Risk Assessment and Mitigation Phase (RAMP) Workshop

I.18-11-006

Southern California Edison Company 12/14/18

Energy for What's Ahead[™]

Today's Agenda

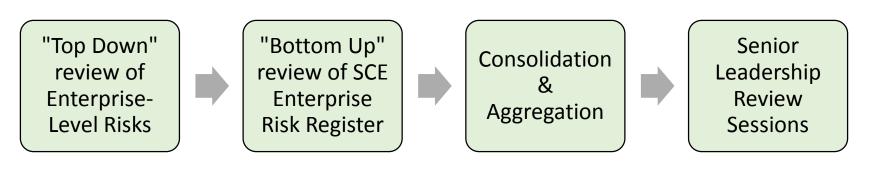
Торіс	Presenter	Time
Safety Moment	SED	10:00 - 10:05
Opening Remarks	SED	10:05 - 10:10
RAMP Overview	Joanne Tran	10:10 - 10:40
RAMP Risk Modeling Overview	Gary Cheng	10:40 - 11:10
Chapter Review: Contact with Energized Equipment	Bob Woods	11:10 - 11:40
Break: Lunch		11.15 1.00
Dreuk: Lunch		11:45 – 1:00
Chapter Review: <i>Wildfire</i>	Brian Chen	11:45 – 1:00 1:00 – 1:30
	Brian Chen Dean Yarbrough	
Chapter Review: <i>Wildfire</i>		1:00 - 1:30
Chapter Review: <i>Wildfire</i> Chapter Review: <i>Employee, Contractor & Public Safety</i>	Dean Yarbrough	1:00 – 1:30 1:30 – 2:00

RAMP Overview

Joanne Tran Director, Risk Management

Energy for What's Ahead[™]

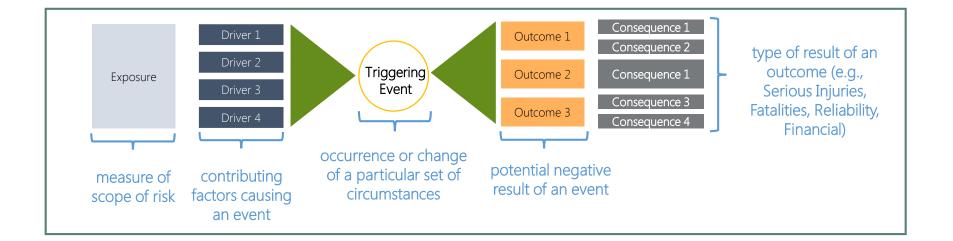
Key Events Leading up to SCE 2018 RAMP Report


- Rulemaking to incorporate a risk-based framework into the Rate Case Plan (R.13-11-006)
- Rate Case Plan modified to include risk-based framework and provide transparent process to make safety of public and employees the top priority in GRC proceedings (D.14-12-025)
 - 2015 GRC supplemental testimony on risk management and safety matters
- **2015** First Safety Model Assessment Application filed, presenting utility risk management practices
- Risk-informed analysis included in 2018 GRC Application using then-available risk planning tools and processes
 - Interim S-MAP decision issued with further guidelines for RAMP reports (D.16-08-018)
- **2017** Collaborative discussions with Commission staff, parties, and utilities to further develop consistent risk evaluation process and tools
- **2018** Development of S-MAP Settlement
 - File 2018 RAMP report

Summary of SCE's 2018 RAMP Report

- RAMP is a "journey" Our first RAMP report represents another step in an evolving risk management program
- Report represents a significant collaborative effort, both with external partners (Commission staff, parties, utilities) and internal staff (over 100 people from nearly every part of company, at every level)
- We built first-generation risk models, and designed an interactive reporting tool to evaluate and report results
- We developed a Multi-Attribute Risk Scoring (MARS) framework consistent with S-MAP settlement principles
- Our RAMP report complies with regulatory requirements
- Our RAMP report marks significant progress toward S-MAP Settlement principles
- We learned a lot and have identified opportunities for continued enhancement

Identification of Top Safety Risks for Inclusion in RAMP


 Top safety risks were determined using a combination of "top down" and "bottom up" review of safety risks

Top enterprise risks were evaluated based on safety impacts *Risks that had reasonable potential for serious injury and/or fatality* Overlapping and duplicative risks were consolidated, and organized according to risk bowtie structure Iterative review process with senior leadership

SCE used the risk bowtie to structure risk assessment

- Risk is defined as exposure to an event that could lead to a negative outcome with one or more risk consequences
- A Bowtie maps the progression of a risk from its drivers to the risk event; and to its outcomes and associated consequences
- A Bowtie helps delineate factors that may lead to the risk event, and the potential consequences that the outcome of the risk event may have

Nine Safety Risks Were Selected for RAMP¹

[1] Seismic events, an identified top safety risk for SCE, are included as a driver within several risk chapters. Nuclear Decommissioning and Transmission / Substation safety risks are addressed qualitatively in appendices.

8

SCE's 2018 RAMP Report Structure

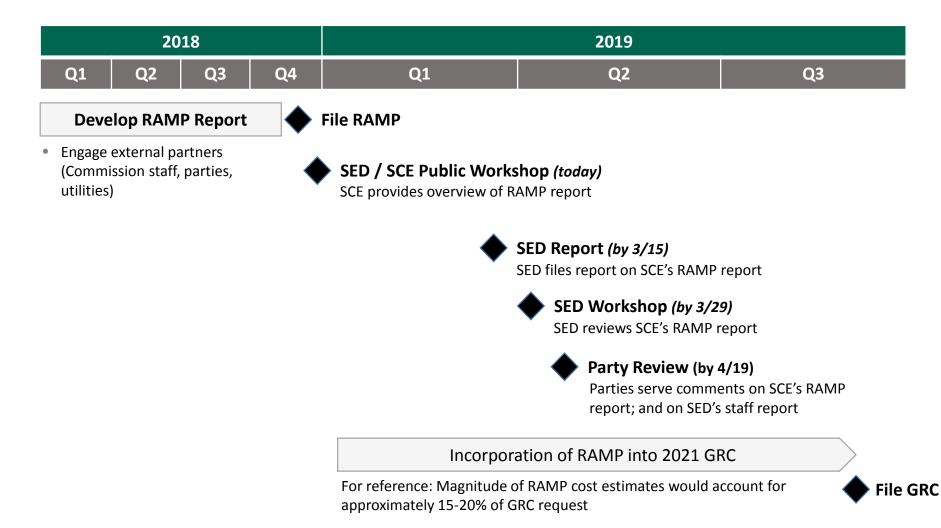
#	Chapter		
1	RAMP Report Overview		Foundational
2	Risk Model Overview		Information
3	Safety Culture & Compensation Policies Tied to Safety		ngonnation
4	Building Safety		
5	Contact with Energized Equipment		
6	Cyber Attack		
7	Employee, Contractor & Public Safety		Quantitative
8	Hydro Asset Safety (including long-term analysis)	No. No. of Concession, No. of Co	Risk Analyses
9	Physical Security		(see next slide for structure)
10	Wildfire (including appendix with long-term analysis of covered conductor)		
11	Underground Equipment Failure		
12	Climate Change		
13	Appendix A: Nuclear Decommissioning		Supplementary
14	Appendix B: Transmission & Substation	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Qualitative Risk
15	Appendix C: Seismic Events		Assessments

9

Background: Activities evaluated in RAMP

- **1. Compliance:** Currently established measure that is modifying or reducing risk, which <u>is</u> required by law or regulation
 - E.g.: General Orders (e.g. 165), FERC and Dam Safety Division (DSOD) annual inspections, Federal & Cal OSHA Requirements
 - Risk modeled in RAMP: **No**
- 2. Control: Currently established measure that is modifying or reducing risk, which <u>is</u> <u>not</u> required by law or regulation
 - E.g.: Overhead Conductor Program
 - Risk modeled in RAMP: Yes
- **3. Mitigation:** A new or incremental measure that will modify or reduce risk
 - E.g.: Covered conductor
 - Risk modeled in RAMP: Yes

SCE evaluated risk reduction and costs of controls and mitigations over the 2018 – 2023 time period.


Structure of Each Top Safety Risk Chapter

Sec	Title	Description
Ι	Executive Summary	Risk overview, scope, summary results
II	Baseline Risk Assessment	Baseline risk background, risk bowtie, and identification and analysis of drivers, outcomes, and consequences
111	Compliance and Controls	Identification of <u>existing</u> compliance and control activities that address risk, 2017 recorded costs, and discussion of how each control affects the risk bowtie
IV	Mitigations	Identification of <u>new</u> mitigation activities that address risk, and discussion of how each control affects the risk bowtie
V	Proposed Plan	Risk reduction, cost, and risk spend efficiency (RSE) of each control and mitigation contained in each Plan, as
VI	Alternative Plan #1	well as for each Plan overall. Discussion of why each Plan was selected as the proposed one or not, including
VII	Alternative Plan #2	execution feasibility, affordability, resource constraints, technological feasibility, etc.
VIII	Lessons Learned, Data Observations, Metrics	Discussion of lessons learned, challenges with data analysis, and potential metrics to measure performance

Lessons Learned and Opportunities for Growth

Topical Area	Lessons Learned
Time Period Evaluated	 SCE evaluated mitigation costs and benefits over the 2018 – 2023 period For mitigations that persist beyond 2023, risk reduction and costs were not fully captured, resulting in artificially lower RSE scores for some mitigations
Risk Impacts Measured	 SCE only measured the immediate primary impacts of a risk As secondary risk impacts were not quantifiable with a reasonable degree of confidence for this RAMP report, the full range of risk impacts presented may be understated
Mitigations in Multiple Chapters	 Mitigations that benefit multiple risks were accounted for separately in each chapter, while full costs included in each chapter This approach potentially understates the risk reduction and RSE of these mitigations by not showing the combined impact across risks
MARS	 MARS framework provides an essential complement to measuring risk from the perspective of natural units However, applying MARS requires concerted efforts to educate internal stakeholders

RAMP Timeline

SCE's 2018 RAMP Report Results

- To access SCE 2018 RAMP report:
 - 1. <u>www.sce.com/applications</u>
 - 2. Click on "SCE 2018 RAMP"
 - 3. Select document
- SCE will furnish the risk models used to perform risk analyses upon request
 - To request the risk models, please send an email to <u>Case.Admin@sce.com</u> and reference the 2018 RAMP report in the transmittal
- Due to the amount of data produced in each model, SCE has developed a more intuitive reporting interface for stakeholders to view and evaluate the inputs and outputs of the risk models, using Microsoft's Power BI tool
 - Only an internet connection is required; no software installation needed
 - To gain access, please fill out form and send to <u>Case.Admin@sce.com</u>:
 - Please refer to Workpapers Ch. 1, pp. 1.5 1.8 (RAMP Power BI Access Form & Signup Instructions)
 - Please refer to Workpapers Ch. 1, pp. 1.9 1.40 (RAMP Power BI User Guide)

RAMP Risk Modeling Overview

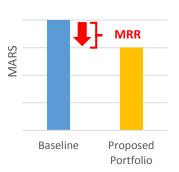
Gary Cheng Senior Advisor, Risk Management

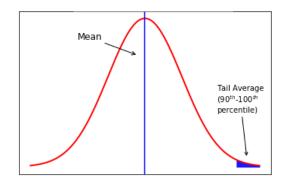
Energy for What's Ahead[™]

The Risk Model Built for RAMP has Advanced our Capabilities and Progress Toward S-MAP Principles

- Risk model quantifies risk, and the effect of risk mitigations, using a probabilistic approach
 - Uses Monte Carlo simulation, a widely used modeling technique
 - Models distributions of data and not single data points
 - Enables use of different distributions to best represent data
- Risk model utilizes Multi-Attribute Value Function principles (referred to as MARS in our RAMP Model) used in S-MAP
- Risk model quantifies the impacts of risk mitigation activities
- Data and assumptions used for risk model inputs are provided throughout the RAMP report and workpapers in a transparent manner

Risk Attributes Measured in RAMP


- While RAMP is initially focused on key safety risks, the risk evaluation and mitigation analysis is "multi-attribute," meaning it quantifies risk and mitigation impacts beyond just safety impacts.
- SCE included four consequence attributes in this RAMP:


	Serious Injuries	Fatalities	Reliability	Financial
Description	The potential impact of a risk event on public or worker safety	The potential impact of a risk event on public or worker safety	The potential impact of a risk event on service reliability	The potential impact of a risk event on a financial consequence to customers and/or third parties
Natural Unit of Measurement	Serious Injuries (#)	Fatalities (#)	Customer Minutes of Interruption (CMI)	Dollars

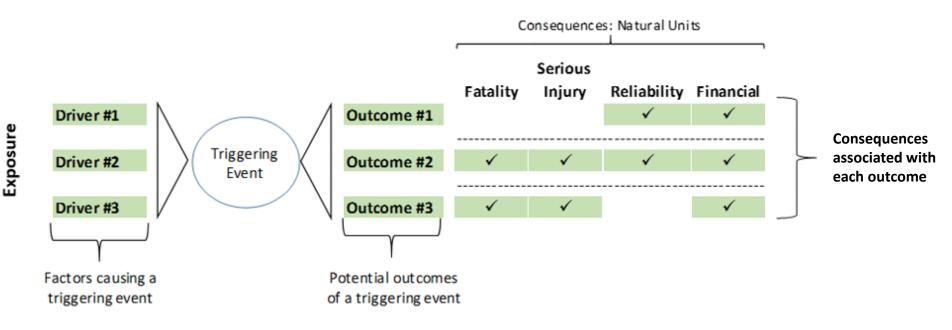
Key Analytical Concepts for Risk Modeling in RAMP

(1) Mitigation Risk Reduction (MRR)

- The Baseline measures risk <u>before</u> controls and mitigations are applied
- MRR is the <u>reduction</u> to risk after controls and mitigations are applied
- The baseline minus the MRR shows the remaining risk <u>after</u> a mitigation or given portfolio of mitigations is applied

(2) Mean vs. Tail-Average

- The model simulates 10,000 scenarios given the parameters of the bowtie
- The mean is the average of all 10,000 simulation results
- The tail-average is the average of the worst 10% of all 10,000 simulation results


(3) Risk Spend Efficiency (RSE)

 Measures the effectiveness of each mitigation or mitigation plan (Proposed, Alternative 1, Alternative 2)

 $RSE = \frac{Baseline MARS - Post Mitigation MARS}{Post Mitigation MARS}$

Expenditures (Millions)

SCE Used the Risk Bowtie to Structure Risk Assessment

- **Baseline Risk:** Quantify the value of each bowtie parameter
 - Driver frequency (# of occurrences per year)
 - Outcome likelihood (% of time triggering event leads to each Outcome)
 - Consequence impacts (in natural units when Outcome occurs)
- Mitigation Effects: Quantify how each control/mitigation affects bowtie parameters
 - Reduce exposure, driver frequency, outcome likelihood, or consequence impacts

Model Architecture Overview

Model Input

Baseline Data

- Exposure
- Driver Frequency
- Outcome Probability
- Consequence Distribution

Mitigations Data

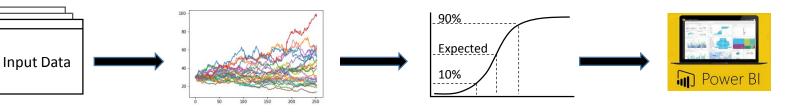
- Cost
- Mitigation Reduction
 Percentages
- Mitigation Exposure
- Mitigation Portfolios

Simulation Engine

Monte Carlo Simulation

- Random draws from driver, outcome and consequence distributions
- Iterate 10,000 times for each year
- Perform above steps for Baseline and each mitigation portfolio

Model Outputs


<u>Output</u>

- Distribution of consequences by outcome in natural units
- Mean and Tail Average
- MARS
- Risk Spend Efficiency for portfolio and mitigations

Reporting

Power Bl

- Cloud-based visualization tool
- Review input and output data

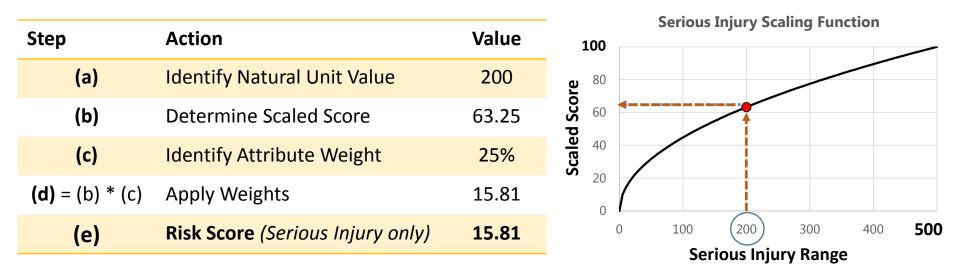
SCE used the @RISK software from Palisade to perform risk modeling and simulation efforts

SCE Developed a Multi-Attribute Risk Score (MARS) Approach for Measuring Risk in RAMP

Why do we need a MARS?

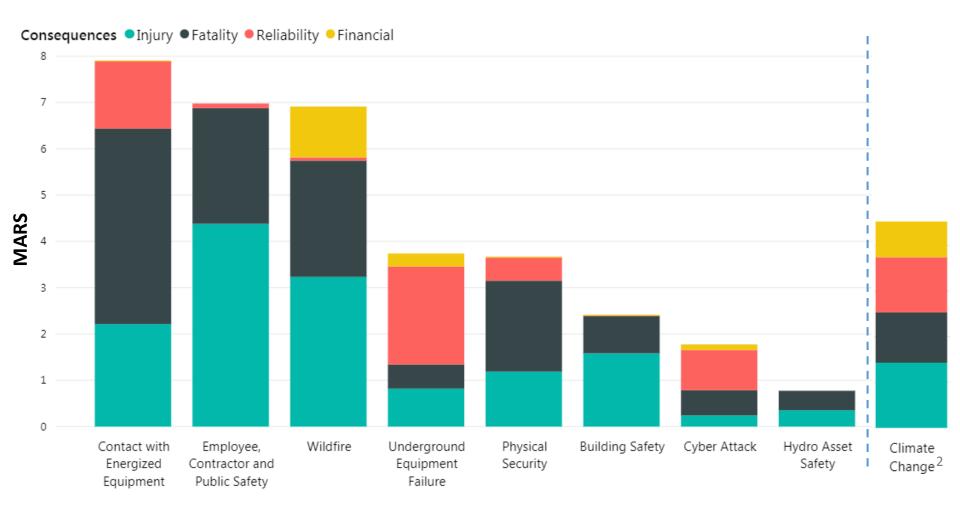
 In order to assess risk across multiple attributes (i.e. Serious Injuries, Fatalities, Reliability, Financial), and to compare risks from different parts of the business (e.g. T&D Asset Risk vs. Worker Safety), we developed an appropriate methodology for comparison.

• MARS is aligned to the Multi-Attribute Value Function in the S-MAP settlement


MARS Framework has Three Primary Components¹

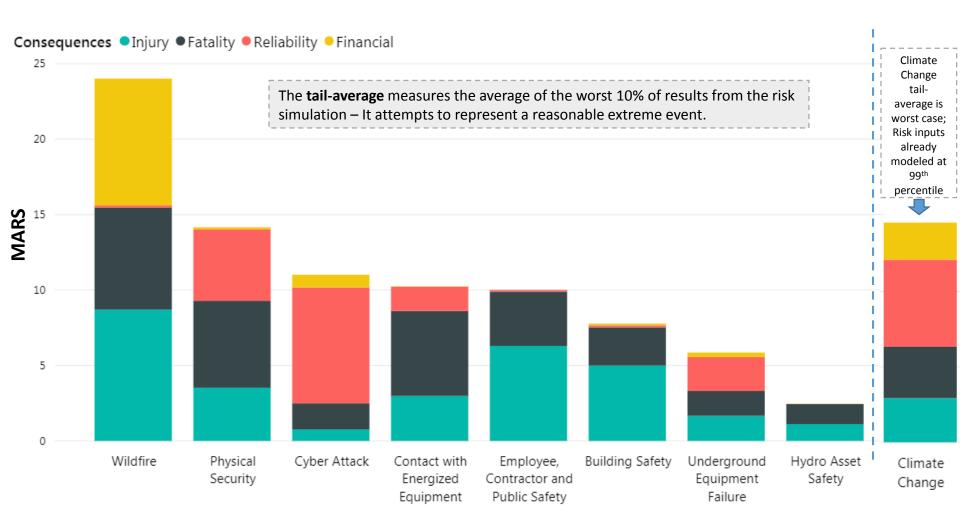
Step 1: Ranges	 Establish a range of potential impacts <u>for each attribute</u> that can accommodate the worst reasonably possible impact for each risk over the course of a year: Fatality: 0 – 100 Serious Injury: 0 – 500 Reliability: 0 – 2 billion CMI Financial: 0 – \$5 billion
Step 2: Weights	 Determine appropriate weights for each attribute that portray importance of each attribute relative to each other Set weights for each attribute equal at 25% (i.e., 50% for safety)
Step 3: Scales	 Develop a scaling function aligns the natural units of each attribute to a generic unit-less range from 0-100 Fatality: Square Root Serious Injury: Square Root Reliability: Linear Financial: Linear

Scaling Functions Used in SCE's 2018 RAMP


	Serious Injury & Fatality	Reliability & Financial
Scale	Square Root	Linear
Rationale	 Steep initial curves reflect low tolerance for serious injuries or fatalities Scales amplify the impact of safety versus the other two attributes (financial and reliability) 	 Maintain simplicity of measurement in absence of data showing relative level of aversion to impacts at the lower and upper bounds of financial range Does not presume a level of customer tolerance to short or long duration outages
Example Curve	Serious Injury Serious Injury O O O O O O O O O O O O O	Reliability The second
	Serious Injury Range	Reliability Range

Illustrative Example of MARS Calculation

- Step (a): 200 represents the expected value from the Monte Carlo simulations in natural units.
- Step (b): X-axis is the range defined for Serious Injuries. The value of 200 serious injuries intersects the square root scaling function at 63.25 (See red dot). 63.25 is the scaled score.
- Step (c): Weight assigned to Serious Injury.
- Step (d): Multiply the scaled score by the weight determined for Serious Injuries .
- Step (e): The Risk Score for Serious Injury.
- This calculation is repeated for each attributes. The summation of MARS values for each attribute results in the overall MARS.
- Maximum MARS is 100


Results: Baseline MARS for the 9 Risks (Mean)¹

[1] Modelled results reflect the annual average mean results over the 2018-2023 time period

[2] Note: Climate Change data inputs modelled for 99th percentile events, and as such, the results are not directly comparable

Results: Baseline MARS for the 9 Risks (Tail-Average)¹

[1] Modelled results reflect the annual average tail-average results over the 2018-2023 time period

Chapter Review: Contact with Energized Equipment

Bob Woods Managing Director, T&D Asset Management and Operational Support

Energy for What's Ahead[™]

<u>Contact with Energized Equipment</u> Overview

Risk Statement	Contact with energized equipment which potentially causes electric shock
In Scope	 Public contact with energized overhead distribution primary conductor, whether that conductor is intact or downed
Out of Scope	 SCE employee or contractor contact with energized overhead conductor (<i>in scope for Employee, Contractor & Public Safety chapter</i>) Public contact during attempted theft (<i>addressed in Physical Security chapter</i>) Contact with substation or transmission equipment or conductor Fire ignition associated with SCE Overhead Distribution Equipment (<i>addressed in Wildfire chapter</i>)
Key Chapter Insights / Takeaways	 SCE has approximately 106,000 conductor miles of primary distribution overhead conductor SCE experiences over 1,000 wire down events per year, and several contact with intact events, due to various factors SCE's Overhead Conductor Program (OCP), which began in 2015, is the primary control to mitigate safety impacts from these events Alternatives were evaluated to analyze benefits of expanded use of covered conductor or undergrounding, and expanded branch line fusing

<u>Contact with Energized Equipment</u> *Risk Bowtie*

Drivers	Triggering Event	<u>Outcome</u>	Consequences
D1 – Equipment Caused:			Serious Injury
D1a – Connector / Splice / Wire			
D1b – Other		O1 – Energized	Fatalities
D1c – Pole		Wire Down	Reliability
D2 – Equipment / Facility Contact:			Financial
D2a – Animal D2b – Metallic Balloon	Wire-Down		
D2c – Other	D2c – Other		
D2d – Vegetation			
D2e – Vehicle		O2 – De-Energized	
D2f – Weather		Wire Down	D - 1' - 1- '1' (
D3 – SCE Work / Operation			Reliability
D4 – Unknown			Financial
D5 – Downstream Equipment			
	Contact		Serious Injury
D6 - Third Party Contact	with Intact	O3 – Intact Energized Wire	Fatalities
	Overhead Conductor	Contact	Reliability
	conductor		Financial

Data sources used to populate baseline risk bowtie parameters:

• SCE internal Wire-Down database, Outage Database and Reliability Metrics (ODRM) system, estimated equipment repair costs resulting from wire-down events

<u>Contact with Energized Equipment</u> Risk Reduction Activities and Mitigation Plans

Name	ID	Description	Prop	Alt 1	Alt 2
Distribution Deteriorated Pole Remediation Program and Pole Loading ProgramCM1Replaces or stubs poles which fail intrusive inspections and/or applied wind-loading measurementVegetation ManagementCM2Prunes and removes trees in proximity to high-voltage lines in accordance with applicable regulationOverhead Detailed Inspections, Apparatus Inspections PreventativeCM3Proactively identifies and remediates overhead asset					
Overhead Detailed Inspections, Apparatus Inspections, Preventative Maintenance	CM3	Proactively identifies and remediates overhead asset conditions in accordance with GO 95, 128, and 165			
Intrusive Pole Inspections and Pole Loading Assessments	CM4	Inspects and assesses existing distribution poles.			
		Reconductoring using bare wire and installation/replacement of branch line fuses			Х
Overnead Conductor Program (OCP)	C1a	Starting in 2021, reconductoring using covered conductor for small, targeted portion (~10%) of OCP work	х		
Public Outreach	lic Outreach C2 Education and outreach of the dangers of contact with SCE equipment		x	Х	х
OCP Utilizing Covered Conductor	M1	OCP reconductoring using only covered conductor		Х	
Comprehensive Branch Line Fusing	M2	Installation of BLFs on unfused branch (tap) lines in non-HFRA ¹		X	Х
Targeted Underground Conversion	M3	Akin to C1a, underground a small portion of OCP work			х
Infrared Inspections	M4	Identifies "hot spots" in splices, connectors, switches, transformers, etc.		Х	х
Wildfire Covered Conductor Program	M5	Reconductoring circuits in HFRA with covered conductor	Х	Х	Х
1] HFRA: High Fire Risk Area	Ann	ual average ARS Mitigation Risk Reduction (MRR)	0.89	0.93	0.93
	•		\$324	\$338	\$345
	•		.0027	.0028	.0027
	Distribution Deteriorated Pole Remediation Program and Pole Loading Program Vegetation Management Overhead Detailed Inspections, Apparatus Inspections, Preventative Maintenance Intrusive Pole Inspections and Pole Loading Assessments Overhead Conductor Program (OCP) Public Outreach OCP Utilizing Covered Conductor Comprehensive Branch Line Fusing Targeted Underground Conversion Infrared Inspections Wildfire Covered Conductor Program	Distribution Deteriorated Pole Remediation Program and Pole Loading ProgramCM1Vegetation ManagementCM2Overhead Detailed Inspections, Apparatus Inspections, Preventative MaintenanceCM3Intrusive Pole Inspections and Pole Loading AssessmentsCM4Overhead Conductor Program (OCP)C1Overhead Conductor Program (OCP)C1Overhead Conductor Program (OCP)C1Overhead Conductor Program (OCP)C1Intrusive Pole Inspections and Pole Loading AssessmentsC1Overhead Conductor Program (OCP)C1Overhead Conductor Program (OCP)M1Infrared InspectionsM4Wildfire Covered Conductor ProgramM51] HFRA: High Fire Risk AreaAnn exp. (me	NameIDDescriptionDistribution Deteriorated Pole Remediation Program and Pole Loading ProgramCM1Replaces or stubs poles which fail intrusive inspections and/or applied wind-loading measurementVegetation ManagementCM2Prunes and removes trees in proximity to high-voltage lines in accordance with applicable regulationOverhead Detailed Inspections, Apparatus Inspections and Pole Loading AssessmentsCM3Proactively identifies and remediates overhead asset conditions in accordance with GO 95, 128, and 165Intrusive Pole Inspections and Pole Loading AssessmentsCM4Inspects and assesses existing distribution poles.Overhead Conductor Program (OCP)C1Reconductoring using bare wire and installation/replacement of branch line fusesOverhead Conductor Program (OCP)C1Starting in 2021, reconductoring using covered conductor for small, targeted portion (~10%) of OCP workPublic OutreachC2Education and outreach of the dangers of contact with SCE equipmentOCP Utilizing Covered ConductorM1OCP reconductoring using only covered conductorOCp reconductoring using only covered conductorM2Installation of BLFs on unfused branch (tap) lines in non-HFRA1Targeted Underground ConversionM3Akin to C1a, underground a small portion of OCP workInfrared InspectionsM4Identifies "hot spots" in splices, connectors, switches, transformers, etc.Wildfire Covered Conductor ProgramM5Reconductoring circuits in HFRA with covered conductorInfrared InspectionsM4Identifies "hot spots" in splices, connectors, switches, trans	NameIDDescriptionPropDistribution Deteriorated Pole Remediation Program and Pole Loading ProgramCM1Replaces or stubs poles which fail intrusive inspections and/or applied wind-loading measurementVegetation ManagementCM2Prunes and removes trees in proximity to high-voltage lines in accordance with applicable regulationOverhead Detailed Inspections, Apparatus Inspections, Preventative MaintenanceCM3Proactively identifies and remediates overhead asset conditions in accordance with GO 95, 128, and 165Intrusive Pole Inspections and Pole Loading AssessmentsCM4Inspects and assesses existing distribution poles.XOverhead Conductor Program (OCP)C11Reconductoring using bare wire and installation/replacement of branch line fusesXOverhead Conductor Program (OCP)C12Starting in 2021, reconductoring using covered conductor for small, targeted portion (~10%) of OCP workXPublic OutreachC2Education and outreach of the dangers of contact with SCE equipmentXOCP Utilizing Covered ConductorM1OCP reconductoring using only covered conductorXInfrared InspectionsM2Installation of BLFs on unfused branch (tap) lines in non-HFRA1Infrared InspectionsM2Reconductoring circuits in HFRA with covered conductorXII MERA: High Fire Risk AreaAnnual average expected value (mean) resultsMARS Mitigation Risk Reduction (MRR) expected value (mean) results0.89	NameIDDescriptionPropAlt 1Distribution Deteriorated Pole Remediation Program and Pole Loading ProgramCM1Replaces or stubs poles which fail intrusive inspections and/or applied wind-loading measurementReplaces or stubs poles which fail intrusive inspections and/or applied wind-loading measurementReplaces or stubs poles which fail intrusive inspections and/or applied wind-loading measurementReplaces or stubs poles which fail intrusive inspections and/or applied wind-loading measurementReplaces or stubs poles which fail intrusive inspections and/or applied wind-loading measurementReplaces or stubs poles which fail intrusive inspections and/or applied wind-loading measurementReplaces or stubs polesReplaces

Contact with Energized Equipment Proposed Mitigation Plan

- Remediates largest volume of overhead circuit miles in the most efficient manner, building upon existing OCP by adding targeted options
- Continues public outreach to customers and contractors
- Adds new efforts to further reduce safety risk, including infrared inspections to proactively target equipment nearing end of life
- Balances risk reduction, execution feasibility, and cost

Proposed Plan		Cost Estimate		Expected Value (MARS)		
ID	Name	(\$M)		MRR	RSE	
C1	Overhead Conductor Program (OCP)	\$	715	3.22	0.0045	
C1a	Overhead Conductor Program (OCP) Utilizing Targeted Covered Conductor	\$	34	0.10	0.0029	
C2	Public Outreach	\$	33	0.42	0.0130	
M4	Infrared Inspections	\$	3	1.04	0.3627	
M5	M5 Wildfire Covered Conductor Program		1,161	0.54	0.0005	
		\$	1,946	5.32	0.0027	

Proposed Plan, including Relation to Alternative Plans

Feasible to Execute	Yes
Technology Constraints	No
Resource Constraints	No
Affordability	1 st
Risk Reduction	3 rd
Risk Spend Efficiency	2 nd

Chapter Review: Wildfire

Brian Chen Principal Manager, Grid Resiliency

Energy for What's Ahead[™]

In Scope	 Ignition associated with SCE overhead distribution equipment
Out of Scope	 Ignition associated with SCE transmission or substation equipment¹ Ignition associated with third parties
Key Chapter Insights / Takeaways	 Focus is on "High Fire Risk Areas" (HFRA), which refers to locations with Tier 2 or Tier 3 designation from most recent CPUC High Fire Threat District maps, and SCE non-tier areas Approximately 35% of our 50,000 square mile service area is in HFRA Proposed risk mitigation plan includes both operational and grid hardening activities

[1] Appendix B of the RAMP report provides further discussion of potential transmission and substation asset safety risks

Drivers	Triggering Event	Outcomes	<u>Consequences</u>	
D1 – Contact from Object:		O1, Wildfire Red Flog	Serious Injury	
D1a – Animal		O1: Wildfire Red Flag Warning in Effect	Fatality	
D1b – Balloons		Greater than 5,000 Acres	Reliability	
D1c – Unspecified		Greater than 5,000 Acres	Financial	
D1d – Vegetation			Serious Injury	
D1e – Vehicle		O2: Wildfire Red Flag	Fatality	
D2 – Equipment / Facility Failure:		Warning in Effect Less	Reliability	
D2a – Capacitor Bank	Ignition Associated with	Than 5,000 Acres	Financial	
D2b – Conductor	SCE in High Fire			
D2c – Crossarm	Risk Area	O3: Wildfire Red Flag	Serious Injury	
D2d – Fuse		Warning Not in Effect	Fatality	
D2e – Insulator		Greater Than 5,000	Reliability	
D2f – Splice/Clamp/Connector		Acres	Financial	
D2g – Transformer				
D2h – Unspecified		O4: Wildfire Red Flag Warning Not in Effect	Serious Injury	
D3 – Wire-to-Wire Contact / Contamination			Fatality	
D4 – Unknown / Unspecified		Less Than 5,000 Acres	Reliability	
- •	'		Financial	

Data sources used to populate baseline risk bowtie parameters include:

•SCE's CPUC reported ignition data (per Decision 14-02-015), Outage Database and Reliability Metrics (ODRM) system, historic red flag warning records, CalFire Redbook data, CalFire investigation reports and press releases, estimated wildfire financial costs from industry, government, and insurance sources

<u>Wildfire</u> Risk Reduction Activities and Mitigation Plans

			<i>S</i>				
	Name	ID	Description		Prop	Alt 1	Alt 2
Comp	Prunes and removes trees in proximity to high-voltage lines in accordance with applicable regulation						
Controls	Overhead Conductor Program	C1	Reconductors using bare and covered conductor		Х		Х
	(OCP)	C1a	Reconductors using bare conductor only			х	
	FR3 Overhead Distribution Transformer	C2	Uses transformers filled distribution transforme	nsformers filled with ester fluid for replacement of overhead tion transformers		Х	х
	Wildfire Covered Conductor Program (and variants)	M1	Deploys covered conductor for SCD ¹ and CFO ²		X		
		M1a	Deploys bare conductor for SCD and covered conductor for CFO			X	
		M1b	Deploys covered conductor for SCD and undergrounds lines for CFO				Х
	RARs ³ & Fast Curve Settings	M2	Install RARs and update relay/settings with fast curve operating settings			Х	Х
S	PSPS Protocol and Support Functions	M3	De-energizes selected distribution circuits during most extreme and potentially dangerous conditions			Х	x
atior	Infrared Inspection Program	M4	Identifies "hot spots" in splices, connectors, switches, transformers, etc.			Х	Х
Mitigations	Expanded Vegetation Mgmt	M5	Expands vegetation management efforts beyond required work			Х	Х
	Microgrids	M6	Deploys generation to provide resiliency and continuity of service				Х
	Enhanced Situational Awareness	M7	Deploys weather stations, HD cameras, high resolution weather model, and a computing platform for fire potential index modeling			Х	х
	Fusing Mitigation	M8	Installs or replaces current limiting fuses on branch circuits			Х	Х
	Fire Resistant Poles (and variants)	M9a, b,c	Installs fire-resistant composite poles commensurate with deployment of covered conductor, where existing poles require replacement		Х	Х	х
	 SCD: Short Circuit Duty CFO: Contact from Object RAR: Remote-Controlled Automatic Reclosers 		Annual average	MARS Mitigation Risk Reduction (MRR)	1.3	1.2	1.3
			expected value	expected value Cost (\$M)		\$303	\$1,037
			(mean) results over 2018-2023		\$343 0027	•	
				Risk Spend Efficiency (RSE)	.0037	.0039	.0013

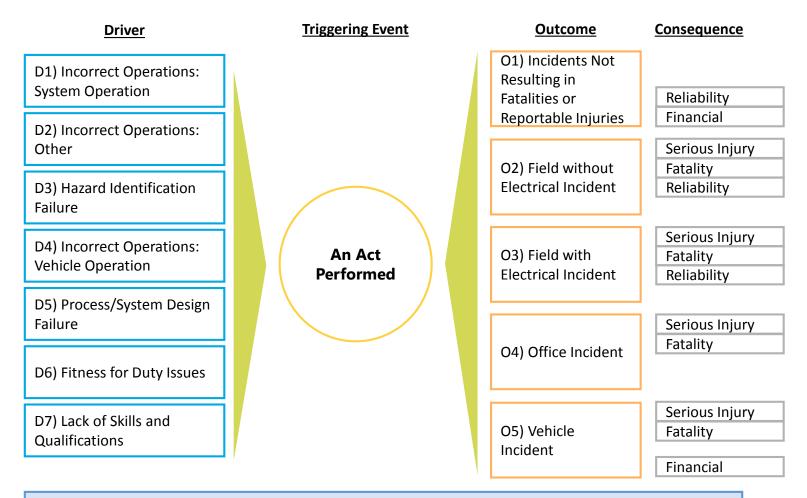
- Deploys controls and mitigations to reduce the frequency of ignitions associated with SCE, while balancing risk reduction, execution feasibility, and cost
- Focuses on activities that can reduce the Contact from Object driver, which drives the majority of faults that can potentially lead to wildfire ignition
- Addresses circuits with greater risk of damage during fault conditions:
 - 1. Spans with vintage small conductor (SCD)
 - 2. Spans susceptible to contact from objects (CFO)
- Covered conductor has ~3.4x greater RSE than bare wire, and ~4x greater RSE than undergrounding (for same length)

Proposed Plan, including Relation to Alternative Plans

Feasible to Execute	Yes
Technology Constraints	No
Resource Constraints	No
Risk Reduction	1 st
Affordability	2 nd
Risk Spend Efficiency	2 nd

Chapter Review: Employee, Contractor & Public Safety

Dean Yarbrough Director, Edison Safety



Employee, Contractor & Public Safety Overview

Risk Statement	Act performed which potentially exposes SCE employees, contractors, or the public to hazards.
In Scope	 Act performed by an SCE worker¹ leading to an adverse outcome for an SCE employee(s), contractor(s), or member of the public
Out of Scope	 Incidents that occur solely as a result of failed electrical and non-electrical assets and equipment (<i>in scope for other chapters</i>). Vehicle incidents attributable to human error by a member of the public. Criminal and/or malicious acts performed by an SCE worker that bring harm to the worker, other workers and/or the public; example is workplace violence (addressed in Physical Security chapter).
Key Chapter Insights / Takeaways	 RAMP model accounts for serious injuries, but activities in chapter provide benefits for both serious and other injuries Culture transformation is a key element of SCE's safety mitigations Improvements in data collection and tracking should improve SCE's ability to model and measure worker safety risk

[1] SCE workers are defined as SCE employees and contractors in this RAMP report

Employee, Contractor & Public Safety Risk Bowtie

Data sources used to populate baseline risk bowtie parameters:

• SCE internal safety incident data (typically over the 2014-2017 period)

Employee, Contractor & Public Safety Risk Reduction Activities and Mitigation Plans

	Name	ID	Description	Prop	Alt 1	Alt 2
Compliance	Standards, Programs, & Policies	CM1	Worker protection from falls, safely working in confined spaces and around electrical hazards, establishing company standards and programs,			
Com	Technical Training	CM2	developing and implementing work practices and safety training.			
Controls	Safety Programs	C1	Includes Safety Recognition Program, Injury Assistance Program, and Functional Movement Screening.	х	x	х
	Contractor Safety Program	C2	Range of activities related to establishing qualification requirements for contractors, continually evaluating contractor safety performance, and making field-based assessments and observations.	x	x	x
	Safety Culture	M1a	Efforts to improve safety culture using a variety of tools, communications, and training.	x		х
	Transformation	M1b	Same as M1a, but adds in-person training to all employees, and electronic tablets in the field.		x	
	Industrial Ergonomics	M2	Program for ergonomics for industrial or field activities.	Х	Х	х
Mitigations	Office Function	M3a	Provides each new office workstation with a sit-to-stand desk to improve ergonomics.	х	х	х
	Office Ergonomics	M3b	Provides employees with predictive data on how well they manage computer interactions such as keystrokes, mouse clicks, and regular breaks.		х	
	Duiney Safata	M4a	Implements a driver training program for approximately 4,200 SCE workers who are Class A license holders or who are assigned to SCE vehicles.		х	
	Driver Safety	M4b	Same as M4a, except training limited to the approximately 3,900 Class A license holders at SCE.			х
			Annual average ANARS Mitigation Risk Reduction (MRR)	0.53	0.59	0.54
			expected value Cost (\$M) (mean) results	\$13.2	\$15.1	\$13.5
			over 2018-2023 Risk Spend Efficiency (RSE)	0.0401	0.0389	0.0400
			Energy ·	for What'	s Ahead ^₅	40

Employee, Contractor & Public Safety

Proposed Mitigation Plan

- Reduces safety risk by implementing programs designed to shift the safety attitudes and behaviors of the entire organization.
- Builds on existing safety programs, while adding new efforts such as the Safety Culture Transformation Program and ergonomics programs.
- Addresses potential for "change fatigue" within organization related to training and communications.

Proposed Plan			Estimate	Expected Value (MARS)				
ID	Name		(\$M)	MRR	RSE			
C1	Safety Controls	\$	14.1	0.43	0.030			
C2	Contractor Safety Program	\$	1.1	0.42	0.384			
M1a	Safety Culture Transformation – Core Program	\$	46.5	2.06	0.044			
M2	Industrial Ergonomics	\$	0.1	0.07	0.769			
M3a	Office Ergonomics – Core Program	\$	17.6	0.21	0.012			
		\$	79.4	3.18	0.040			

Results reflect the total expected value (mean) results over the 2018-2023 time period

Proposed Plan, including Relation to Alternative Plans

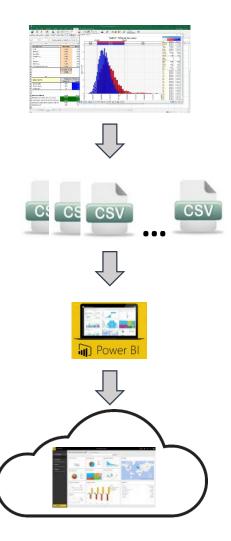
Feasible to Execute	Yes		
Technology Constraints	No		
Resource Constraints	No		
Affordability	1 st		
Risk Reduction	3 rd		
Risk Spend Efficiency	1 st		

Question & Answer Session

Power BI Demonstration

RAMP Results Reporting Tool

Gary Cheng Senior Advisor, Risk Management



Power BI - RAMP Reporting Tool

Power BI harnesses the capabilities of Excel and PowerPoint, empowering the consumer to automate the distribution of and drive valuable insights from data.

- Microsoft Business Analytics Platform
 - Web-based: No special software to install
- Interactive Reports
 - "Slice and Dice" the data vs a static Excel results file
- Underlying data can be downloaded

General Data Flow From Risk Model to Power BI

Step 1:

Run simulations and calculate results for each risk using Palisade's @RISK engine (27 different risk model files)

Step 2:

"Scrape"* relevant data fields from each risk model file into multiple CSV files

Step 3:

Import data files into Power BI framework and populate RAMP reporting tool

Step 4:

Publish RAMP Power BI report to the cloud to enable user access to updated results

SCE's 2018 RAMP Report Results

- To access SCE 2018 RAMP report:
 - 1. <u>www.sce.com/applications</u>
 - 2. Click on "SCE 2018 RAMP"
 - 3. Select document
- SCE will furnish the risk models used to perform risk analyses upon request.
 - To request the risk models, please send an email to <u>Case.Admin@sce.com</u> and reference the 2018 RAMP report in the transmittal.
- Due to the amount of data produced in each model, SCE has developed a more intuitive reporting interface for stakeholders to view and evaluate the inputs and outputs of the risk models, using Microsoft's Power BI tool.
 - Only an internet connection is required; no software installation needed
 - To gain access, please fill out form and send to <u>Case.Admin@sce.com</u>:
 - Please refer to Workpapers Ch. 1, pp. 1.5 1.8 (RAMP Power BI Access Form & Signup Instructions).
 - Please refer to Workpapers Ch. 1, pp. 1.9 1.40 (RAMP Power BI User Guide).

RAMP Results Reporting Tool - Demonstration

III Power BI	₽ Apps >	RAMP Dash	board > RAMP Repo	rt Final							↗ □	٢	<u></u>	•	8
=	File	✓ View ✓ Ed	it report 🛛 🖾 Explore 🔌	🗸 🕐 Refresh						🤊 Reset to default	Kan View I	elated	🗹 Subscribe		☆ 🗉
合 Home (preview)															í
☆ Favorites	>														ļ
C Recent	>														143
P Apps															
g ^R Shared with me															
Workspaces	>			١D	C.	imm	ory Dr	oulto							
8 My Workspace	\sim				S		ary Re	50115							
			Enormy	for W/k	ootle	Abaad sm						sol	JTHERN CALI	IFORNIA	
		Energy for What's Ahead [™]											DIS		
														v12.5	
🛛 Get Data	< →	Main Page	Table of Contents	9 Risks	TERMS	Report 1: Bowtie	Report 2: Hydro Bowtie	Report 3: Input Detail	Report 4: Costs	Report 5: Consequ	iences by Out	come	Report 6: C	Consequences	s by l

Closing Comments

