# Slice of Day Recap Workshop





### **PG&E Objectives for Recap Workshop**

- Present full slice-of-day proposal
- Highlight areas that still require further development

### Principles as directed by the CPUC in D.21-07-014 issued on July 15, 2021:

- 1. Balance a Reliable Electrical Grid with Minimizing Costs to Customers
- 2. Balance Addressing Hourly Energy Sufficiency with Advancing Environmental Goals
- 3. Balance Granularity in Meeting Hourly Needs with Simplicity and Transactability
- 4. Implementable in the Near-Term (2024)
- 5. To be durable and adaptable to a changing electric grid



# Menu of Framework Options

| Proposal<br>Component | Potential Options                                                        |                                           |
|-----------------------|--------------------------------------------------------------------------|-------------------------------------------|
| Slice Structure       | 1 Hour (24 slices), 4 Hours                                              | (6 slices), 12 Hours (2 slices)           |
| Seasons               | 2 Seasons, 3 Seasons                                                     | s, 4 Seasons, 12 Seasons                  |
| Showings              | Seasona                                                                  | al, Monthly                               |
|                       | Solar/Wind: ELCC*, Exceedance, ELNR                                      | Hydro: Existing, ELCC*, alt. exceedance   |
|                       | Thermal: Pmax, Ambient Derates, UCAP                                     | DR: LIP, ELCC*, LIP-informed ELCC*        |
| Resource Counting     | <b>Storage:</b> Pmax, ELCC*, exceedance, UCAP                            | Imports: Contracted amount (non-specific) |
|                       | Hybrid: Existing, numerous others                                        | Non-dispatchable: Existing, exceedance    |
|                       | Single NQC, Multiple NQC, Resource-dependent                             |                                           |
| Charging Requirement  | Yes, No                                                                  |                                           |
| MCC Buckets           | Yes, No, Cap on use-limited resources                                    |                                           |
|                       | 1 in 2, 1 in 5, 1 in 10                                                  |                                           |
| Load Forecast         | Gross Load, Net Load                                                     |                                           |
|                       | Max hourly values, worst day values                                      |                                           |
| LSE Allocation        | Existing applied to slice, top-down, bottom-up, shaped by customer class |                                           |
| PRM                   | 15% , 17.5%, LOLE Determined                                             |                                           |
| Unbundling            | <b>Slices</b> : Yes, No                                                  | Requirements: Yes, No                     |

\*Note: ELCC has additional consideration of whether it is average or incremental



### **PG&E Recommendation**

## **PG&E recommends supporting a 24 Slice framework**

| Proposal<br>Component | Potential Options                                      |                            |  |
|-----------------------|--------------------------------------------------------|----------------------------|--|
| Slice Structure       | 1 Hour (                                               | (24 slices)                |  |
| Seasons               | 12 Se                                                  | easons                     |  |
| Showings              | Seasona                                                | Seasonal, Monthly          |  |
|                       | Solar/Wind: Exceedance                                 | Hydro: Existing            |  |
|                       | Thermal: Pmax w/ Ambient Derates DR: LIP-informed ELCC |                            |  |
| Resource Counting     | Storage: Pmax Imports: Contracted amount (non-specific |                            |  |
|                       | <b>Hybrid:</b> Existing w/ exceedance for excess       | Non-dispatchable: Existing |  |
|                       | Resource-dependent                                     |                            |  |
| Charging Requirement  | Yes                                                    |                            |  |
| MCC Buckets           | No, but cap on DR                                      |                            |  |
|                       | 1 in 2                                                 |                            |  |
| Load Forecast         | Gross Load                                             |                            |  |
|                       | Max hourly values                                      |                            |  |
| LSE Allocation        | Existing applied to slice                              |                            |  |
| PRM                   | LOLE Determined                                        |                            |  |
| Unbundling            | Slices: No Requirements: No                            |                            |  |

4

# Framework Structure: <u>Slices</u>

| Component       | PG&E Recommendation |
|-----------------|---------------------|
| Slice Structure | 1 Hour (24 Slices)  |

### Framework Structure Rationale

Slice Structure

PGSF

- Large variation in renewable generation and load if slices are greater than an hour
- Hourly framework eliminates "over-procurement" inherent in multi-hour slices
- Simplifies resource counting by avoiding slice "mismatch" for storage, imports, and DR
- Obviates the net vs. gross issue
- More durable framework, as there is a reduced need to redefine slices in the future
- SCE tool demonstrated 24-hour showings to be administratively workable

## Framework Structure: <u>Seasons and Showings</u>

| Component | PG&E Recommendation          |
|-----------|------------------------------|
| Seasons   | 12                           |
| Showings  | Annual + Monthly or Seasonal |

### Framework Structure Rationale

- Seasons
  - Months vary widely, monthly granularity helps maintain efficiency gains of hourly structure
  - Even in months that are similar at system level problems arise:
    - They are likely to change over time as renewable penetration increases (under a net framework)
    - Individual LSE loads are likely to differ from the system and therefore may not benefit from the same synergies at the system level
- Showings
  - Showings can be done on a monthly or seasonal basis
  - Seasonal showings would reduce administrative burden, but new resources may not be counted for several months
  - <u>Additional development needed</u>: PG&E suggests further discussing showing question in the Multi-Year Workshop

# Resource Counting: Solar, Wind, Dispatchable

| Component                | PG&E Recommendation                                                           |
|--------------------------|-------------------------------------------------------------------------------|
| <b>Resource Counting</b> | <b>Solar/Wind:</b> Exceedance<br><b>Dispatchable:</b> PMax w/ Ambient Derates |

### **Resource Counting Rationale**

- Solar/Wind
  - ELCC is problematic at hourly level
  - Exceedance is less administratively burdensome and more accurately reflects hourly generation profile
  - Exceedance facilitates easier bucketing of resources (e.g. by technology type, geography)
  - ELCC could still be performed in IRP to inform needed resource mix (and potentially as a calibration factor for exceedance level, per solar party recommendation)
  - <u>Additional Development Needed</u>: exact methodology for determining exceedance level; Solar Parties / PG&E both presented promising starts for how to determine the appropriate level

### • Dispatchable

- Pmax with ambient derates accounts for some performance issues
  - A UCAP-type framework could be further refined and implemented later
- Use of historical derate data can present an accurate estimation of QC value
- <u>Energy-limited</u>: Limits required to be observed in hours shown

# **Resource Counting:** <u>Storage</u>

| Component         | PG&E Recommendation                      |
|-------------------|------------------------------------------|
| Resource Counting | Storage: Pmax subject to interconnection |

### **Resource Counting Rationale**

- Reflective of resource Pmax and energy storage capacity
- Pmax allows for full output to be counted, subject to interconnection limits

### Other details

- LSEs will be required to show sufficient capacity to charge storage in other slices
- Additional resource parameters will need to be reported to the CPUC:
  - Energy capacity
  - Round-trip efficiency
  - Discharge limits
  - Interconnection limit
  - Daily cycle limits
- Multiple cycles per day should be allowed if contract language allows for this

# Resource Counting: <u>Hybrid, Hydro, Imports</u>

| Component                | PG&E Recommendation                                                                                           |
|--------------------------|---------------------------------------------------------------------------------------------------------------|
| <b>Resource Counting</b> | Hybrid: Existing w/ Exceedance for excess<br>Hydro: Exceedance<br>Imports: Resource specific, contract amount |

### **Resource Counting Rationale**

- Hybrid
  - Maintaining existing methodology and applying exceedance to excess energy captures storage component while crediting excess energy in the same way as standalone resources
  - It's also administratively simple, as it doesn't require major methodology changes
- Hydro
  - Recently adopted exceedance methodology gives more weight to poor hydro years and can be adapted to an hourly framework easily
- Imports
  - Resource specific imports can use updated counting rules to accurately reflect RA value
  - Non-resource specific imports counted at contract values, subject to RA requirements that resources be at least 4 hours

# Resource Counting: Non-Dispatchable and DR Component PG&E Recommendation Resource Counting Non-Dispatchable: Existing methodology Demand Response: ELCC/LIP

### **Resource Counting Rationale**

- Non-Dispatchable
  - Current NQC methodology can be adapted to hourly
- Demand Response
  - Defer to CEC process to align with ongoing workshop process
    - The RA Reform initiative lacks the bandwidth to study DR counting methodology changes independent of CEC process and still meet the goal to have a reform framework implemented by 2024
  - Multi-day reliability could be addressed by maintaining a DR cap (details TBD)

# Resource Counting: Values Component PG&E Recommendation Multiple NQC Values Variable

### <u>Details</u>

- Values would be captured in a table with 24 entries per month x 12 months
- This would facilitate:
  - Capturing values for variable resources that likely have different values in every hour
  - Static resources that wouldn't vary by hour (value would be the same in each cell of the table)



| Component   | PG&E Recommendation                                      |
|-------------|----------------------------------------------------------|
| MCC Buckets | Remove all buckets except for<br>potentially a cap on DR |

### MCC Buckets Rationale

- 24 slice framework obviates the need for the MCC buckets
- Multi-day reliability events could present a problem for DR, either through program call limitations or customer fatigue
- Applying a cap on demand response (level and application TBD) could ensure the system does not rely too much on DR to meet needs during prolonged reliability events

# **Requirements Recommendation**

| Component           | PG&E Recommendation                                                                                                    |
|---------------------|------------------------------------------------------------------------------------------------------------------------|
| Hourly Requirements | Based on the forecasted maximum value in<br>each hour in each month from the IEPR CAISO-<br>level hourly load forecast |
| Load Forecast       | Gross Load, 1 in 2                                                                                                     |

### **Requirements Rationale**

- Hourly Requirements
  - Using max hourly value in each month will ensure that no unexpected reliability events occur due to failure to properly use forecast data in setting requirements
- Load Forecast

PGCF

- Gross load:
  - Reduces showing complexity associated with net load
  - Facilitates renewable transactions
- 1 in 2 is consistent across other proceedings and presents the greatest likelihood of implementation by 2024

# PRM Recommendation

| Component | PG&E Recommendation |
|-----------|---------------------|
| PRM       | LOLE Determined     |

### PRM Rationale

LOLE analysis is critical to selecting a PRM that will ensure a reliable system

### **Process**

- Level of reliability should be determined by the CPUC
- Other framework elements should be determined before a PRM is determined
- Regular updates should be included to address uncertainties associated with the changing resource mix
- The PRM should be the primary tool for addressing future changes as it allows for the other framework elements to remain consistent and avoid disruption of markets

# **Unbundling Recommendation**

| Component                     | PG&E Recommendation |
|-------------------------------|---------------------|
| Unbundling of Slices          | Νο                  |
| Unbundling of<br>Requirements | Νο                  |

### **Unbundling Rationale**

- Slices
  - Allowing slices to be unbundled would create a complex, difficult to track system
  - Greater penetration of storage will diminish need for unbundling
    - Storage becomes a modular resource that can fill gaps
  - Existing tools like swaps can still be utilized to address load and resource imbalances, albeit at less granular levels
  - Slice-of-day is an improvement over the existing system, which requires the building of resources in prescribed hours, even if those hours don't match an LSE's load

#### Requirements

- Similar issues to those identified above
- In addition:
  - Presents existential question of what it means to serve load
  - Includes additional administrative complexity that is unlikely to be resolved in time for a 2024 implementation
  - Raises questions of whether other attributes should be included (e.g. emissions, RPS)

# Allocation Recommendation

| Component  | PG&E Recommendation       |
|------------|---------------------------|
| Allocation | Existing applied to slice |

### Allocation Rationale

- Existing CEC process is easily adaptable to a slice of day structure
- CEC already produces and allocates requirements for gross load and has indicated a willingness to investigate a similar process at the slice level
- Allows for greater matching of load and supply shapes to meet individual LSE requirements