

February 18, 2022

Via Electronic Transmission Only

President Alice Reynolds Commissioner Clifford Rechtschaffen Commissioner Genevieve Shiroma Commissioner Darcie Houck Commissioner John Reynolds California Public Utilities Commission

RE: Infrastructure Investment and Jobs Act of 2021 - Federal Funding Opportunities

Dear President Reynolds, Commissioner Rechtschaffen, Commissioner Shiroma, Commissioner Houck, and Commissioner Reynolds:

In accordance with President Reynolds' January 24, 2022 letter regarding Infrastructure Investment and Jobs Act of 2021 – Federal Funding Opportunities, Bear Valley Electric Service, Inc. ("BVES"), provides this letter describing BVES' plan to apply for available federal funding appropriated through the Infrastructure Investment and Jobs Act ("IIJA"). While the United States Department of Energy has not yet established many of the programs or application processes through which applicants can seek federal funding established by the IIJA, based on statutory language, BVES believes that it may qualify for various funding opportunities. BVES provides a summary of its proposed projects for which it plans to seek federal funding in accordance with the IIJA, as well as the relevant sections of the IIJA authorizing such funding, in Attachment A to this letter.

To the extent you have any questions about BVES' proposed projects or plans to obtain federal funding under the IIJA, please do not hesitate to contact me.

Sincerely,

/s/ Paul Marconi

Paul Marconi President, Treasurer & Secretary Bear Valley Electric Service, Inc. Paul.Marconi@bvesinc.com Christine Jun Hammond, General Counsel, CPUC (<u>christine.hammond@cpuc.ca.gov</u>) Simon Baker, Acting Deputy Executive Director for Energy and Climate Policy, CPUC (<u>simon.baker@cpuc.ca.gov</u>) Pata Skala, Director of Efficiency, Electrification, and Pressurement, CPUC

Pete Skala, Director of Efficiency, Electrification, and Procurement, CPUC (pete.skala@cpuc.ca.gov)

Grant Mack, Director of Office of Governmental Affairs, CPUC (grant.mack@cpuc.ca.gov)

Attachment A

BVES Summary of Proposed Projects that may Qualify for IIJA Funding

			Total	
		Period of	Estimated	Applicable Section of
Project	Description	Execution	Cost	IIJA
Advanced	Project establishes a smart grid in the BVES distribution	2023	\$1,604,306	Section 40107(a)
Metering	system. Converts all meters to AMI, installs collector			42 U.S.C. § 17386(b)
Infrastructure	infrastructure allowing for two-way communication to			
(AMI)	collect detailed metering information, and installs full			
	Meter Data Management (MDM) with automated			
	importing via Multispeak, dashboard, customer portal,			
	analytics, customer account, outage mapping,			
	transformer and grid analytics, advanced reporting,			
	disconnect/connect where supported, demand and			
	configurable reads (i.e. calculating TOU reads from			
	interval data).			
Radford Line	Replaces 2.82 circuit miles of high voltage (34 kV)	2022	\$5,958,811	Sections 40101(e)(1)(B),
Replacement	overhead sub-transmission bare conductors in the High			40101(e)(1)(E),
Project	Fire Threat District (HFTD) Tier 3 with a high-			40101(e)(1)(K), and
	performance covered conductor. All wood poles are			40101(e)(1)(L)
	replaced with approximately 78 high strength fire			
	resistant poles (distressed iron). This line was selected			
	for hardening specifically since it is located in a highly			
	and densely vegetated area in the national forest that is			
	very difficult to patrol and monitor; thereby, presenting			
	a great wildfire threat.			

Project	Description	Period of	Total Estimated	Applicable Section of
Covered Wire	Project replaces approximately 18 circuit miles of high	2022	\$6 588 897	$\frac{113A}{\text{Sections } 10101(e)(1)(B)}$
Project	voltage (34 kV) overhead sub transmission have	2022	\$6,786,564	40101(a)(1)(E)
110jeet	conductors in the High Fire Threat District (HFTD) Tier	2023	\$6,900,161	40101(e)(1)(E), $40101(e)(1)(K)$ and
	2 with a high-performance covered conductor over	2024	\$7,199,866	40101(e)(1)(K), and $40101(e)(1)(L)$
	approximately 4 years ending in 2025 Additionally the	2025	\$7,175,800	
	project replaces approximately 80 circuit miles of high	2020	\$5,092,225	
	voltage $(A kV)$ overhead distribution bare conductors in	2027	\$5,072,223	
	the HETD Tier 2 with a high-performance covered	2028	\$5,244,992	
	conductor over approximately 10 years ending in 2031	2027	\$5,402,342	
	This project delivers significant risk reduction wildfire	2030	\$5,304,412	
	threat in the HETD Tier 2	2031	Φ5,751,545	
Bear Valley	Project constructs a 5 MW AC 20 MWh (5 MW over 4	2022-23	\$9,863,928	Sections $40101(e)(1)(H)$
Energy Storage	hours) Lithium-Ion Battery Energy Storage System		\$7,005,720	and $40107(a)$
Project	(BESS) located at BVES's Main Facility in Big Bear			
Tiojeet	Lake CA to enhance system reliability and safety			
	during high fire threat weather resulting in Southern			
	California Edison invoking Public Safety Power Shutoff			
	of sub-transmission lines to BVES resulting in complete			
	or partial loss of supplies. The system would also			
	provide emergency response to other adverse weather			
	conditions, wildfire events, and natural disasters			
	resulting in loss of supplies to BVES service area.			
Substation	The project connects and automates 9 substations to	2023	\$646.985	Sections 40101(e)(1)(C).
Automation	BVES's fiber network and SCADA system over 3 years.	2024	\$666.394	40101(e)(1)(1).
	This will enable BVES to improve safety and resiliency	2025	\$686.386	40101(e)(1)(K), and
	of its grid operations and provide improved service		. ,	40107(a)
	support during high fire threat weather events.			42 U.S.C. § 17386(b)

Project	Description	Period of Execution	Total Estimated Cost	Applicable Section of IIJA
Switch and Field	Connects and automates 28 34 kV and 20 4 kV switches	2023	\$705,834	Sections 40101(e)(1)(C),
Device	to SCADA network over 4 years. This will enable	2024	\$695,765	40101(e)(1)(I),
Automation	BVES to improve safety and resiliency of its grid	2025	\$721,586	40101(e)(1)(K), and
	operations and provide improved service support during	2026	\$749,528	40107(a)
	high fire threat weather events.			42 U.S.C. § 17386(b)
Capacitor Bank	Replaces 24 capacitor banks with automated capacitor	2023	\$341,250	Sections 40101(e)(1)(C),
Upgrade Project	banks connected to SCADA network over 4 years. This	2024	\$324,225	40101(e)(1)(I),
	will enable BVES to improve safety and resiliency of its	2025	\$333,952	40101(e)(1)(K), and
	grid operations.	2026	\$343,971	40107(a)
				42 U.S.C. § 17386(b)
Fuse TripSaver	Connects and automates 160 fuse TripSavers to SCADA	2023	\$195,483	Sections 40101(e)(1)(C),
Automation	network over 4 years. This will enable BVES to improve	2024	\$139,073	40101(e)(1)(I),
	safety and resiliency of its grid operations and provide	2025	\$139,221	40101(e)(1)(K), and
	improved service support during high fire threat weather	2026	\$143,398	40107(a)
	events.			42 U.S.C. § 17386(b)
North Shore	Installs new feeder from Fawnskin Substation that is	2024	\$2,932,505	Sections 40101(e)(1)(B),
Expansion	double circuited along the western mainline that			40101(e)(1)(D),
Project	effectively serves as an express feed to Fawnskin. This			40101(e)(1)(E),
	arrangement allows splitting the load to allow for better			40101(e)(1)(F),
	voltage support and system load expansion.			40101(e)(1)(K), and
	Additionally, sets the system up to at a future date install			40101(e)(1)(L)
	a substation close to Fawnskin by converting one of the			
	circuits to 34 kV.			

Project	Description	Period of Execution	Total Estimated Cost	Applicable Section of IIJA
Partial Safety and Technical Upgrades to Maltby Substation	Installs safety, reliability, and technical upgrades to the Maltby Substation. Replaces overhead regulators with pad-mounted regulators, installs pad-mounted IntelliRupter switches, converts substation to be fully underground and updates substation controls. Installs SCADA and physical security enhancements.	2023	\$1,805,973	Sections 40101(e)(1)(B), 40101(e)(1)(C), and 40101(e)(1)(K)
Partial Safety and Technical Upgrades to Village Substation	Installs safety, reliability, and technical upgrades to the Village Substation. Replaces overhead regulators with pad-mounted regulators, installs pad-mounted IntelliRupter switches, converts substation to be fully undergrounded and updates substation controls. Installs SCADA and physical security enhancements.	2023	\$1,226,642	Sections 40101(e)(1)(B), 40101(e)(1)(C), and 40101(e)(1)(K)
Safety and Technical Upgrades to Lake Substation	Installs safety, reliability, and technical upgrades to the Lake Substation and converts the existing substation from an overhead-type to a fully automated underground and pad-mounted design. Installs SCADA and physical security enhancements.	2023	\$2,214,909	Sections 40101(e)(1)(B), 40101(e)(1)(C), and 40101(e)(1)(K)

		Period of	Total Estimated	Applicable Section of
Project	Description	Execution	Cost	IIJA
Vegetation	Project provides a comprehensive vegetation	2023	\$2,000,000	Section 40101(e)(1)(G)
Management	management process to: (i) ensure that vegetation does	2024	\$2,060,000	
Program	not encroach upon the minimum clearances set forth in	2025	\$2,121,800	
	regulation, measured between line conductors and	2026	\$2,185,454	
	vegetation; (ii) reduce the ignition probability and	2027	\$2,251,018	
	wildfire consequence attributable to "at-risk species"			
	trees, such as trimming, removal, and replacement; (iii)			
	identify, remove, or otherwise remediate trees that pose			
	a high risk of failure or fracture that could potentially			
	strike electrical equipment; and (iv) maintain a			
	centralized vegetation management enterprise system			
	updated based upon inspection results and management			
	activities such as trimming and removal of vegetation.			
Evacuation	Project hardens approximately 500 wood poles per year	2023	\$810,256	Sections 40101(e)(1)(B),
Route Hardening	by installing wire wrap fire protection system on the	2024	\$834,563	40101(e)(1)(E), and
Program	poles along roadways that would be used by residents in	2025	\$859,600	40101(e)(1)(K)
	BVES's service area to evacuate in the event of a	2026	\$885,388	
	wildfire or other disaster.	2027	\$913,774	
Tree Attachment	This project is dedicated to the removal of existing	2023	\$598,988	Sections 40101(e)(1)(B),
Removal Project	distribution line tree attachments in BVES's distribution	2024	\$616,957	40101(e)(1)(E),
	system and it includes costs for replacing tree	2025	\$635,466	40101(e)(1)(F),
	attachments with poles as necessary to safely and	2026	\$654,530	40101(e)(1)(K), and
	reliably route distribution lines and service lines to	2027	\$674,166	40101(e)(1)(L)
	customers, which will improve system reliability and			
	safety and reduce potential fire hazards in the High Fire			
	Threat District Tier 2 and 3 areas. The project will			
	remove approximately 100 tree attachments per year			
	over 5 years.			

Project	Description	Period of Execution	Total Estimated Cost	Applicable Section of IIJA
Install Fault Indicators	This initiative installs over 129 fault indicators (FIs) in the BVES system to support early detection and remediation of circuit faults and reduces crew deployment response time and restoration time.	2022-23	\$526,521	Sections 40101(e)(1)(C), 40101(e)(1)(I), 40101(e)(1)(K), and 40107(a) 42 U.S.C. § 17386(b)