

DM&S - PIPELINE EF'S: LARGE LEAK DT METHOD; RISK-BASED LEAK SURVEY & UNKNOWN LEAKS

2021 Winter Workshop (R. 15-001-08)— Jan 21, 2021

Decision Tree to Detect Large Leaks & Mitigation Strategy

COLLECT FIELD

DATA

Leverage data collected during routine leak survey DATA ANALYTICS

Algorithms identify leaks with highest probability to be "large" (10 CFH +) **MEASURE SUBSET OF**

LEAKS

Measure ~20% of DM&S leaks detected

PRIORITIZE LARGE LEAKS FOR REPAIR

~2% of DM&S leaks are "large"

BENEFITS

- Directly Measure only ~20% of leaks
- Minimize cost of
 - implementation

Maximize Accuracy

3 of Buried Leak Emission Estimate

Decision Tree (DT) Variables

- » Data is collected at the time leaks are detected and graded
- » Ground-level methane concentration measurements are recorded for each type of surface with elevated methane concentrations
- » Separate threshold values are used for each surface type
- » Leak Flow Rate is later measured if leak meets DT thresholds for any of the 4 defined surface types

Paved (Crack)

Sub-Structures

Leak Flow Rate Measurement

- » System operation validated using controlled releases prior to daily use
- » Standardized Measurement Procedure
- » Identify leak area size/boundaries
- » Plan grid layout (when needed)
- » Perform Surface-Expression/Tarping Flow Measurement process
- » Calculate leak flow rate

New 2020 Data Added to DT Study

- Data added for 92 leaks raising total from 291 to 383 samples
- » 2019/2020 Data Shown side-by-side for:
 - System-Wide Random Sample - "AllDisPilot"
 - 3-District Pilot Study samples - "3DisPilot"
- » New 2020 data sets are very similar to the 2019 data sets

Box Plot of Leak Rates by Sub-Study 2019/2020 3Dis, 2019/2020 AllDis, DT157

SocalGas A Sempra Energy utility®

Distribution Plots for All-District and 3-District Pilot (2019 & 2020 combined)

SoCalGas A Sempra Energy utility®

Bayesian Probabilistic Decision Tree Analysis

- Phase 1 (2019) and Phase 2 (2020) Probabilistic DT model output results for Negatives (True/False, i.e. Not a Large Leak)
 - False Negatives (FN): 1.1% (2019) 0.9% (2020)
 - This is the probability that a leak > 10 SCFH will not meet the DT criteria
 - These are the leaks > 10 SCFH that are missed
 - This is an outstanding result, acceptable by the most-stringent standards
 - True Negatives (TN): 98.9% (2019) 99.1% (2020)
 - This is the probability that a leak <10 SCFH will not meet the DT criteria
 - These are the leaks <10 SCFH that are not measured.
 - 99% confidence these leaks are not large leaks!

Note: These add to 100%. Represents ~80% of system leaks

- Probabilistic DT model output results for Positives (True/False) (i.e. May be a Large Leak)
 - False Positives (FP): 89.7% (2019) 86.6% (2020)
 - This is the probability that a leak < 10 SCFH will meet the DT criteria
 - These are the Grade 2&3 leaks that are measured and found to be < 10 SCFH
 - True Positives (TP): 10.3% (2019) 13.4% (2020)
 - This is the probability that a leak > 10 SCFH will meet the DT criteria
 - These are the Grade 2&3 leaks that are measured and found to be <a>10 SCFH
 - Estimate 2% of Grade 2 & 3 leaks are >10 SCFH

Note: These add to 100%. Represents ~20% of system leaks

Company-Specific Distribution Leaker Emission Factors

- Emission Factors (EFs) derived using a combination of the appropriate bootstrap population leak rate means and the Bayesian Decision Tree error table percentiles (95% confidence)
- » Result of robust methodology, data analysis, and quality data
- » EFs are refined over time as more data is collected and layered on
- » Methodology provides for detection of changes in system leak rates

Situation Number	Field Situation Description	Phase 1 EFs (2019)	Phase 1+2 EFs (2020)	
	Measured methane concentration(s) triggers DT < 10 SCFH		1.96 SCFH	
1	category & leak rate not measured (typical situation)	2.27 SCFH		
	- Use when DT is <u>Not</u> Triggered			
	Measured methane concentration(s) trigger $DT \ge 10$ category &			
	leak flow rate not measured (used for all Hazardous leaks and		7.74 SCFH	
2	when flow rate is not measured)	7.37 SCFH		
	- Use when DT is Triggered			
	No methane concentration(s) or leak rate measurement (used			
3	during implementation period and when data issues arise)	4.30 SCFH	4.21 SCFH	
	- Use when DT data is not available			
	Measured methane concentration(s) trigger DT >10 category &			
Λ	measured leak flow rate is <10 SCFH	Use actual leak flow rate		
4	- Use the actual leak flow rate for each leak measured	measurement		
	Measured methane concentration(s) trigger DT >10 category &			
F	measured leak flow rate is ≥ 10 SCFH	Use actual leak flow rate measurement		
5	- Use the actual leak flow rate for each leak measured			

Company-Specific Emission Factor Research

- » Objective: Develop Company-Specific emission factors for buried Mains and Services
- » Milestones Reached:

SoCalGas A 🎸 Sempra Energy utility®

- Develop Company-Specific DM&S EFs
 - Statistical Random Sample Across Service Territory Completed
 - Develop Large Leak Decision Tree Model Completed
 - 2nd Statistical Random Sample Across Service Territory Complete
- OTD (7.17.d) framework for Company-Specific EFs is in progress, scheduled for completion Q1 2021
- Completed statistical and probabilistic analysis of project data
 - Validation of random direct measurement of system leaks
- » Next Steps:
 - Complete Large Leak DT Implementation (SoCalGas)
 - Continue to refine EFs with new data
 - OTD finalize and publish Company-Specific EF development framework and methodology

INCREASED ANNUAL LEAK SURVEY

Annual Multi-Year Unsurveyed

INCREASED % OF LEAKS DETECTED

OBJECTIVE

 Reduce duration of leaks and number of unknown leaks at lowest cost

Accelerated Leak Survey based on Emissions Risk

- Change leak survey interval of vintage pipe materials to annual due to higher leak rates
- Detect, Prioritize and Repair Large Leaks

RESULTS

- Reduced inventory of Unknown leaks
- Reduced leak duration & emissions from Known and Unknown Leaks
- Provides for More Accurate Emissions Estimates

* Number of leaks are estimated in areas not surveyed in the report year

Leak Survey Maps

ti el		2	*			Exodus un		St	
5 5	C2-1010-36	C3-101-31 Andretti Ave	C3-101-32	C3-101-33	C3-101-34	C3-101-35	C3-101-36	C3-102-31	c
	Reina Rd C2-1010-26	Rei C3-101-21	na Rd C3-101-22	C3-101-23	C3-101-24	C3-101-25	Pembroke Ave	c3-102-21	T
5	^{cally} C2-10,10g1 6d	C3-101-11	C3-191-12	C3-101-13 Dr	The Links Go Course C3-101-14	C3-101-15 ^d	C3-101-16	we C3-102-11	T
- AND	C2-910-66	C3-91-61	C3-91-62	C3-91-63 Hageman Rd	C3-91-64	C3-91-65 Centennial	C3-91-66	Hagen C3-92-61	ian R
	C2-910-56	Jenlee Ave C3-91-51	C3-91-52	C3-91-53	C3-91-54	righ School 403 /r C3-91-55	C3-91-86 ny	we C3-92-51	F
	C2-910-46	C3-91-41	C3-91-42 Baron Ave	C3-91-43	C3-91-44	Granite Falls Dr	Downling C3-91-46	Ave C3-92-41	ſ
Ro	sed &@-910-36	C3-91-31	. 377 G 3-91-32 Gr	eenacres1-33	Northwest Promenade C3-91-34	C3-91-35	C3-91-36 Fru	š tval 63-92-31	Ja
1			573e		Vie -	1	1		

- » Provides breakdown of survey volume for given areas by material category
- Used to group survey activities into geographic areas for work scheduling
- Provides geographic area units for tracking regulatory compliance

Risk-Based Factors Drive Leak Survey Cycle Assignments

- » Pipeline Material factor
 - Driven by PHMSA and CPUC Safety Regulations
 - General minimum survey intervals
 - Pipeline Integrity Risk Management factor
 - Driver for Vintage Plastic Annual Survey
 - SB-1371 Environmental Risk Management factor
 - Driver for Unprotected Steel Annual Survey
 - Vintage Protected Steel Annual Survey
- » Population Density factor

SoCalGas A Sempra Energy utility®

- Driven by PHMSA and CPUC Safety regulations
 - Aka "Business Districts"
- Pipeline Integrity Risk Management factor

Comparison of Leaks to Pipe Materials Ratios

- » Unprotected Steel pipelines represent 17% of the inventory, but accounts for 57% of all pipeline leaks
- » Vintage Plastic pipelines represent 20% of the inventory, but accounts for 32% of all pipeline leaks
- » Modern pipeline materials represent 63% of the pipeline inventory, but contribute only 10% of all pipeline leaks

Gas A 💦 Sempra Ener

Ratio of System Miles to System Leaks

% of Miles % of Leaks

Questions?

Ed Newton Gas Engineering Programs Manager Tel: 213.244.4238 Cell: 213.219.0373 E-Mail: ENewton@SoCalGas.com

SocalGas A Sempra Energy utility®

