

| 10 – 10:15am    | CPUC & Level 4 Engagement Introduction       | CPUC & William |
|-----------------|----------------------------------------------|----------------|
| 10:15 – 11:15am | General IOU Approach to RSE                  | Sam            |
| 11:15 – 11:20am | Break                                        |                |
| 11:20- 12:20am  | IOU Approaches to Climate Change             | Luis           |
| 12:20 – 1pm     | Lunch                                        |                |
| 1 – 2pm         | IOU use of MAVF, PSPS, and other mitigations | Max            |
| 2 – 3pm         | IOU Approaches to Wildfire RSE               | Joe            |
| 3 – 3:15pm      | Break                                        |                |
| 3:15 – 4pm      | Risk modeling demo                           | Sam            |
| 4 – 4:30pm      | CPUC Meeting close                           | CPUC           |
| the Lave a      | Admin Demo Content                           | 1 2 2 3        |
| a ant a         | or questions,                                |                |

# Level 4 Engagement Team Bios









## IOU Approach to Risk Spend Efficiency.

Sam Savage, Ph.D.





- Improve Consistency.
- Improve Transparency.
- Simplify Compliance Requirements.





- **1.** Costs of Mitigation Arithmetic.
- 2. Uncertain Risk Events Arithmetic of Uncertainty.
- **3. Stakeholder Preferences Decision Analysis.**





1. Costs of Illiassume you know this

2. Uncertain Risk Events - Arithmetic of Uncertainty



#### Formats of Financial Statement

#### **Representations of Numbers**







#### Foundational



Biggest Shortcoming of Current RSE Approach is the Representation of **Uncertain Numbers.** 

- Most people are reluctant to learn this due to Post Traumatic Statistics Disorder (PTSD) but ...
- Stochastic Libraries as pioneered in Insurance and Finance make it easy and auditable.
- Recent advances in Excel make it universal.



- Arithmetic tells us that X+Y=Z.
- The Arithmetic of uncertainty says "What do you want Z to be?"
- Here are your chances.



#### • The Number 1 of Uncertainty



One Plus One of Uncertainty



- Assumptions.
- Bow Tie.
- MAVF
- Monte Carlo simulation.
- Risk spend efficiency.
- Horizontal factors.
- Aggregation across tranches.
- Time dynamics.



#### Assumptions:

- Historical data.
- Expert opinion.

#### Improve standardization:

- Risk event definition.
- Leverage data of external agencies:
  - PHMSA.
  - EPRI.
  - Many more.

#### Assumptions.

- Bow Tie.
- MAVF
- Monte Carlo simulation.
- Risk spend efficiency.
- Horizontal factors.
- Aggregation across tranches.
- Time dynamics.



#### Bow Tie:

Excellent basis for risk management.

Improve standardization and extend:

- Canonical Bow Ties for risk events.
- Extend to include Influence Diagrams of mitigations. and RSE calculations.



- Bow Tie.
- MAVF
- Monte Carlo simulation.
- Risk spend efficiency.
- Horizontal factors.
- Aggregation across tranches.
- Time dynamics.



Bow Tie extended to include Influence diagram

#### MAVF:

- Simplify for ease of calculation.
- Standardize weights.

Max will discuss in detail.



- Assumptions.
- Bow Tie.
- MAVF
- Monte Carlo simulation.
- Risk spend efficiency.
- Horizontal factors.
- Aggregation across tranches.
- Time dynamics.



#### Monte Carlo Simulation:

- All IOUs have capability.
- It generates Stochastic Libraries.
- Native Excel can now process the results.

- Assumptions.
- Bow Tie.
- MAVF
- Monte Carlo simulation.
- Risk spend efficiency.
- Horizontal factors.
- Aggregation across tranches.
- Time dynamics.

|          | TABLE 3-9<br>SAMPLE BOW TIE: SIMULATED SEVERE OUTCOMES VALUES IN NATURAL UNITS AND<br>ATTRIBUTE CORE CALCULATIONS <sup>(a)</sup>                              |      |          |         |          |           |            |        |       |       |            |         |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|---------|----------|-----------|------------|--------|-------|-------|------------|---------|
|          |                                                                                                                                                               | Saf  | ety      |         |          | Relia     | bility     |        |       | Fina  | ncial      |         |
| Trial    | Scaled<br>Normalized<br>Sim Natural<br>Unit (SM)<br>Total CoRE<br>Scaled<br>Sim Natural<br>Unit (1K Cust)<br>Total CoRE<br>Scaled<br>Sim Natural<br>Unit (EF) |      |          |         |          |           |            |        |       |       | Total CoRE |         |
| 1        | 5                                                                                                                                                             | 0.05 | 1.3      | 646     | 84       | 0.11      | 6.3        | 315    | 871   | 0.17  | 12.8       | 3,207   |
| 2        | 8                                                                                                                                                             | 0,08 | 3.2      | 1,611   | 86       | 0.12      | 6,6        | 330    | 871   | 0.17  | 12.8       | 3,209   |
| 3        | 8                                                                                                                                                             | 0.08 | 3.2      | 1,611   | 91       | 0.12      | 7.2        | 362    | 982   | 0.20  | 15.2       | 3,791   |
| 4        | 10                                                                                                                                                            | 0.10 | 5.0      | 2,503   | 96       | 0.13      | 8.0        | 400    | 987   | 0.20  | 15.3       | 3,819   |
| 5        | 12                                                                                                                                                            | 0.12 | 7.1      | 3,556   | 97       | 0.13      | 8.0        | 401    | 1,006 | 0.20  | 15.7       | 3,923   |
| 6        | 12                                                                                                                                                            | 0.12 | 7.1      | 3,556   | 104      | 0.13      | 8.1        | 406    | 1,028 | 0.21  | 16.2       | 4,039   |
| 7        | 13                                                                                                                                                            | 0.13 | 8.2      | 4,083   | 104      | 0.14      | 9.1        | 453    | 1,031 | 0.21  | 16.2       | 4,053   |
| 8        | 14                                                                                                                                                            | 0.14 | 9.2      | 4,611   | 108      | 0.14      | 9.1        | 456    | 1,051 | 0.21  | 16.6       | 4,158   |
| 9        | 14                                                                                                                                                            | 0.14 | 9.2      | 4,611   | 108      | 0.14      | 9.6        | 481    | 1,119 | 0.22  | 18.1       | 4,517   |
| 10       | 15                                                                                                                                                            | 0.15 | 10.3     | 5,139   | 109      | 0.14      | 9.7        | 486    | 1,134 | 0.23  | 18.4       | 4,594   |
| 11       |                                                                                                                                                               | Sa   | fety CoR | E 3,193 |          | Relia     | ability Co | RE 409 |       | Finan | cial CoR   | E 3,931 |
|          |                                                                                                                                                               |      |          | Su      | m of Att | ribute Va | lues: 7,5  | 33     |       |       |            |         |
| a) Withe | a) WHW With BUE COREs the laverage of the CoRE per trial for that Attribute. 15                                                                               |      |          |         |          |           |            |        |       |       |            |         |
|          |                                                                                                                                                               |      |          |         |          |           |            |        |       |       |            |         |

Trials from a PG&E Monte Carlo simulation







RSE of portfolio with interactive or synergistic effects

Suppose the yellow project, which has a good RSE (as shown in the last slide), is redundant if the grey project is also chosen. Then instead of simple ranking, the well-known technique of Stochastic Optimization must be applied to create efficient portfolios.



- Bow Tie.
- MAVF
- Monte Carlo simulation.
- Risk spend efficiency.
- Horizontal factors.
- Aggregation across tranches.
- Time dynamics.



#### Horizontal factors:

- These include the effects of extreme demand or climate change that impact many assets at once.
- Currently not adequately handled by any IOU.
- Could be improved with Stochastic Libraries.

- Assumptions.
- Bow Tie.
- MAVF
- Monte Carlo simulation.
- Risk spend efficiency.
- Horizontal factors.
- Aggregation across tranches.
- Time dynamics.



#### Aggregation across tranches:

Can yield invalid results without the Arithmetic of Uncertainty.



May be done correctly with Stochastic Libraries. See Report p. 23

Figure 7: Monte Carlo trials of consequence.

First these results could be run separately and stored as stochastic libraries of data.



- Assumptions.
- Bow Tie.
- MAVF
- Monte Carlo simulation.
- Risk spend efficiency.
- Horizontal factors.
- Aggregation across tranches.
- Time dynamics.





#### Time dynamics:

Aging of assets acknowledged by IOUs.

• In the future, RSE might be improved with dynamic multi-time-period optimization.

- Assumptions.
- Bow Tie.
- MAVF
- Monte Carlo simulation.
- Risk spend efficiency.
- Horizontal factors.
- Aggregation across tranches.
- Time dynamics.





| 1 Define RAMP risks<br>uniformly across the<br>IOUs.        | This standard taxonomy of risks should incorporate prior work by industry recognized sources such as the Gas Technology Institute, the Canadian Energy Regulator, and the Electric Power Research Institute.                                                                                             |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 Define a consistent<br>measure of electric<br>reliability | Define a consistent measure of electric reliability across all IOUs.                                                                                                                                                                                                                                     |
| 3<br>Common<br>time horizon                                 | Use a common time horizon (across all IOUs) for costs and benefits, based on the lifetime of the mitigation and its assets – which may range from one or two years for vegetation management to perhaps 50 years for covered conductors or undergrounding.                                               |
| 4<br>Standard<br>discounting method                         | Establish a standard method for utilities to discount costs and benefits (risk reduction) over mitigation lifetime using the same discount rate for both, perhaps using the average combined cost of capital for each utility.                                                                           |
| 5<br>Increase use of<br>pooled statistic data               | Maximize the use of public or pooled sources of risk statistics, for example, <u>PHMSA</u> Pipeline<br>and Hazardous Materials Safety Administration, or <u>EPRI</u> for electricity. Where such sources are<br>not available, standardize on risk statistics across the California IOUs where possible. |
| Carl and a                                                  | www.level4ventures.com 22                                                                                                                                                                                                                                                                                |

| 6<br>Risk<br>Interrelationships                                  | Interrelationships between risks must be modeled to correctly aggregate risk across tranches as specified in the Settlement Agreement. See Appendix C and Appendix D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7<br>Identification of<br>synergistic or<br>antagonistic effects | RDF analysis should identify interactions where mitigations have synergistic or antagonistic effects on each other. Where there are significant interactions, results should be presented for a group or portfolios of mitigations. The contributions of individual mitigations may be reported in terms of the marginal effect to MRR and RSE of adding each mitigation to (or subtracting it from) a portfolio. This will make use of stochastic optimization.                                                                                                                                                                                                                                     |
| 8 Consistent risk<br>characteristics per<br>tranche              | Risks should be aggregated at a level of granularity such that the risk characteristics of each risk tranche are consistent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 9 Systematic<br>sensitivity analysis<br>inclusion                | Analysis of all risk mitigations should include a systematic sensitivity analysis to identify which uncertain assumptions could have large effects on RSE and to clarify the robustness of its use to prioritize mitigation projects.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10<br>Portfolio RSE<br>approach                                  | To follow Element 14 of the Settlement Agreement and apply RDF and calculate RSE at "as deep<br>a level of granularity as reasonably possible," when there are interdependencies between<br>projects, the utilities should start with potential portfolios of projects, then measure the<br>change in Portfolio RSE as individual projects are added or removed. This approach is further<br>discussed in Appendix G.                                                                                                                                                                                                                                                                                |
| and a                                                            | 2 for the second s |

| 11 Finance and<br>insurance scenario<br>approach              | The representation of uncertainty should be made repeatable and auditable by adopting the scenario approach pioneered in finance and insurance. This not only enables the arithmetic of uncertainty, but allows averages, percentiles, chance of exceedance or graphs to be generated from the results as needed.                                                                                                                                                                                                      |
|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12 Stochastic<br>libraries<br>standardization                 | Stochastic Libraries of uncertainties should be standardized and used within the context of Monte Carlo simulation for risk modeling by all of the IOUs. This would allow the proper aggregation of risk while increasing transparency and trust in the results.                                                                                                                                                                                                                                                       |
| 13<br>Direct use of RDF<br>Framework for<br>selected circuits | To guide future decisions on where to choose enhanced powerline safety settings (EPSS), covered conductors (CC), undergrounding (UG) or something else, it would be helpful to ask the utilities to address these questions more directly using the RDF framework for selected circuits in various situations – e.g., by tier 3 vs tier 2 fire safety regions, vegetation, and terrain type – and to do so with a framework that allows direct comparison of their results to identify the sources of the differences. |
| 14 Consistent<br>readability factor                           | Adopt a consistent readability factor for all utilities, e.g., 1000. For RSE, we recommend dividing MRR*1000 by the mitigation cost in millions of dollars so that most RSEs are greater than one.                                                                                                                                                                                                                                                                                                                     |
| 15<br>Templates for<br>inputs and results                     | Standard templates should be established to present input assumptions, intermediate results, including MAVF attribute values, risk reduction, mitigation costs, and final values for RSE.                                                                                                                                                                                                                                                                                                                              |
|                                                               | www.level4ventures.com 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| 16<br>Extension of bov<br>ties           | The Bow Tie, a special case of the broader concept of the Influence Diagram, has already been<br>adopted as a standard for representing the causes and consequences of risk events. Extending<br>Bow Ties to full Influence Diagrams will further increase the domain of transparent<br>representation of risk. |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17 Canonical<br>standardized boy<br>ties | Canonical, standardized Bow Ties and influence diagrams should be developed where possible for risk events and mitigations both for ease of use and better comparisons between IOUs.                                                                                                                            |







## IOU Approaches to Climate Change

#### Luis Medina, CPA



### Level 4 Climate change approach comparison

Summarize the extent to which the four IOUs incorporate climate change related risks associated with wildfires and rising sea levels into their RAMP, WMP, and GRC filings.

Southern California Edison Company's Risk Assessment and Mitigation Phase

**Climate Change** 

Chapter 12

PACIFIC GAS AND ELECTRIC COMPANY CHAPTER 20 ATTACHMENT A CROSS-CUTTING FACTORS

A. Climate Change

1. Overview

Climate change presents ongoing and future risks to Pacific Gas and

Risk Assessment and Mitigation Phase Cross-Functional Factor

#### (SDG&E-CFF-2)

Climate Change Adaptation, Energy System Resilience, and Greenhouse Gas Emission Reductions

Risk Assessment and Mitigation Phase Cross-Functional Factor

(SCG-CFF-2)

**Energy System Resilience** 

### Level 4 Comparison Methodology

Level 4 reviewed the IOU RAMP filings to identify and compare the following climate change approach areas of interest

- 1. Approach and time-horizon stated or implied, for climate change mitigation and impact management endeavors.
- 2. Proposed and/or implemented risk mitigations.
- 3. Mitigation inclusivity: do IOUs account for less-visible but present third-parties who may be greatly impacted from climate change threats and not usually well represented in mitigation strategies?
- 4. Utilization of external data to strengthen climate change impact assessment and mitigations?
- 5. Asset hardening and Sea-Level Rise preparedness?
- 6. Utilization of external impact indices.

From information we collected, we arrived at nine elements of climate change approach to compare



### Level 4 Climate change selected elements

ain

|                            |                                                               | Clim                 | ate change approach elements and definitions                                                                                            |           |  |  |
|----------------------------|---------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|
|                            | CC Risk Management<br>Element                                 |                      | Definition                                                                                                                              |           |  |  |
|                            | Time-Ho                                                       | orizon               | Length of time over which climate change strategies are reviewed                                                                        |           |  |  |
|                            | Decentral                                                     | ization              | Is the overall approach to addressing climate change one of adaption or one of resilience                                               |           |  |  |
|                            | Asset Plannin<br>Forecas                                      | g and Load<br>sting  | Climate change impact on IOU planning for deployment of energy assets and demand forecasts                                              |           |  |  |
|                            | Weather an<br>Monito                                          | d hazard<br>oring    | Technologies applied to monitoring weather and hazard patterns; specifically, as they apply to addressing climate change impact         |           |  |  |
|                            | Mitigations; ir                                               | nternal and          | Inclusion of cc mitigation strategies for IOU assets and externalities; costs by borne by a                                             |           |  |  |
| Application of<br>Bisk Mor | External                                                      | Util                 | ization of external risk models to guide how IOU will apply its adapt<br>resilience endeavors                                           | ion and/o |  |  |
| THISK IVIO                 |                                                               | t Data               | Liata sources used to address climate change risks: input for internal models used                                                      |           |  |  |
|                            | Asset Hardeni<br>prepare                                      | ing and SLR<br>dness | Modification of generation, transmission, and distribution assets due to expect impact<br>from CC                                       |           |  |  |
| 1. 6- 1                    | External Impact Indices                                       |                      | Tools or standards developed by external authorities to define, measure, and/or identify impact of climate change in specific instances |           |  |  |
| 100                        | The Level 4 team was especially concerned with climate change |                      |                                                                                                                                         |           |  |  |
| and the second             | mode                                                          | ls utiliz            | ed; explanation of how models are integrated and                                                                                        | - 1       |  |  |
| L                          |                                                               |                      | limitations                                                                                                                             |           |  |  |

# Climate Change IOU Approach comparison results

#### **Comparison Results**

| CC Risk Management<br>Element            | All four utilities |
|------------------------------------------|--------------------|
| Time-Horizon                             | Mostly comparable  |
| Decentralization                         | Comparable         |
| Asset Planning and<br>Load Forecasting   | Comparable         |
| Weather and hazard<br>Monitoring         | Comparable         |
| Mitigations; internal and external costs | Mostly comparable  |
| Application of External<br>Risk Models   | Comparable         |
| Sources of Data                          | Comparable         |
| Asset Hardening and<br>SLR preparedness  | Mostly comparable  |
| External Impact Indices                  | Comparable         |

### PGE provided great examples of climate change integration disclosures

|   |                  | TABLE 1<br>CROSS-CUTTING FACTOR SUMMARY: CLIMATE CHANGE                             |                                                               |                                                                                                                                                                      |  |  |  |  |  |
|---|------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|   | Line<br>No. Risk |                                                                                     | Status of Climate Data<br>Integration                         | Explanation of Climate Change Quantification Status                                                                                                                  |  |  |  |  |  |
| v | 1                | Wildfire                                                                            | Integrated into Model                                         | See Modeling Workpaper Climate                                                                                                                                       |  |  |  |  |  |
| • | 2                | Failure of Electric Distribution<br>Overhead Assets                                 | Integrated into Model                                         | See Modeling Workpapers Climate through Climate                                                                                                                      |  |  |  |  |  |
|   | 3                | Failure of Electric Distribution<br>Network Assets                                  | Applicable but not<br>integrated, pending further<br>research | Available data shows limited historical natural hazard impact<br>Developing statistical relationship between climate-driven natural<br>hazards and equipment failure |  |  |  |  |  |
|   | 4                | Loss of Containment on Gas<br>Transmission Pipeline                                 | Applicable but not<br>integrated, pending further<br>research | Available data shows limited historical natural hazard impact<br>Developing statistical relationship between climate-driven natural<br>hazards and equipment failure |  |  |  |  |  |
| s | 5                | Loss of Containment on Gas<br>Distribution Main or Service                          | Applicable but not<br>integrated, pending further<br>research | Available data shows limited historical natural hazard impact<br>Developing statistical relationship between climate-driven natural<br>hazards and equipment failure |  |  |  |  |  |
| 0 | 6                | Large Overpressure Event<br>Downstream of a Gas Measurement<br>and Control Facility | Not applicable                                                | Asset failure insensitive to natural hazards based on available data                                                                                                 |  |  |  |  |  |
|   | 7                | Employee Safety Incident                                                            | Applicable but not<br>integrated, pending further<br>research | Available data shows limited historical natural hazard impact<br>Developing statistical relationship between climate-driven natural<br>hazards and employee safety   |  |  |  |  |  |
| 1 | 8                | Contractor Safety Incident                                                          | Not Applicable                                                | Difficult to build relationships between long-reaching climate change                                                                                                |  |  |  |  |  |
|   | 9                | Third Party Safety Incident                                                         | Not Applicable                                                | Source: PGE 2020 RAMP, p666                                                                                                                                          |  |  |  |  |  |

Explanation of how external CC models are used was insufficient for all IOUs; not adequate to conclude how models were integrated, their impact

### Level 4 Climate Change Recommendations

| 33<br>Bowtie inputs<br>adjustments                                       | Climate change related risk Bow Tie inputs should be adjusted to reflect climate change related characteristics.                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 34<br>Climate change<br>related correlations                             | Correlations between climate change related risk Bow Tie inputs should be defined, modeled, and incorporated in the risk models.                                                                                                                                                                                                                            |
| 35 Consider likely<br>increases in<br>frequency and size<br>of wildfires | Estimates of MRR and hence RSE from mitigations with long-term effects, such as covered conductors or undergrounding, should consider likely increases in the frequency and sizes of wildfires, and hence more frequent use of PSPS, in the absence of such mitigations, based on the best available estimates and ranges of the effects of climate change. |
| 36<br>Bowtie output<br>adjustments                                       | Risk Bow Tie outputs should be adjusted to incorporate greenhouse gas emissions, associated with risk events, using an accepted cost per added emission ton, such as the EPA recommended social cost of risk event related carbon emissions of \$51/tCO2e.                                                                                                  |
| 37 Disclose at-risk<br>assets and the<br>extent                          | IOUs should provide an inventory of assets that will be threatened by rising sea-levels and increased storm surges due to forecast climate change related impacts at ten-year increments over a fifty-year period, along with a plan for mitigating those threats.                                                                                          |
| the same                                                                 | www.level4ventures.com                                                                                                                                                                                                                                                                                                                                      |





## Lunch

#### Forty-minute lunch break.







## IOU Approaches to PSPS and other high-stakes mitigations

Max Henrion, PhD





# Level 4

# Approaches to PSPS and other high-stakes mitigation activities

|                                         | Utility                                      |                      |                             |  |  |
|-----------------------------------------|----------------------------------------------|----------------------|-----------------------------|--|--|
| issues                                  | SCE                                          | PG&E                 | SDG&E                       |  |  |
| Year of RAMP Report                     | 2018                                         | 2020                 | 2021                        |  |  |
| Plan dates                              | 2018-2023                                    | 2020-22<br>& 2023-26 | 2022-24                     |  |  |
| Time horizon                            | To 2023                                      | Life of the asset    | Life of the asset           |  |  |
| Discount rate for mitigation costs      | No (explored discounts in                    | 7.1% (ATWACC)        | Inflation rate<br>(constant |  |  |
| Discount rate for risk reduction        | Appendix 1)                                  |                      | 3%                          |  |  |
| Readability factor (scaler) for risks   | 1 (no factor)                                | 1000                 | 100,000                     |  |  |
| Include outage impacts in PSPS analysis | No                                           | Yes                  | Yes                         |  |  |
| Interactions between mitigations        | No?                                          | Yes                  | Yes?                        |  |  |
| Cost and benefits of PSPS               | No                                           | No                   | No                          |  |  |
| Covered conductors vs. undergrounding   | Yes                                          | Yes                  | Yes                         |  |  |
| Sensitivity analysis                    | Yes for time<br>horizon and<br>discount rate | No                   | No                          |  |  |

### **PSPS and other high-stakes mitigations** recommendations

Parametric costbenefit\* analysis

38

Perform parametric cost-benefit analysis of the "trigger" criteria for PSPS events, such as windspeed and vegetation dryness, to evaluate the existing protocols and potentially refine the criteria in a way that increases the expected net benefit (or risk score).



\*Parametric cost-benefit: Cost-benefit analysis method which uses regression analysis of a database of two or more similar systems to develop cost / benefit relationships which estimate net-benefits based on one or more parameters such as system performance or design characteristics.





# IOU Use of MAVF

### Max Henrion, PhD





#### The MAVF scheme: An illustration

| Attributes                | Natural<br>units                           | Value            | Lower<br>bound | Upper<br>bound | % of<br>range | Scaling<br>function                                  | Scaled<br>score | Weights |
|---------------------------|--------------------------------------------|------------------|----------------|----------------|---------------|------------------------------------------------------|-----------------|---------|
| Safety                    | Fatalities                                 | 20               | 0              | 100            | 20%           | 100<br>00<br>00% Range 100%                          | 12              | × 50%   |
| Reliability               | CMI<br>Customer-<br>minutes<br>interrupted | 500<br>million   | 0              | 2<br>billion   | 25%           | 100<br>00% Range 100%                                | 8               | × 25%   |
| Financial                 | Dollars (\$)                               | \$500<br>million | \$0            | \$5<br>billion | 20%           | 100<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>Range 100% | 20              | × 25%   |
| Total weighted risk score |                                            |                  |                |                |               |                                                      | =               | 12      |





#### MAVF: Multi-Attribute Value Function by IOU

| Utility Primary at Sub |                          | ry attributes<br>Sub attributes | Upper<br>bound | Units                                                  | Primary<br>weights | Sub attr<br>factors | Scaling t<br>Risk attit | <b>function</b><br>ude |
|------------------------|--------------------------|---------------------------------|----------------|--------------------------------------------------------|--------------------|---------------------|-------------------------|------------------------|
|                        | Safety                   |                                 | 100            | Equivalent fatalities                                  | 50%                |                     | Averse                  |                        |
|                        |                          | Fatalities                      |                | Number                                                 |                    | 1                   |                         |                        |
|                        | Serious injuries         |                                 |                | Number                                                 |                    | 0.25                |                         |                        |
| PG&E                   | Electr                   | ic reliability                  | 4 billion      | Customer minutes                                       | 20%                |                     | Averse                  |                        |
| TOGE                   |                          |                                 |                | interrupted (CMI)                                      |                    |                     |                         |                        |
|                        | Gas reliability          |                                 | 750,000        | Customers affected                                     | 5%                 |                     | Averse                  |                        |
|                        | Financ                   | cial                            | \$5 billion    | USD (\$)                                               | 2.5%               |                     | Averse                  |                        |
|                        | Fatalities               |                                 | 100            | Number                                                 | 25%                |                     | Tolerant                |                        |
|                        | Serious injuries         |                                 | 500            | Number                                                 | 2.5%               |                     | Tolerant                |                        |
| S. California          | Reliability (CMI)        |                                 | 2 billion      | Customer minutes                                       | 25%                |                     | Neutral                 |                        |
| Edison                 |                          |                                 |                | interrupted (CMI)                                      |                    |                     |                         |                        |
|                        | Financ                   | cial                            | \$5 billion    | USD (\$)                                               | 25%                |                     | Neutral                 | /                      |
|                        | Safety                   | 1                               | 20             | Equivalent fatalities                                  | 60%                |                     | Neutral                 |                        |
|                        |                          | Fatalities                      |                | Number                                                 |                    | 1                   | L                       |                        |
|                        |                          | Serious injuries                |                | Number                                                 |                    | 0.25                |                         |                        |
| Sempra                 |                          | Acres burned                    |                | acres                                                  |                    | 0.00005             |                         |                        |
|                        | Dollars                  |                                 | \$500 million  | USD (\$)                                               | 15%                |                     | Neutral                 |                        |
|                        | Stakeholder satisfaction |                                 | 100            | Index                                                  | 2%                 |                     | Neutral                 | /                      |
|                        | Reliability              |                                 | 1              |                                                        | 23%                |                     | Neutral                 |                        |
| SaCalCas               |                          | Gas Meters                      | 100,000        | Number of Gas Meters<br>Experiencing Outage            |                    | 50%                 |                         |                        |
| SocarGas               |                          | Gas Curtailment                 | 666 MMcf       | Volume of curtailments<br>exceeding 250 MMcf/day       |                    | 50%                 |                         |                        |
|                        |                          | Gas Meters                      | 50,000         | Number of Gas Meters<br>Experiencing Outage            |                    | 25%                 |                         |                        |
|                        |                          | Gas Curtailment                 | 250 MMcf       | Volume of curtailments<br>exceeding 250 MMcf/day       |                    | 25%                 | 25%                     |                        |
| SDG&E                  |                          | Electric SAIDI                  | 100 minutes    | System Average Interruption<br>Duration Index (SAIDI)  |                    | 25%                 |                         |                        |
|                        |                          | Electric SAIFI                  | 1 outage       | System Average Interruption<br>Frequency Index (SAIFI) |                    | 25%                 |                         |                        |

### PG&E MAVF: Scaling function for each attribute



Risk score of the 100<sup>ch</sup> fatality is about 10 times the 1st. Risk score of the last 10 fatalities is about twice the first 10. Same scaling function for Reliability and Financial attributes.

#### **Scaled Risk Score for Fatalities by IOU**



# Level 4 Use of MAVFs

- MAVFs are all consistent with the S-MAP agreement.
- They vary by IOU:
  - Set of attributes.
  - Weights, and ranges, and hence relative importance of attributes.
  - Scaling functions (risk-averse, neutral, and risk-tolerant.)



- It makes their results hard to compare.
- The upper bounds on attribute values reflect largest past events, not largest conceivable disasters.

### What is the importance of an attribute?

- S-MAP specifies: Weight of safety ≥40%.
- The relative importance of an attribute, say tradeoff between cost (\$) and lives depends not just on relative weights, but also ranges, and scaling functions:

Safety / Weight<sub>Safety</sub>

### Ub<sub>Cost</sub>/Weight<sub>Cost</sub>

- Nonlinear scaling functions imply that tradeoff values vary over the ranges.
- The implications of the S-MAP constraint are complicated.

### Value of mortality reduction (VMR): Map safety score into financial score



### **Level 4** Trade-off values between attributes

- MAVF *seems* to avoid putting a monetary value on human life *but it's unavoidable*.
- The Value of a Statistical Life (VSL) is widely used by Federal agencies for cost-benefit analysis.
- EPA calls it Value of Mortality Reduction (VMR), and recommends around \$10M/fatality avoided.
- Implied reliability trade-off values from PG&E and SCE range from \$1 to \$2.50/CMI.
- Economic studies estimate the value of reliability for short-term outages – e.g., Value of Loss of Load (VOLL). Need more study of longer outages and gas.



## **Environmental Impact**

- Not currently an attribute.
- Might include:
  - Wildfire effects including ecosystem damage, air quality from smoke, and GHG emissions.
  - GHG emissions from natural gas leaks.





Whose interests do MAVFs represent?

- IOUs, CPUC, ratepayers, or the people of California?
- Each IOU develops their own.
- S-MAP specifies that the financial attribute doesn't represent shareholders.
- Wildfires affect many people and GHGs are global.
- Should all IOUs use the same MAVF?

## Level 4 MAVF Recommendations

| 18             | A single MAVF                                                  | Consider developing a single MAVF to represent ratepayers or the people of California for all IOUs.                                                                                                                                      |
|----------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19             | Simplified MAVF                                                | Consider a simplified MAVF scheme                                                                                                                                                                                                        |
| 20             | Single risk-attitude                                           | Use a single risk-attitude function to represent attitude to uncertainty to replace the separate nonlinear scaling functions for each attribute.                                                                                         |
| 21             | Trade-off values                                               | Use trade-off values (e.g., VMR and CMI) based on Federal agencies and economic studies to estimate of weights and ranges or to replace them. (A constraint on VMR value would avoid the confusion of safety weight ≥40%.)               |
|                |                                                                |                                                                                                                                                                                                                                          |
| 22             | Environmental<br>effects                                       | Add environmental effects as an attribute.                                                                                                                                                                                               |
| 22             | Environmental<br>effects<br>Consistent Metrics                 | Add environmental effects as an attribute.<br>Define consistent metrics for electric and gas reliability across IOUs.                                                                                                                    |
| 22<br>23<br>24 | Environmental<br>effects<br>Consistent Metrics<br>Upper bounds | Add environmental effects as an attribute.<br>Define consistent metrics for electric and gas reliability across IOUs.<br>Upper bounds of attributes should exceed largest conceivable catastrophes (or avoid them with trade-off values) |



#### The current MAVF scheme: An illustration

| Attributes           | Natural<br>units                           | Value               | Lower<br>bound | Upper<br>bound                        | % of<br>range                               | Scaling<br>function                                  | Scaled<br>score                   | Weights           |
|----------------------|--------------------------------------------|---------------------|----------------|---------------------------------------|---------------------------------------------|------------------------------------------------------|-----------------------------------|-------------------|
| Safety               | Fatalities                                 | 20                  | 0              | 100                                   | 20%                                         | 100<br>u<br>0<br>0<br>0<br>0<br>0<br>0<br>Range 100% | 12                                | × 50%             |
| Reliability          | CMI<br>Customer-<br>minutes<br>interrupted | 500<br>million      | 0              | 2<br>billion                          | 25%                                         | 100<br>20<br>0<br>0<br>0<br>0<br>0<br>Range 100%     | 8                                 | × 25%             |
| Financial            | Dollars (\$)                               | \$500<br>million    | \$0            | \$5<br>billion                        | 20%                                         | 100<br>a<br>o<br>y<br>0<br>0% Range 100%             | 20                                | × 25%             |
|                      |                                            |                     | $\checkmark$   | Total                                 | weight                                      | ed risk score                                        | =                                 | 12                |
| You ne               | eed <i>n</i> upper<br>caling func          | r bounds,<br>tions, |                |                                       |                                             |                                                      |                                   |                   |
| and <i>n</i> w<br>to | veights (sun<br>specify an l               | n to 100%<br>MAVF   | %) [ r         | is the numb<br>3 in this<br>4 for cur | per of attrib<br>illustration<br>rent MAVFs | outes:<br>,<br>s                                     | e numbers illu<br>lication of the | strate an<br>MAVF |



#### A simplified MAVF scheme using trade-off values instead of ranges and weights

| Attributes                                  | Natural units                                              | Example<br>value                                                         | Trade-off<br>values  | Equivalent<br>cost |  |
|---------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------|----------------------|--------------------|--|
| Safety                                      | Fatalities                                                 | 20                                                                       | \$100 million<br>VMR | \$2 billion        |  |
| Reliability                                 | iability Customer-minutes<br>interrupted (CMI) 500 million |                                                                          | \$1/CMI              | \$500 million      |  |
| Financial                                   | Dollars (\$)                                               | \$500 million                                                            | 1                    | \$500 million      |  |
|                                             |                                                            | Total                                                                    | equivalent cost      | \$3 billion        |  |
|                                             |                                                            | Risk-a                                                                   | ttitude function     | \$ equiv           |  |
| You need n-1 trade-off values and one risk- |                                                            | Risk-adjusted value                                                      |                      | \$3.5 billion      |  |
| specify a<br>MA                             | simplified<br>AVF                                          | www.level4ventures.com Blue numbers illustrate a application of the MAVF |                      |                    |  |



# Advantages of a simplified MAVF scheme

- It needs fewer numbers to assess and only one riskattitude function vs. multiple scaling functions.
- It avoids the need to estimate the upper bound for conceivable catastrophic events.
- The implications of tradeoff values are clearer than combining range, weights, and scaling functions.
- Tradeoff values (e.g., VMR and VOLL) could be based on Federal agency guidelines and economic studies, adjusted for California.
- It would be even simpler if all IOUs used the same MAVF!







## IOU Approaches to Wildfire RSE

Joe H. Scott, MS



## Level 4 Types of wildfire risk assessment

| Example wildfire risk mitigation actions for different risk types and time horizons |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                    |  |  |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                     | Near-term<br>(hours to days)                                                                                                                                                                 | Long-term<br>(years to decades)                                                                                                                                                                                                                                                                    |  |  |
| Source of wildfire<br>risk (safety)                                                 | <ul> <li>Operational restrictions and situational awareness.</li> <li>Equipment settings (reclosing).</li> <li>Staging field observers and firefighting resources.</li> <li>PSPS.</li> </ul> | <ul> <li>Install covered conductors or bury conductors underground in high-risk locations.</li> <li>Sectionalize overhead distribution to minimize required PSPS footprint.</li> <li>Replace equipment prone to failure.</li> <li>Increase inspection frequency in high-risk locations.</li> </ul> |  |  |
| Receiver of<br>wildfire risk<br>(reliability)                                       | <ul> <li>Situational awareness.</li> <li>Pretreat wooden poles as fire approaches to minimize fire damage.</li> <li>Stage equipment to quickly replace fire-damaged equipment.</li> </ul>    | <ul> <li>Using fire-resistant equipment<br/>(poles) in locations with high<br/>likelihood of wildfire.</li> <li>Mitigate fuel immediately<br/>surrounding critical but sensitive<br/>equipment (e.g., substations).</li> </ul>                                                                     |  |  |

### Level 4 Wildfire risk modeling approaches

- Average-worst:
  - Quantifies the tail of the distribution.
  - CPUC FireMap1.
- Complete enumeration:
  - Simulate all combinations of possible weather scenarios (wind speed/direction, fuel moisture).
- Stochastic simulation:
  - Monte Carlo simulation of ignition and growth under possible weather scenarios.
- Statistical:
  - Power-law distributions.



# Level 4 Power-law distributions





# Level 4 Power-law distributions





### Level 4 CPUC High Fire Threat Districts



Mapping Environmental Influences on Utility Fire Threat A Report to the California Public Utilities Commission Pursuant to R.08 – 11-005 AND R.15-05-006

#### FINAL REPORT, 2/16/2016

Fire Threat Mapping Independent Expert Team

David Sapsis, Cal Fire (Chair) Tim Brown, Desert Research Institute Catherine Low, CAP Low SE Max Moritz, University of California, Berkeley David Saah, Spatial Informatics Group, University of San Francisco Ben Shaby, Penn State University



Figure 17: Optional Utility Fire Threat Model 1, with display classes based on equal area deciles subject to a lower limit exclusion.

# Level 4 CPUC High Fire Threat Districts



Level 4 Wildfire RSE Recommendations, Part 1

| 26 | Inclusion of long-<br>duration utility-<br>caused wildfires | Require the IOUs to extend their wildfire risk assessments to include the consequences of long-<br>duration utility-caused wildfires in addition to their current assessment of short-duration fires<br>(up to eight hours).                                                                                                                                                       |
|----|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 27 | Adopt a wildfire risk<br>type classification                | This will enable consistent descriptions of wildfire risk assessment approaches for near-term decisions like PSPS, versus long-term decisions like equipment replacement, undergrounding, etc. It will also highlight the different approaches for assessing IOU equipment as a source of the risk versus the risk to their infrastructure and equipment of wildfire of any cause. |
| 2  | 8<br>HFTD granularity<br>enhancements                       | Update the High Fire Threat District (HFTD) map to 1) increase its granularity, 2) account for fuel changes that have taken place since the map was created, and 3) account for the effects of climate change on wildfire size and consequence. An updated HFTD map should be generated using a single analytical approach across the entire state.                                |

### Level 4 Wildfire RSE Recommendations, Part 2

| Use RDF at less<br>aggregate level to<br>compare EPSS,<br>covered conductors,<br>and undergrounding | To guide future decisions on when and where to choose enhanced powerline safety settings (EPSS), covered conductors, or underground, it would be helpful to ask the utilities to address these questions more directly using the RDF framework for selected circuits in various situations – e.g., by tier 3 vs tier 2 fire safety regions, vegetation, and terrain type – and to do so with a framework that allows direct comparison of their results to identify the sources of the differences. |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30<br>Consequence model<br>enhancement                                                              | Update the consequence model to account for damage to resources like timber, drinking water, wildlife habitat, particulate emissions, carbon emissions, etc.                                                                                                                                                                                                                                                                                                                                        |
| 31<br>Standardized out-<br>year fuelscape                                                           | Develop or standardize on a statewide out-year fuelscape supporting a long-term assessment of risk priorities.                                                                                                                                                                                                                                                                                                                                                                                      |
| 32<br>Wildfire risk-type<br>classification                                                          | See Recommendation 27.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| aunit a                                                                                             | www.level4ventures.com 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |





## **Risk Modeling Illustrative Demo**

#### Sam Savage, Ph.D.

