Resource Adequacy Reforms: Structure & Counting Issues for Solar

Presentation from SEIA – LSA – Vote Solar

CPUC Docket R. 19-11-009 / R. 21-10-002

Tom Beach Crossborder Energy

November 3, 2021

The Resource Adequacy Values of Solar

- I. Energy: low-cost, clean source of energy to fill storage
 - Added energy for storage from DC-coupled hybrids
- 2. Capacity: output in the solar "tail" from 5p-9p
 - Especially in the summer months (June-Sept)
 - These are the hours with almost all of the positive LOLP/EUE.
- 3. Intrinsic value: net load peak < gross load peak, due to solar
- 4. Portfolio effects
 - Narrow net load peak can be served with shorter-duration storage
 - More wind generation and exports at the later net load peak
 - Midday solar avoids the need to run gas plants until late afternoon

RA Proposal from SEIA – LSA – Vote Solar

- Adopt hourly slices, monthly showings
- Use 50% exceedance solar output in each slice, in all hours
 - On-peak: 5p to 9p
 - Off-peak: all other hours
- Benchmark the exceedance for on-peak hours to the ELCC
 - Current average solar ELCC supports a 50% exceedance for solar in these hours
- Counting rule for hybrids build on the current "additive" approach
 - Storage component
 - Energy the MWh that can be stored each day, including losses
 - Capacity flexible up to the max hourly discharge capacity, limited by the energy stored
 - Solar component
 - Solar output less the amount needed to fill storage (including losses)
 - Use DC output for DC-coupled storage, adjusted for inverter losses

Slice size: Impact on Solar of 4-hour vs. I-hour Slices

Slice size: Impact on Solar of 4-hour vs. I-hour Slices (3)

Solar Receiving RA Credit, as a Percentage of Average Hourly Solar Output

Doriod	Slice Size	Exceedance							
Periou	Silce Size	50%	75%						
	1 – hour	103%	91%						
2020 Annuai	4 – hour	93%	71%						
	1 – hour	101%	89%						
2020 August	4 – hour	89%	72%						
	1 – hour	102%	94%						
ZUZI August	4 – hour	91%	75%						

Exceedance for Energy

- SEIA/LSA/VS propose use of P50 (50% exceedance) for solar
- Little difference in P50 and P25 (75% exceedance) for solar
 - Especially in the summer months (June-September).
- Substantial excess midday capacity
 - 250,000 MWh above load forecast in September 2021
 - Storage charging < 10,000 MWh per day today
 - Variation in daily solar energy from P50 (50% exceedance) is no more than 20,000 MWh on high-demand summer days.
- All hours except net load peak hours of 5p-9p
- 50% exceedance avoids the portfolio/diversity issues raised by higher exceedance values.

Range of CAISO Solar Output Based on 50%/75% Exceedance

• PG&E modeling of 2018-2019 CAISO data

CAISO Solai	AISO Solar Output at 75% Exceedance as a Percentage of Solar Output at 50% Exceedance (Median)													
HE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC		
7		8%		40%	78%	92%	80%	74%	50%		45%			
8	76%	72%	65%	75%	89%	94%	82%	92%	82%	71%	77%	70%		
9	78%	80%	77%	88%	85%	96%	84%	88%	92%	87%	80%	75%		
10	81%	78%	80%	86%	85%	98%	90%	93%	95%	90%	88%	71%		
11	86%	84%	85%	88%	88%	98%	91%	95%	96%	89%	88%	72%		
12	84%	85%	83%	90%	88%	98%	93%	96%	94%	93%	90%	79%		
13	82%	82%	85%	90%	88%	98%	91%	96%	94%	92%	87%	78%		
14	82%	80%	84%	89%	86%	98%	92%	95%	94%	91%	84%	81%		
15	72%	80%	78%	87%	87%	97%	93%	94%	93%	89%	77%	69%		
16	58%	72%	70%	84%	87%	97%	92%	92%	94%	90%	72%	64%		
17	55%	67%	64%	86%	87%	95%	90%	90%	90%	88%	62%	52%		
18		61%	26%	81%	87%	94%	88%	89%	77%	70%				
19			1%	75%	84%	90%	83%	85%	60%	10%				
20				35%	78%	82%	81%	46%						

Exceedance for Net Load On-Peak Hours (5p-9p)

• 5p-9p are the hours with virtually all of the LOLH/EUE

From E3 RECAP results, 2022 ACC Workshop slides, at Slide 25.

Heat Map of LOLH Based on California, 2019

0

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
1																								
2																								
3								•					•	•	•	•		•			•	•		•
4							•	•	•				•	•	•	•		•		٠Q	10/			÷
5																				J	I. /	0.01	IOSS-	01-
6								•	•				•		•	•				ba	d hou	rs in	REC	ΆP
7	+						•	•						•		•		•	0.01	00	cur ir	Sep	temb)er
8								•								1		_	0.04				•	•
9							•	•	•				•	•		· ·	0.01	0.25	0.33	0.18	0.12	0.01	•	
10							•	•						•			•	0.03	0.01	•	·	÷	•	
11	+						•	•						•		•		•			•	•	•	
12	•				•		•	•	•	•			•		•	•	•	•	•		•	•	•	•

• Principle: use an exceedance % benchmarked to the <u>average</u> ELCC

Exceedance for Net Load Peak Hours (5p-9p) - Solar

• SEIA/LSA/VS propose use of P50 (50% exceedance) for solar

Counting rule for hybrids

- Build on "additive" approach adopted in D. 20-06-031
- Storage component
 - Energy determine the MWh that can be stored each day, including losses, by two hours before the net load peak. Use DC output for DC-coupled storage.
 - Counting rule: flexible up to the maximum hourly discharge capacity, use-limited by the amount of energy stored.
- Solar component
 - Counting rule: solar output less the output needed to fill storage by two hours before the net load peak.
 - Use DC output for DC-coupled storage, adjusted for inverter losses.