SCE's Additional LGP Analysis

Resolution E-5230 Workshop #4

April 7, 2023

Energy for What's Ahead[®]

Scope of SCE's LGP Analysis

- 1. Select a circuit, and any 3-phase node on that circuit
 - a. Select 12 or 16 kV circuits with geographic diversity, e.g., San Joaquin Valley, Metro, Coastal, Valley, Inland.
- 2. Define the circuit load profile for two time periods of 12 months each:
 - a. Compile the 576 circuit load profile for time period 1 (2021 Jan-Dec) and the 576 circuit load profile for time period 2 (2022 Jan-Dec)
- 3. Parameters for information only and do not play a role in the analysis:
 - a. Obtain the nameplate amount of generation that has interconnected to the subject circuit during time period 2.
 - b. Obtain the upstream and downstream conductor sizes and ampacities
- 4. Compute the ICA Uniform Gen Static Grid for the selected node for period 1 and period 2; store the results
- 5. For time period 1 and time period 2, create the following ICA-SG profiles (9 profiles for 2 time periods = 18 profiles):
 - a. Create a 288 minimum ICA-SG profile by taking the lowest ICA-SG value for each hour, multiply the profile by 90%
 - b. Create a 144 ICA-SG profile by taking the minimum of the 90% ICA-SG values (profile a.) over every 2-hour window
 - c. Create a 96 ICA-SG profile by taking the minimum of the 90% ICA-SG values over every 3-hour window
 - d. Create a 84 ICA-SG profile by using 90% ICA-SG for 4pm-9pm, use the monthly minimum 90% ICA-SG for other 18 hours each month
 - e. Create a 72 ICA-SG profile by taking the minimum of the 90% ICA-SG values over every 4-hour window
 - f. Create a 48 ICA-SG profile by taking the minimum of the 90% ICA-SG values over every 6-hour window
 - g. Create a 36 ICA-SG profile by taking the minimum of the 90% ICA-SG values over every 8-hour window
 - h. Create a 24 ICA-SG profile by taking the minimum of the 90% ICA-SG values over every 12-hour window (12am- 12pm, 12pm-11pm)
 - i. Create a **12** ICA-SG profile by taking the monthly minimums of the 90% ICA-SG values
- 6. Compare the results for each time period, and each level of granularity (288, 144, 96, 84, 72, 48, 36, 24, 12).
 - a. Risk: Count the number of hours where ICA-SG profile for time period 2 is less than the ICA-SG profile for time period 1.
 - **b. Consequence**: Calculate the percent difference and the magnitude difference (kW) on an hour-by-hour basis. Identify the limiting criteria for each hour where the hourly value from time period 2 was less than the hourly value from time period 1.
 - c. Benefit: Calculate the energy (kWh) and power (kW) delivered over the course of the year for each of the 9 profile types.
- 7. Repeat the process for a different node on a different circuit until one node on at least 5 different circuits are analyzed.

Definitions

- **Risk:** Count of hours where the year 2 LGP value exceeded the coincident year 1 LGP value
- **Consequence:** Severity or magnitude of year 2 hourly LGP value exceeding year 1 hourly LGP value. Shown as a table in the bottom left of the following slides.
- **Benefit:** Quantified as 1) the maximum instantaneous power delivered (kW) over the course of the LGP profile, and 2) the cumulative energy delivered over the course of the 288 profile (kWh) <u>NOT</u> extrapolated to a full year.

Relevant ICA Criteria:

- Steady State Voltage: Amount of generation that can be installed without violating Rule 2 (+/- 5% of nominal)
- Voltage Variation/Fluctuation: Amount of generation that can be installed without causing 3% variation in Voltage
- Thermal: Amount of generation that can be installed without causing thermal overloads anywhere in the system

Recommendation & Findings

SCE maintains the Joint IOU recommendation for 12 unique LGP values (monthly minimums), repeated 24x each month to produce a 288 profile

- **Risk:** 4 out of the 5 nodes analyzed saw a higher risk of causing an unexpected criteria violation for all profiles with more than 12 LGP values. One node (TERM_16664551_PESO) had a slightly lower risk associated with the 84-point profile, likely due to one zero value in the ICA results
- Consequence: In all cases, the severity increased as the number of LGP values increased
 - Over 25x increase (6,213 kW) when considering cases with one or more zeros (TERM_226139488_BAUXITE)
 - Over 2x increase (399.3 kW) when excluding nodes with one or more zeros (TERM_55968555_JUDSON)
- Benefit: As expected, peak instantaneous **power** (kW) and cumulative **energy** (kWh) increased as the number of LGP values increased
- The limiting criteria varied by node and number of LGP values, however, Voltage Variation and Thermal were the most common limiting criteria

JUDSON_12KV Net Historical Load

TERM_55968555_JUDSON Limiting Studies

TROPICO_12KV Net Historical Load

TERM_39576268_TROPICO Limiting Studies

Energy for What's Ahead®

PESO_12KV Net Historical Load

TERM_16664551_PESO Limiting Studies

Energy for What's Ahead[®]

9

SLALOM_12KV Net Historical Load

TERM_28094826_SLALOM Limiting Studies

BAUXITE_16KV Net Historical Load

TERM_226139488_BAUXITE Limiting Studies

Appendix

Energy for What's Ahead®

Volt-VAR Curves

Volt-VAR Curve in SCE's Reply to CALSSA Protest of 4824-E-B

Volt-VAR Curve for Existing Inverter-based DER in CYME

Volt/VAr-Curve Voltage Setpoints V2 and V3	Voltage Setpoint	Voltage Value	Reactive Setpoint	Reactive Value	Operation		Voltage Setpoint	Voltage Value	Reactive Setpoint	Reactive Value	Operation
	V1	92.0%	01	30%	Reactive Power injection		V1	92.0%	Q1	30%	Reactive Power Injection
	V2	97.0%	02	0	Unity Power Factor		V2	96.7%	Q2	0	Unity Power Factor
	V2	102.0%	02	0	Unity Power Factor 6 Reactive Power Absorption	- 1-1	V3	103.3%	Q3	0	Unity Power Factor
	v5	105.0%	45				V4	107.0%	Q4	30%	Reactive Power Absorption
	V4	107.0%	Q4	30%		P	10104-000				
	(Hh.2.j)	(Hh.2.j)					(P.2.j)				