Assessing Methane Emissions from Stations using sUAS

François Rongere, Stephen Ramos January 22nd, 2021

Compressor, Storage and M&R Stations

- PG&E operates:
 - 9 compressor stations
 - 3 underground storage facilities
 - 350 Transmission M&R stations
- They represent 27% of our total emissions as reported to the CPUC under SB 1371

Compressor Station

PG<mark>s</mark>e

Transmission M&R Station

PG<mark>s</mark>e

- Estimate the overall emissions of stations and their subsystems to prioritize maintenance
- Include fugitive leaks as well as emissions through vents
- Measure performance and demonstrate improvements

Using Small Unmanned Aircraft Systems (sUAS)

- Regulated under FAA 14 CFR part 107
 - Less than 55lb
 - Flies under 400 feet
 - Flies slower than 100 mph
 - Within visual line of sight only
 - In uncontrolled airspace
 - Day time only
 - Certified pilot

Methane Sensor

- Initially developed by Nasa for the Curiosity Rover
- Adapted to methane detection and quantification by PRCI and NYSEARCH
- Some characteristics:
 - 10 ppb sensitivity at 1Hz
 - 10 inches long
 - 150g
 - latency less than 200 ms.

Methane light absorption spectrum

Tested on various sUAS

Source: L. Christensen "Fast, Accurate, Automated System to Find and Quantify Natural Gas Leaks" PRCI June 2019

Quantification method

 By flying around a source, concentration enhancements measured downwind are combined with wind speed to estimate emissions

Source: S. Conley et al. "Application of Gauss's theorem to quantify localized surface emissions from airborne measurements of wind and trace gases" Atmos. Meas. Tech., 10, 3345–3358, 2017

Quantification Accuracy

- More data are needed to assess accuracy
- Results from METEC's blind tests provide a first estimate
- As for other mobile systems, quantification of the order of magnitude seems achievable

Source: Arvind P. Ravikumar et al. "Single-blind inter-comparison of methane detection technologies – results from the Stanford/EDF Mobile Monitoring Challenge" Elem Sci Anth, 7: 37, 2019

Application to Stations

Application to Stations

PG<mark>&</mark>E

Application to Stations

2020 Pilot – 22 surveyed facilities

Transmission M&R Stations (10)
Compressor Station (9)

Compressor Station/Storage (3)

- Emergence of high sensitivity sensors adapted to sUAS
- Facilities can easily be surveyed with sUAS under FAA regulation
- Assessment of the whole station and its subsystems
- Quantification techniques help prioritize methane sources

- Confirm prioritization
- Improve survey strategy and productivity
- Operationalize the process
- Improve quantification accuracy
- Automate flights

Thank you

François Rongere <u>fxrg@pge.com</u> Stephen Ramos <u>s3rc@pge.com</u>

