WILDFIRE STATISTICS AND THE USE OF POWER LAWS FOR POWER LINE FIRE PREVENTION Prepared for: Mussey Grade Road Alliance S-MAP II Phase 1 Track 1 Technical Working Group February 3, 2021 Joseph W. Mitchell, Ph. D M-bar Technologies and Consulting, LLC jwmitchell@mbartek.com - Power Laws - Power Laws and Wildfire - Power Laws, Wildfire, and Utilities - Building a Risk Model - Incorporating Extreme Events into MAVF - Next Steps # Goal: Safe Utility Operation The purpose of utility wildfire mitigation is to raise the fire weather severity limits at which utility equipment can be safely operated. # Critical Phenomena & Power Laws - Landslides - Earthquakes - Species Extinction - Wildfires - 1/f Noise - Etc... Accumulation, Instability, Cascade # Per Bak "self-organized criticality" "complex behavior in nature reflects the tendency of large systems with many components to evolve into a poised, 'critical' state, way out of balance, where minor disturbances may lead to events, called avalanches, of all sizes. Most of the changes take place through catastrophic events rather than by following a smooth gradual path" ### Power Laws Self-organized critical events show "power law" behavior $$y = Cx^{-\alpha}$$ - Extreme events dominate the result. "Fattailed" - For α < 1, can't even predict average from past events. This is important. ## Wildfire and Power Laws Malamud et. al, 1998 US Fish & Wildlife wildfires 1986-1995 Simple models reproduce behavior Shows as linear on log-log plot Malamud, B.D., Morein, G., Turcotte, D.L., 1998. Forest Fires: An Example of Self-Organized Critical Behavior. Science 281, 1840–1842. ### Power Law with Cutoff #### Moritz et. al. 2005 - Larger data set - PLR/HOT model $$y = C[(a+x)^{-\alpha} - (a+L)^{-\alpha}]$$ - Cutoff at large sizes (everything burns) - $\alpha < 1$ (!!!!!) Moritz, M.A., Morais, M.E., Summerell, L.A., Carlson, J.M., Doyle, J., 2005. Wildfires, complexity, and highly optimized tolerance. Proceedings of the National Academy of Sciences 102, 17912–17917. https://doi.org/10.1073/pnas.0508985102 # Power Line Fires ### Power Lines and Wind - Outages as proxy for ignition - Wind gusts from nearest weather station - Exponential growth with wind speed. Mitchell, J.W., 2013. Power line failures and catastrophic wildfires under extreme weather conditions. Engineering Failure Analysis, Special issue on ICEFA V- Part 1 35, 726–735. https://doi.org/10.1016/j.engfailanal.2013.07.006 # Area Burned as Risk Proxy California Fires (No Power Line) 2005-2019 Total Area Burned per Bin California Power Line Fires 2005-2019 Total Area Burned per Bin # Area Burned as Risk Proxy California Fires (No Power Line) 2005-2019 Total Area Burned per Bin California Power Line Fires 2005-2019 Total Area Burned per Bin # Uncertainty as Risk California Fires (No Power Line) 2005-2019 Total Area Burned per Bin California Power Line Fires 2005-2019 Total Area Burned per Bin # Summary of Problem - Power line fires are more likely to ignite under extreme weather conditions. - The greatest amount of future damage will come from the most extreme events. - We know little about maximum size or frequency of extreme fires, making risk estimates uncertain. # Proposal: ### Optimized mitigation with heuristic kill-switch - Weather event as risk event - Extreme event risks and uncertainties managed by PSPS - Reduce PSPS for lower risk tiers - i.e.: What's happening now except formalized to improve: - Customer experience - Regulatory supervision - Spending priorities # Proposal: ### Optimized mitigation with heuristic kill-switch - Can be done in MAVF framework - Weather Risk Event Advantages: - Allows PSPS risks to be treated in same way as wildfire risks - Captures increased risk of utility ignitions - Allows clear mitigation goals to be set - Allows straightforward use of climate inputs Wildfire weather intensity tranches, based on frequency Wildfire weather intensity tranches, based on risk #### Weather events - Meteorological (Abatzoglou) - Fosberg Fire WeatherIndex - SAWTI - FPI - Measured ### Wildfire Sizes vs. Weather Event Severity - Group all wildfires into weather tranches - "Baseline" tranche t0 no weather effects - Tranches t1,t2,t3 from moderate to extreme **Short-Term Goal** --- PSPS for severe wildfire risk - --- Mitigation for moderate tranche, raise PSPS threshold - --- Safe operation for baseline risk #### **Medium-Term Goal (example)** --- PSPS for severe wildfire risk - --- Mitigation for severe tranche, - --- Safe operation for moderate and baseline risk #### **Mitigations** --- PSPS mitigations (notification, microgrid, restoration) - --- Weather-sensitive ignition - --- Wildfire ignition risks # PSPS – Dangers on Both Ends #### **PSPS Hazards** (w. alleged examples) - Economic Losses - At-risk Individuals - Loss of Communications (San Anselmo house fire fatality) - Generator fires (Thief fire) - Cooking fires (Tick fire) - Auto accidents (PG&E claims) # Wildfires Before/During/After PSPS (w. alleged electrical involvement) | Fire | Date | Utility | |-----------|--------------------|---------| | Camp | November 8, 2018 | PG&E | | Kincade | October 23, 2019 | PG&E | | Zogg | September 27, 2020 | PG&E | | Silverado | October 26, 2020 | SCE | | Cornell | December 7, 2020 | SCE | - Tranches: $t_i...t_N$ - Baseline Tranche: t_0 - Baseline Wildfire Rate: F_{θ} - Fire Weather Event Frequency: f_i - Fire Multiplier: π_i Fires per weather event • Tranche Wind Speed: v_i Not ideal. Will be broad range of wind speeds - Power Line Frequency Multiplier: P_i - Increase of ignition rate for each severity ranking - Wildfire Consequence Distribution: dW_i/dA_i - Probability distribution used for Monte Carlo - Wildfire Consequence Mean: \overline{W}_i - Cutoff Size: A_{max,i} - Minimum Reliable Size: A_{min} - Power Law Exponent: α_i • De-energization Severity: d_i , i > 0 How extensive is PSPS, geographically & in time? • De-energization Consequences: $D_i = Sd_i$ S is PSPS harm per customer per hour - TBD - De-energization Inefficiency: ε - Risk from PSPS fires (generators, cooking, etc.) - Risk from de-energizing in wrong place - Increased risk from all wildfires (communication, etc.) - Wildfire Mitigation Efficiency: w_i^j - De-energization Mitigation Efficiency: q_i^j # Where Pieces Fit ### And the Math Power line wildfire risk: $$R_i = f_i \pi_i P_i \overline{W}_{\mathrm{I}}$$ PSPS risk: $$R_i = R_i^{PSPS} + R_i^{WF} = f_i(D_i + \pi_i \varepsilon_i P_i \overline{W}_i)$$ # Safe Operation Threshold Safe operation without PSPS: $$\pi_i(1-\varepsilon_i)P_i\overline{W}_i > D_i$$ Safe operation with mitigation (ex. Tier 2): $$\prod_{j=1}^{W} (1 - w_2^j)(1 - \varepsilon_2)\pi_2 P_2 \overline{W}_2 < \prod_{j=1}^{Q} (1 - q^j)D_2$$ # Other issues - Climate change - Attributes - Other Tranches # Increase in Extreme Fire Weather Frequency Due to Climate Change ### Changes f_i Goss, M., Swain, D.L., Abatzoglou, J.T., Sarhadi, A., Kolden, C., Williams, A.P., Diffenbaugh, N.S., 2020. Climate change is increasing the risk of extreme autumn wildfire conditions across California. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ab83a7 ## Other MAVF Questions - How do we divide into attributes? - TBD but should be straightforward - What about other tranche definitions? - Should be fine, subdivide each into fire weather severity tranches. - Monte Carlo or Averages? - Monte Carlo can deal with correlated risks # Next Steps | Component | Symbols | Difficulty | Source | Comments | |--|--|------------|---|---| | Wildfire weather tranches and event rates. | t_i , F_0 , f_i | Moderate | Academic, CA fires | Methodology for fire weather event severity has been developed by several groups. | | Wildfire consequence distributions and means | dW _i /dA,
α _i | Moderate | Academic, CA fires | Methodology for fire size distributions has already been developed by several groups. | | Fires per event | Π_{i} | | Academic, CA fires | Will come out of tranche analysis. | | Power line frequency multiplier | P _i | Moderate | Utility data, weather | Existing utility data is sufficient to show increase in outage/damage rates as a function of wind speed. | | PSPS event severity | d _i | Easy | Utility SME, PSPS history | Once tranches & severity are established, extent of associated PSPS event can be calculated. | | PSPS consequences and efficiency | S, Di, ε | Hard | Utilities, consultants, CPUC, intervenors | CPUC or WSD needs to develop methodology for quantifying customer harm. | | Mitigations for wildfire and PSPS | w _i , q _i | Easy | Utilities | Utilities have mitigation estimates already, need to divide them into weather severity tranches if they depend on wind. | # Thank you Joseph W. Mitchell, Ph. D M-bar Technologies and Consulting, LLC jwmitchell@mbartek.com # SUPPLEMENTAL SLIDES # Frequency vs Probability