

California Public Utilities Commission SB 1371 – R.15-01-008 Gas Leak Abatement

NGLA - 2021 Template & Reporting Issues Workshop Topics – Compressor Emissions

January 22, 2021

Ed Charkowicz

Safety Policy Division
Risk Assessment & Safety Analytics

Compressor Emissions Problem Statement:

1. Compressor Emissions vary widely and indescrimately, and with only one annual measurement under undefined circumstances there is very little confidence the measurements reflect reasonable approximations of compressor emissions.

Background:

Decrease from Adjusted Baseline (Mscf)						
	2015	Decrease		2019		
Transmission Comp	106,258	(52,102)	(49.0%)	54,156		
Storage Comp	103,909	(76,477)	(73.6%)	27,432		

Background:

Reducing Methane Emissions From Compressor Rod Packing Systems *

	E	conomic	and Envir	onmenta	l Benefits			
Method for Reducing Natural Gas Losses	Volume of Natural Gas				Implementation	Payback (Months)		
	Savings (Mcf/ year)	\$3 per Mcf	\$5 per Mcf	\$7 per Mcf	Cost (\$)	\$3 per Mcf	\$5 per Mcf	\$7 per Mcf
Economic replacement of rings and rods in compressor rod packing	865ª	\$2,595	\$4,325	\$6,055	\$540 ^b	3	2	1
General Assumptions:	1,4000							

^{\$1,620} cost of ring replacement every three years rather than four years (industry average).

^{*} https://www.epa.gov/sites/production/files/2016-06/documents/Il_rodpack.pdf

Background:

Reducing Methane Emissions From Compressor Rod Packing Systems *

Exhibit 3: Economic Replacement Threshold for Packing Rings					
Leak Reduction Expected (scfh)	Payback Period ^a (months)				
55	7				
29	12				
20	18				
16	22				
13 a Assumes packing ring replacement costs of \$100.0000000000000000000000000000000000	27				

a Assumes packing ring replacement costs of \$1,620, \$7.00/Mcf gas, and 8,000 operating hours/year.

^{*} https://www.epa.gov/sites/production/files/2016-06/documents/Il_rodpack.pdf

Federal and State Rules only require once annual measurement *

Federal Rules indicate rod packing replacement within 26,000 operating hours, or 3-years (subject to debate).

State OGR rules require rod packing maintenance (replacement) on cylinders emitting more than 2-cfm. They allow for all compressor cylinders to be measured together for a cumulative measurement threshold. E.G. 6 cylinder compressor may emit up to 12-cfm or 720 cfh.

In 2019 all operators' compressors met threshold requirements.

^{*} According to federal EPA regulations 40 CFR Section 60.5410 More frequent periodic measurements during the year would validate this level of emissions and provide more reliable emission estimates.

Compressor Emissions:

2019 YOY Changes in Weighted Average EF during Pressurized Operations (Scfh):

Transmission Facilities:

Weighted Avg EF				
	2018	2019	Delta	% change
PG&E	249.06	320.11	71.05	28.5%
SDG&E	33.30	82.37	49.07	147.4%
SoCalGas	725.83	61.12	(664.71)	(91.6%)

Storage Facilities:

Weighted Avg EF				
Ops Efs Only	2018	2019	Delta	% change
CVGS	104.81	86.27	(18.54)	(17.7%)
Gill Ranch GS	380.26	343.68	(36.58)	(9.6%)
Lodi GS	241.39	256.61	15.22	6.3%
PG&E	291.48	198.74	(92.74)	(31.8%)
SoCalGas	162.59	23.48	(139.11)	(85.6%)
WGGS	388.58	240.87	(147.71)	(38.0%)

Discussion/Questions:

- > What impacts the accuracy of the measurement?
 - Compressor at full operating temperature vs. cold
 - Ambient temperature and pressure
 - Age of rod packing (immediately after maintenance.
 - Type of measurement device (inherent accuracy)
 - Combination of factors
- > What measurement protocols make sense?
 - Time after start up
 - Recording other factors at time of measurement
 - Frequency

Discussion/Questions:

- Quantification of emissions
 - Hours of operation between measurements multiplied by the prior measurement, or the current measurement
 - Or Average the prior and current measurement multiplied by hours of operation between them.
 - Weighted average measurement
- What to do with outlier measurements?
 - Follow-up measurements? Timing? How many?
 - Should one reading over threshold trigger maintenance?
 - How should extremely low readings be handled? Should they be counted?
 - Is Root Cause Analysis necessary?

Staff Proposal:

- Minimum Quarterly emission measurements of compressor operating modes
- > Establish measurement protocols with stakeholders
- > Report weighted average compressor emissions
- Implement in 2021

Next Steps:

- ➤ Provide Written comments on this issues with observations and suggestions by February 5, 2021
- ➤ If necessary, convene a working group by end of February to reach consensus on measurement protocols.
- > Send data requirement by March 31, 2021.