storage
- 628MW Gas

2-Hour / 12-Slice (May-October)

With two-hour slices, LSE A needs to "top up" its preferred resource portfolio with **676MW** of 24/7 resources (+**48MW** from 1-hour).

LSE A's preferred resource portfolio provides the equivalent to **324MW** of its RA obligation (-**48MW** from 1-hour)


LSE A Obligation + Portfolio

- 1000MW Peak
- 500MW Solar
- 400MW Wind
- 250MW/1000MWh Storage

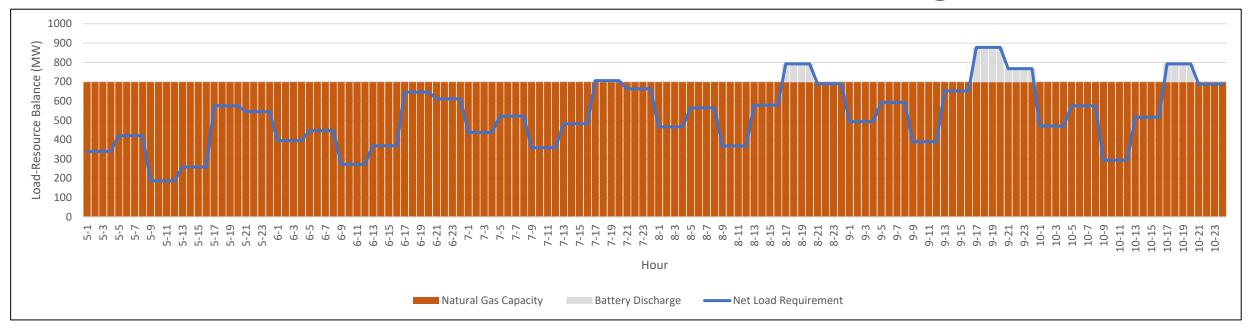
8

• 676MW Gas

4-Hour / 6-Slice (May-October)

With four-hour slices, LSE A needs to "top up" its preferred resource portfolio with **737MW** of 24/7 resources (+**109MW** from 1-hour).

LSE A's preferred resource portfolio provides the equivalent to **263MW** of its RA obligation (-**109MW** from 1-hour)


LSE A Obligation + Portfolio

- 1000MW Peak
- 500MW Solar
- 400MW Wind
- 250MW/1000MWh Storage

9

• 682MW Gas

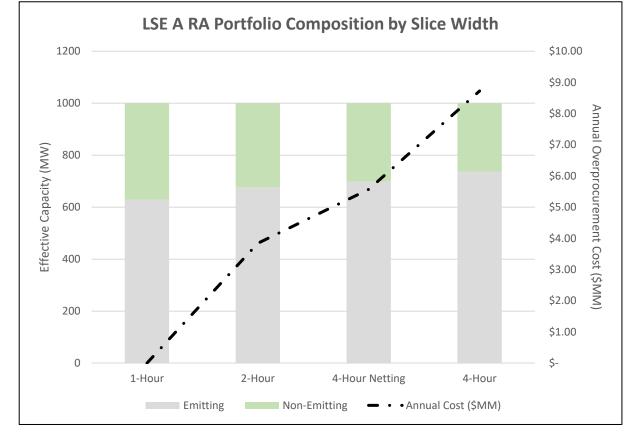
What if We Net? 4-Hour Plus Netting

With four-hour slices *and netting*, LSE A needs to "top up" its preferred resource portfolio with **698MW** of 24/7 resources (+**70MW** from 1-hour).

LSE A's preferred resource portfolio provides the equivalent to **302MW** of its RA obligation (-**70MW** from 1-hour)

LSE A Obligation + Portfolio

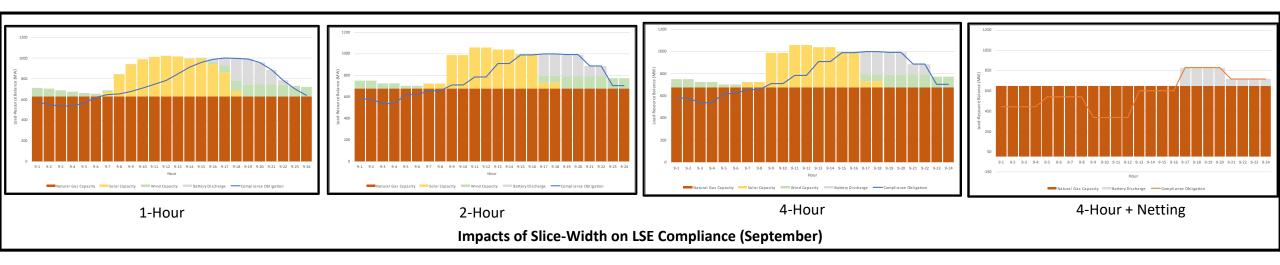
- 1000MW Peak
- 500MW Solar
- 400MW Wind
- 250MW/1000MWh Storage


10

• 698MW Gas

Identical Portfolio + Simplification = More Gas

• Multi-Hour Slices: More Gas, More Cost, More Emissions, More Non-Compliance


- Unnecessary gas showings have meaningful ratepayer costs and transfer wealth from ratepayers to generators
- Higher gas RA costs divert limited LSE funds from developing new-build renewables and storage and lower cost-benefit of investments
- Unnecessary gas showings may delay viable retirements or mothballing
- Higher requirements may result in non-compliance despite technical sufficiency

	1-Hour	2-Hour	4-Hour Net	4-Hour				
Non-Emitting (Equiv MW)	372	324	302	263				
Emitting (MW)	628	676	698	737				
Add'l Cost (\$MM/Year)	\$-	\$ 3.84	\$ 5.57	\$ 8.73				
Additional cost assumes \$6.66/kW_Month for marginal age resources								

Additional cost assumes \$6.66/kW-Month for marginal gas resources.

Recap: Slice Width Must be One Hour

Slice-width has an outsized impact on resource counting.

Slice width should align with the hourly variability and limitations of emerging preferred resources (solar, wind, storage, DR, efficiency).

Resource Counting Structure: Policy Considerations

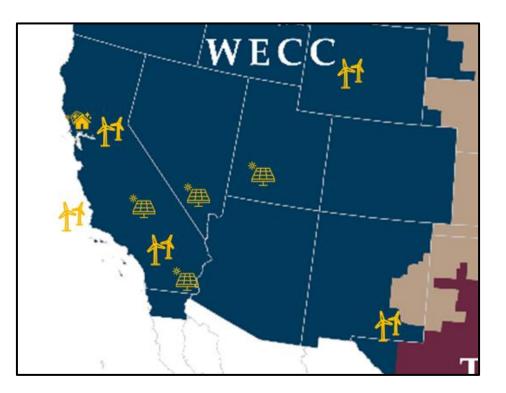
Hourly Accounting

- Facilitates replacement of gas RA with preferred resource RA
- Could avoid several thousands MW of unnecessary gas RA showings per year
- Requires matrix math

• Multi-Hour Accounting

- Reduces the ability of preferred resources to count for RA
- Requires unnecessary showings beyond what's technically necessary
- Requires slightly less matrix math

Policy Consideration: Is avoiding matrix math worth \$4-9 million in annual excess RA procurement for a mid-sized LSE?



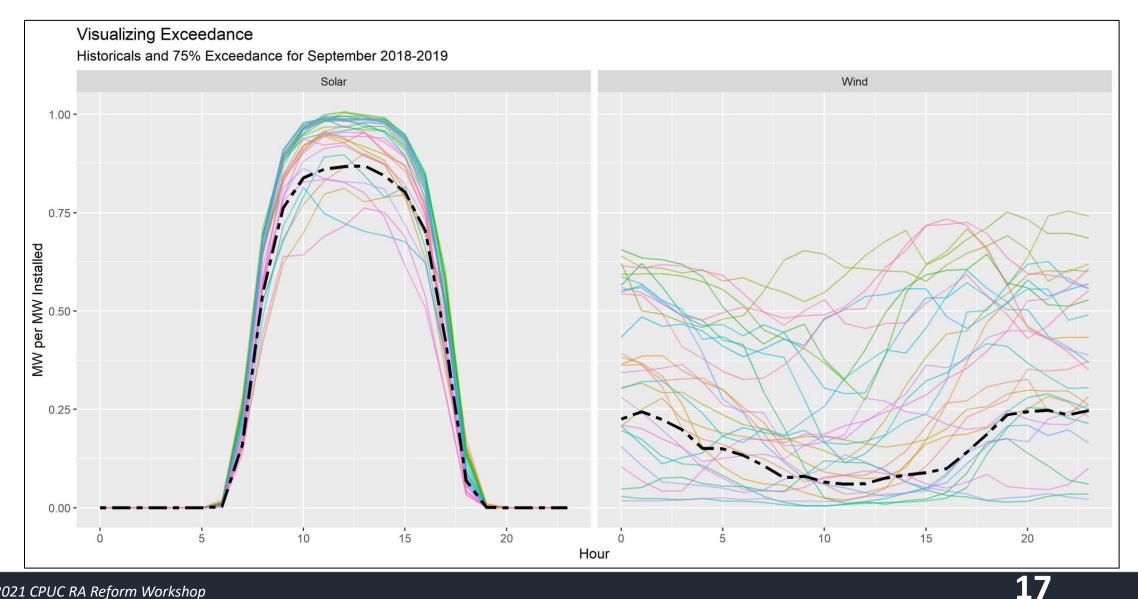
Resource-Specific Exceedance

Rationale and Process for Resource-Specific Exceedance Profiles

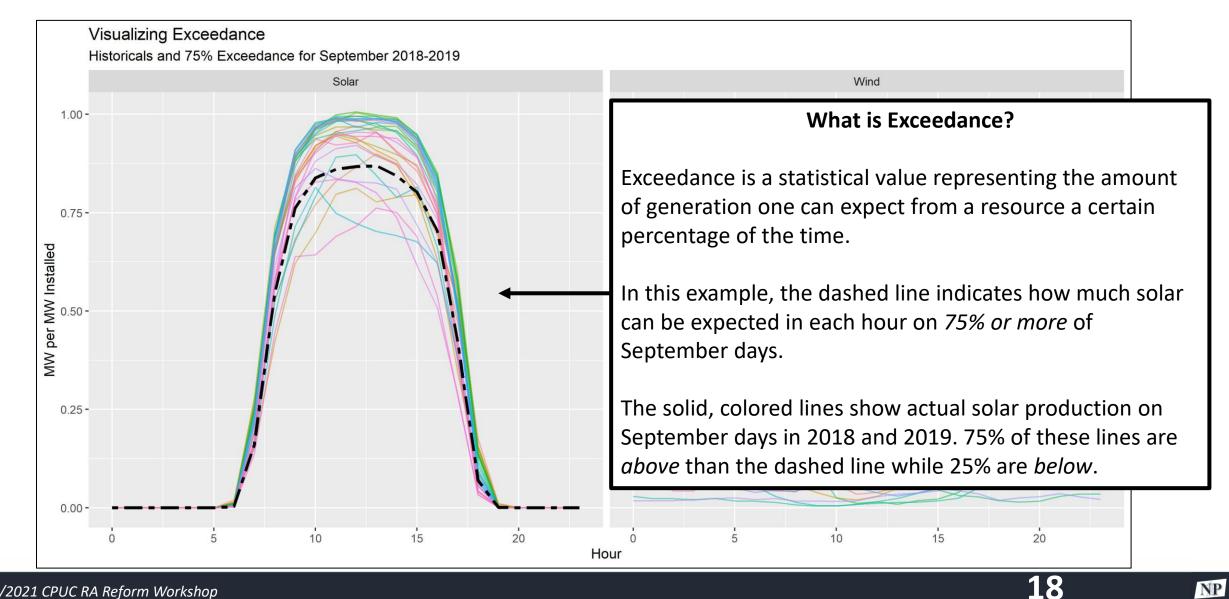
Renewable Resources Across the WECC

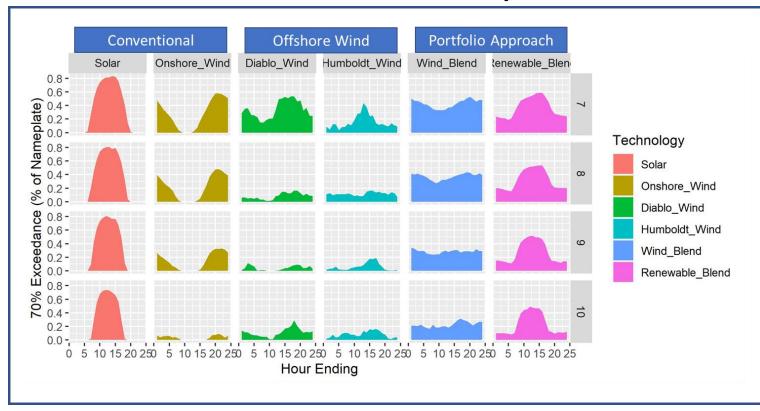
Each of these resources has a unique production profile.

Should RA value recognize beneficial locations, technologies, and other developer / LSE investment choices?



Resource-Specific Exceedance: Rationale


- ➢ Resource-specific exceedance:
 - > Aligns LSE and developer incentives with reliability needs
 - > Is mathematically and administratively simple
 - Reduces "errors-by-simplification" in reliability planning
- The following slides walk through how LSEs, developers, and/or CPUC staff could determine exceedance values for individual resources.


Refresher: What is Exceedance?

Refresher: What is Exceedance?

Blended Portfolio: "Diversity Benefit"

"The wind is always blowing somewhere." Looking at exceedance on a blended portfolio basis can provide substantial "diversity benefits" when considering the different profiles across wind regions, on-shore / off-shore, etc.

- Wind Blend = 33% Onshore, 33% Diablo Offshore, 33% Humboldt Offshore
- Renewable Blend = 50% Solar, 25% Onshore Wind, 12.5% Diablo, 12.5% Humboldt Offshore

Note: Illustrative only; IRP Clean System Power profiles used for lack of historical data.

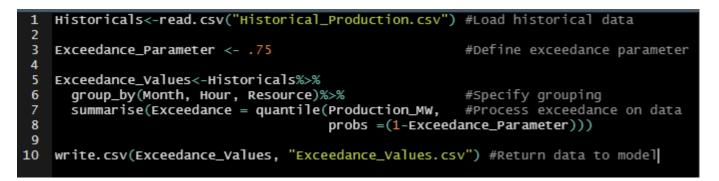
Resource-Specific Exceedance: Easy as 1-2-3

Step 1: Source Data

- > 1-3 Years of Operation: Historical Production
- Pre-COD and < 1-3 Years of Operation: Modeled Production</p>
- Step 2: Execute Exceedance Analysis
 - Load Data into Statistical Software
 - Process Exceedance Function
 - Return Data to Compliance Worksheet
- Step 3: Add Resource and Exceedance to Compliance Worksheet
 - > Add Exceedance Vector (288 Month-Hour Pairs) to Resource Profiles Tab
 - Align Resource and Exceedance Labels
 - Excel to Auto-Populate

Step 1: Source Data

- Process:
 - For existing resource (>3 year since COD), retrieve historical data
 - For planned / new resource (Pre-COD or <3 year since COD), generate modeled data</p>
 - Add resource parameters to NREL's <u>System Advisor Model</u>
 - Load TMY for facility location
 - Simulate Hourly Production
 - Save as .csv file


XAM 2020.11.29						- 0	×
File 🗸 🕂 Add Untitle	ed 🗸						Hel
Photovoltaic, Single owner	AC Sizing	Sizing Summary					_
Location and Resource	Number of inverters 54	Namepla	te DC capacity	50,002.219 kWdc	Number of modules	161,220	
Module	DC to AC ratio 1.20	Tot	al AC capacity	41,580.000 kWac	Number of strings	13,435	
Woddie	Size the system using modules per string and strings	Total invert	er DC capacity	42,752.148 kWdc	Total module area	262,949.8 n	n²
Inverter	in parallel inputs below.						
System Design	Estimate Subarray 1 configuration						
Shading and Layout	DC Sizing and Configuration						-
shaung and cayour	To model a system with one array, specify properties f parallel to a single bank of inverters, for each subarray					nnected in	
Losses	parallel to a single bank of inverters, for each subandy	, encer enable and spi	any a number o	r strings and other proper			
Grid Limits	-Electrical Configuration	ubarray 1	Subarray 2	Subarray 3	Subarray 4		
Lifetime and Degradation		always enabled)	Enable	Enable	Enable		
Lifetime and Degradation	Modules per string in subarray	12		_	_		
System Costs	Strings in parallel in subarray	13,435					
Financial Parameters	Number of modules in subarray	161,220					
	String Voc at reference conditions (V)	772.8					
Revenue	String Vmp at reference conditions (V)	656.4					
Incentives							
Depreciation	-Tracking & Orientation						
Depreciation	Aziniuun nit -	Fixed					
	Vert) 1 Axis) 2 Axis					
	W E C	Azimuth Axis					
Simulate >) Seasonal Tilt					
Parametrics Stochastic		Tilt=latitude					
	Tilt (deg)	30					
P50 / P90 Macros	Azimuth (deo)	190					

SAM 2020.11.29							-	×
File 🗸 🕂 Add 🛛 untitle	d 🗸							 Hel
Photovoltaic, Single owner	Summary Data tables	Losses	Graphs	Cash flow	Time series	Profiles	Statistics	
Location and Resource	Copy to clipboard Save as C			ar all		1101100	otatiotreo	
Module	Q Search	Lifetime Hourk						
Inverter	Single Values Monthly Data		em power gene (kW)	rated				
System Design	⊕ Matrix Data	1		2.5987				
Shading and Layout	 Annual Data Hourly Data 	3 4	-1	2.5987				
Losses	⊖ Lifetime Hourly Data ☐ AC wiring loss (kW)	5	-13	2.5987				
Grid Limits	Array POA beam radiation after :	7	-1	2.5987				
Lifetime and Degradation	Array POA front-side total radiat	8 9	1	2.5987 2807.1				
System Costs	Array POA front-side total radiat	10 11	3.	532.62 206.23				
Financial Parameters	Array POA radiation total after re Array POA rear-side total radiatic	12 13		564.17 2075.2				
Revenue	DC power loss due to snow (kW) Electricity from grid (kW)	14 15		3372.8 7276.7				
ncentives	Electricity to grid (kW) Inverter DC input power (kW)	16 17		7577.7 005.38				
Depreciation	Inverter MPPT 1 Nominal DC vol Inverter clipping loss AC power I	18		2.5987				
	Inverter clipping loss DC MPPT v Inverter efficiency (%)	20	-13	2.5987				
	Inverter night time loss (kW) Inverter power consumption loss	21 22	-13	2.5987				
Simulate > 📃	Inverter thermal derate DC powe Inverter total power loss (kW)	23 24	-13	2.5987 2.5987				
Parametrics Stochastic	Subarray 1 Angle of incidence (d	25 26		2.5987				
P50 / P90 Macros	Subarray I Angle of incidence M V	27		2.5987				

Step 2: Process Exceedance

Process:

- > Load the data into any statistical program (R, Python, Stata, SQL, etc etc)
- > Define the exceedance parameter
- Group the data (month-hour pairs)
- Execute a quantile function
- Save as .csv

Requires: Ten lines of code, four function calls, milliseconds of run time

Step 3: Add to Compliance Spreadsheet

Process:

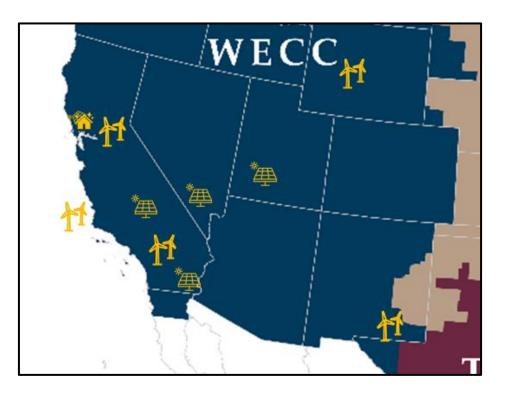
- Load the exceedance .csv
- > Highlight column of month-hour exceedance pairs
- Copy-paste to "Resource Profiles" tab in compliance worksheet
- ➤ Label as "Solar Resource 1", e.g.
- Add "Solar Resource 1" to "Resources" tab
- Pre-populated index-match function will add resources to slice compliance model

1	Α	В	С	D	E	F
1	Month	HE	Solar Resource 1	Solar Resource 2	Wind Resource 1	Wind Resource 2
2	1	1	0	0.254283788	0.512162906	(
3	1	2	0	0.178576851	0.518423119	(
4	1	3	0	0.113090638	0.700351924	(
5	1	4	0	0.066401483	0.81843301	(
6	1	5	0	0.043453705	0.790333112	(
7	1	6	0	0.034661454	0.746211783	(
8	1	7	0	0.016880881	0.684935956	(
9	1	8	0.028934387	0.002978505	0.529341072	(
10	1	9	0.35808335	0.011815367	0.446659555	(
11	1	10	0.581414056	0.06058915	0.527997176	0.003804124
12	1	11	0.667013003	0.120124425	0.330243542	0.002317431
13	1	12	0.688917608	0.154868372	0.125230419	(
14	1	13	0.683710248	0.162814613	0.042397189	(
15	1	14	0.669268889	0.150564643	0.102352769	0.003224665
16	1	15	0.62577088	0.137216584	0.162548628	0.0327772
17	1	16	0.523691165	0.131868308	0.217883202	0.027453746
18	1	17	0.196443673	0.167048828	0.230367684	0.00856307
19	1	18	0	0.23649745	0.324969258	0.004103341
20	1	19	0	0.290321508	0.253977901	0.01237802
21	1	20	0	0.30859638	0.430491698	0.010516512
22	1	21	0	0.296178854	0.729218643	0.008987361
23	1	22	0	0.274340185	1	0.002220353
24	1	23	0	0.265554661	1	(
25	1	24	0	0.248246402	1	(

Administrative Considerations and Oversight

> Who Does the Analysis?

- Option 1: Developers / LSEs perform analysis and provide attestation to CPUC with resource parameters and outputs
- Option 2: Developers / LSEs provide resource parameters to CPUC and CPUC staff executes analysis using <u>NREL Python wrapper</u>
- > Considerations:
 - Option 1 requires developers and LSEs to confirm modeling seems consistent with reality, but may introduce "too many cooks" errors
 - > Option 2 adds staff pressure on Energy Division but can be automated
 - > Both approaches should involve benchmarking to use outliers to identify errors

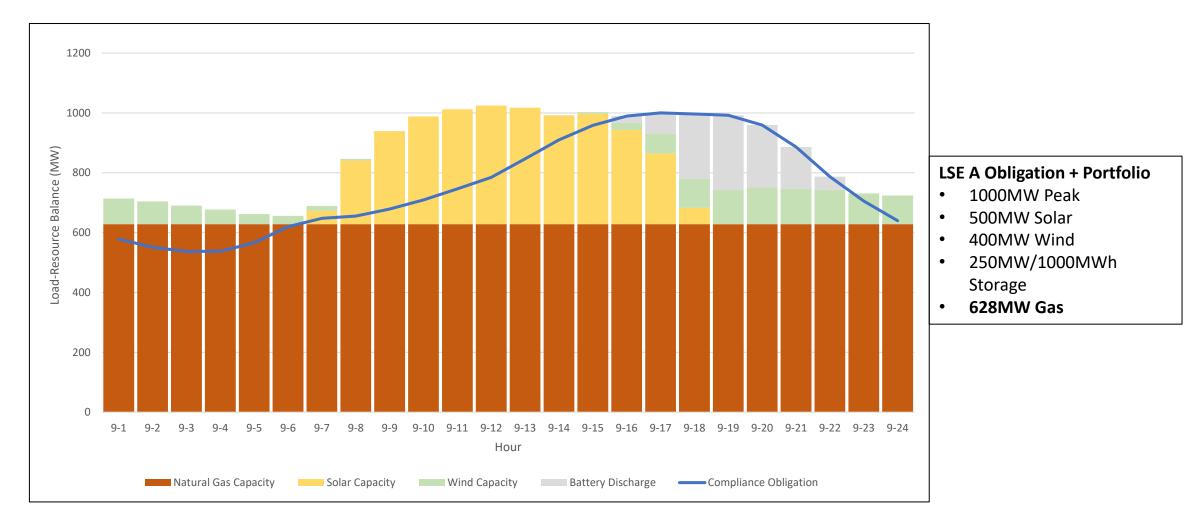

> Which Model(s) Should be Permitted?

- System Advisor Model is a free-to-use tool from NREL, well-vetted, and strong support community
- Alternatives should be vetted with stakeholders consistency and "realism" should guide vetting process, e.g. alignment of weather inputs and consideration of "bad days"

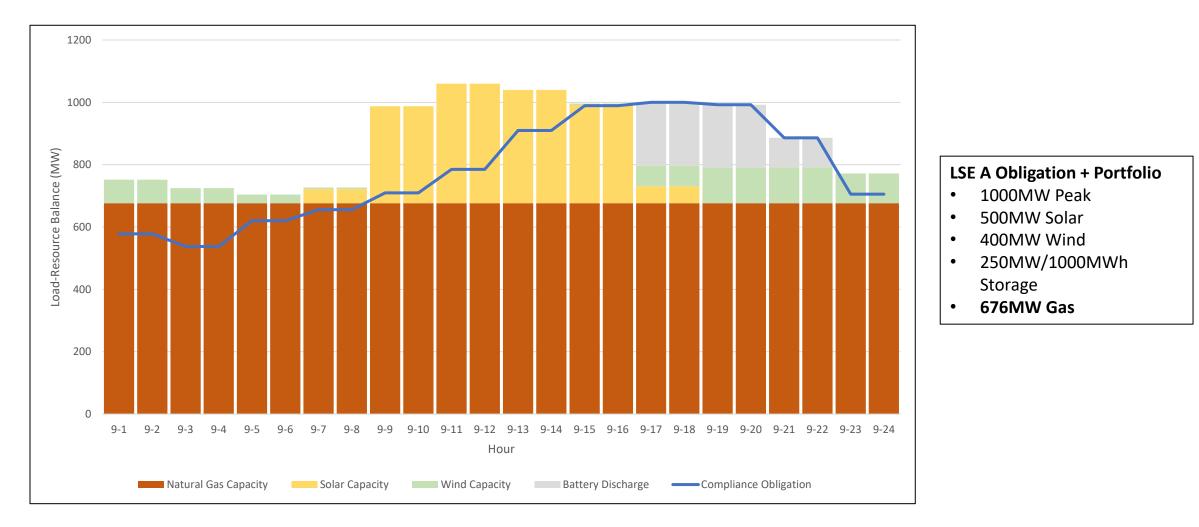
NP

Recap: Resource-Specific Exceedance

Each of these resources has a unique production profile.

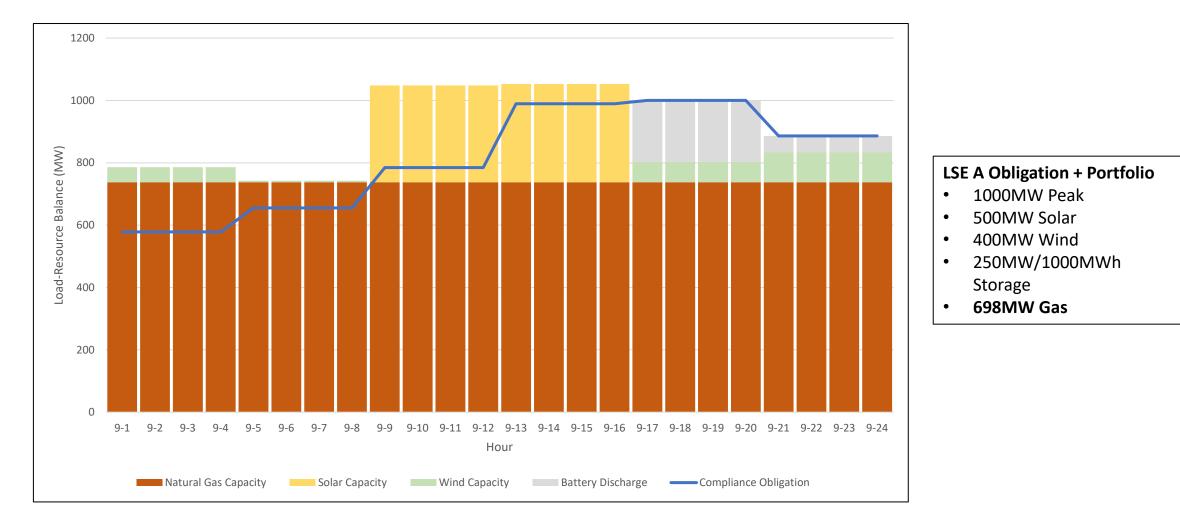

RA value should recognize beneficial locations, technologies, and other developer and LSE investment choices.

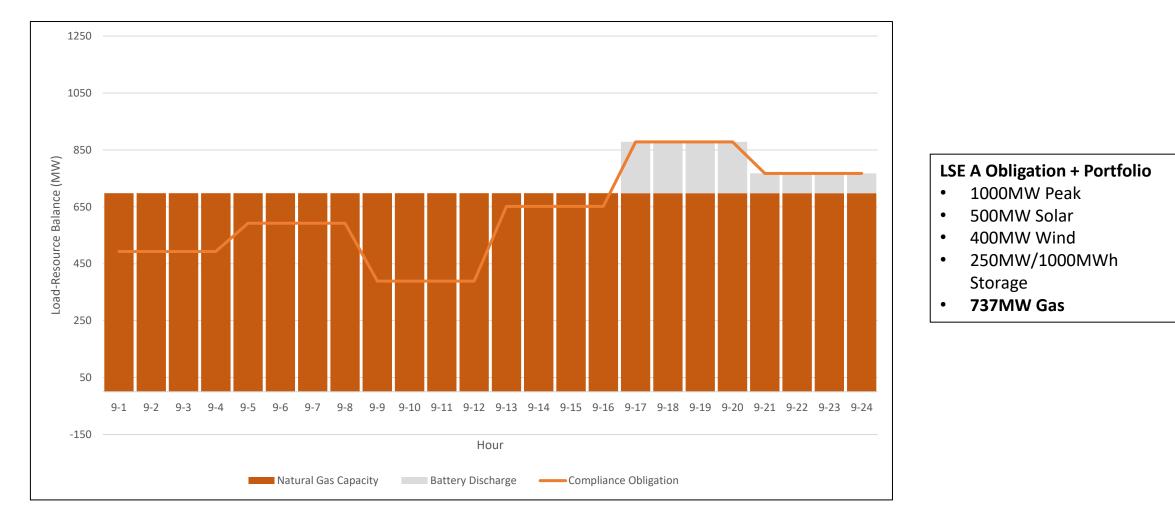
Appendix: Hourly Counting in September



1-Hour / 24-Slice (September)

NP


2-Hour / 12-Slice (September)


4-Hour / 6-Slice (September)

NP

4-Hour / 6-Slice + Netting (September)

NP

QUESTIONS AND DISCUSSION

Nick Pappas **NP Energy** <u>Nick@NPEnergyCA.com</u> 925-262-3111

10/20/2021 CPUC RA Reform Workshop

