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1. INTRODUCTION 

 

This whitepaper has been prepared by Mussey Grade Road Alliance (MGRA) expert Joseph 

Mitchell, Ph.D. at the request of the Safety Policy Division (SPD) to provide a technical analysis for 

the proper use of power laws and the proper incorporation of tail risk to be considered in the Risk-

Based Decision-Making Framework (RDF) proceeding R.20-07-013.  

 

For the sake of this discussion, the Scoping Memo1 defines “tail risks” or “tail values 

events” as low probability, high consequence risk events. In Phase 1 the Commission analyzed the 

use of power law distributions to represent wildfire consequences, and while supporting their use 

did not make them a requirement or define them as a “best practice”, but rather deferred tail risk as 

a high priority for future work.2 

 

This paper will summarize the current state of “tail risk” analysis by the three largest 

utilities, including the use of power law distributions. The current white paper will provide an 

assessment of the strengths and weaknesses of these approaches along with recommendations for 

current practice and future research and development.  

 

2. HISTORY 
 

During Phase 1 of the current proceeding, MGRA submitted a white paper on the use of 

power laws to describe the size distribution of wildfires.3 In this paper, MGRA described how “fat-

tailed” power law distributions have been shown by many studies to provide a good fit to wildfire 

size distributions over many orders of magnitude. This type of distribution arises from a process 

known as “self-organized criticality”, which applies to various build-up/breakdown phenomena 

such as sandpiles, landslides, and earthquakes, as well as wildfires.4  In the case of wildfires, the 

 
1 R.20-07-013; ASSIGNED COMMISSIONER’S PHASE 3 SCOPING MEMO AND RULING 
EXTENDING STATUTORY DEADLINE; May 31, 2023. 
2 Phase 3 Roadmap Proposal; p. 4. 
3 R.20-07-013; WILDFIRE STATISTICS AND THE USE OF POWER LAWS FOR POWER LINE FIRE 
PREVENTION; FINAL: FEBRUARY 11, 2021 
https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M368/K055/368055506.PDF 
Appendix A. 
4 Bak, P., 1999. How Nature Works: the science of self-organized criticality, First Softcover edition. ed. 
Copernicus, New York. 

https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M368/K055/368055506.PDF
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exponent associated with the power law is such that the cumulative distribution does not converge – 

in other words that the more data that is collected over time the larger the average size will become, 

and also implies that the majority of losses will come from the very largest fires.  The MGRA 

whitepaper suggested that we apply the model from Moritz,5 which assumes a cut-off in the 

maximum wildfire size based on the physical limitations of burnable areas.  

 

In response to MGRA’s white paper, Safety Policy Division (SPD) Staff’s preliminary 

recommendations were to “apply power law functions to model wildfire risks, as a best practice, 

and in the event they choose an alternative approach, to provide thorough justifications…”6  The 

later revision of Staff’s recommendations removed the reference to best practice in response to 

party comments and Decision 21-11-009 determined that: “We adopt Staff’s proposal and defer 

requiring or recommending use of the power law probability distribution as an MAVF best practice 

at this time. We direct Staff to continue to monitor this issue in their reviews of IOU RAMP filings 

and, if and when appropriate, to work with the TWG to provide a follow up recommendation on this 

topic as early as Phase II of this proceeding, if feasible.”7 

 

Meanwhile, Pacific Gas and Electric (PG&E) offered to do its own analysis of the power 

law distribution and provided its own whitepaper published in September 2021.8 PG&E’s analysis 

provided a skillful review of the available literature and data, and performed fits to the data using 

both Generalized Pareto distributions (equivalent to power law distributions) and a lognormal 

distribution, which it had previously been using to model extreme losses. In their conclusion PG&E 

stated that it:  

“currently lacks the analytical tools to confirm or reject the hypothesis that truncated PD1 

(truncated power law) and truncated PD2 distributions describe extreme-value wildfire 

consequences significantly better than do other distributions - in particular, the truncated 

lognormal distribution. PG&E ultimately decided to use the power law distribution to describe 

 
5 Moritz, M.A., Morais, M.E., Summerell, L.A., Carlson, J.M., Doyle, J., 2005. Wildfires, complexity, and 
highly optimized tolerance. Proceedings of the National Academy of Sciences 102, 17912–17917. 
https://doi.org/10.1073/pnas.0508985102 
6 R.20-07-013; Safety Policy Division Risk Assessment and Safety Analytics Section; Staff Memo; 
Rulemaking 20-07-013 Phase I Track 1 Scoping Issues; April 30, 2021; p. 16. 
7 p. 33. 
8 Pacific Gas and Electric Company; “Power Law Distribution”; September 3, 2021. 
Available at:  
https://data.mendeley.com/public-files/datasets/8nds4cx88k/files/c0178e67-92fc-4ab3-9ea7-
7fdcdf3b4556/file_downloaded 

https://doi.org/10.1073/pnas.0508985102
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some of its data based on a combination goodness-of-fit test results and because it assigns, 

consistent with historical frequencies, more weight to extremely high consequence events. However, 

the use of truncated PD1 and PD2 distributions currently introduces many complexities and trade-

offs that are dependent on the data being studied and the limitations of the analytical methods. 

Hence, PG&E cannot currently recommend the adoption of the power law for generalized settings. 

PG&E will continue to investigate the appropriateness of the power law’s use and better methods 

for calibrating the upper truncation and shape values.”9 

 

While other distributions could not be definitively excluded due to the small number of 

catastrophic wildfire events available to fit, PG&E chose to move forward with Generalized Pareto 

distributions because they are consistent with historical data and because they adequately weight 

high consequence events. PG&E incorporated the distribution into the enterprise risk model, which 

uses a “Monte Carlo” program to simulate potential losses to calculate the risk value used in its Risk 

Assessment Mitigation Phase (RAMP) and General Rate Case (GRC) proceedings.10 

 

 In 2021, MGRA provided comment on SDG&E’s RAMP showing that SDG&E’s use of a 

gamma function to model tail risk was likely to underestimate catastrophic losses.11 Based on this 

input, Safety Policy Division recommended that SDG&E re-evaluate its use of a gamma 

distribution for its enterprise risk calculations in its comments on SDG&E’s RAMP filing.12 

SDG&E then adopted PG&E’s model of a Generalized Pareto Distribution in its GRC.13 

 

 Only SCE has not adopted a power law distribution for its enterprise risk model, instead 

claiming that:  

“While power law analyses may be beneficial in understanding system-wide tail-end risk in 

instances where more granular circuit or circuit segment level analysis is unavailable, the 

generalized power-law types of analyses should not supplant more detailed and granular analyses, 

 
9 Id.; pp. 9-10. 
10 A.21-06-021; MUSSEY GRADE ROAD ALLIANCE OPENING BRIEF ON PACIFIC GAS 
AND ELECTRIC COMPANY’S 2023 GENERAL RATE CASE; November 4, 2022; pp. 17-18. 
11 A.21-05-011, A.21-05-014; Safety Policy Division Staff Evaluation Report on SDG&E’s and SoCalGas’ 
Risk Assessment and Mitigation Phase (RAMP) Application Reports; November 5, 2021; pp. 2-5. (SPD 
SDG&E RAMP Report) 
12 SPD SDG&E RAMP Report; p. 11. 
13 A.22-05-015/016; Exh. SDG&E-03-2R; SECOND REVISED PREPARED DIRECT TESTIMONY OF 
GREGORY S. FLORES AND R. SCOTT PEARSON (CHAPTER 2: RAMP TO GRC 
INTEGRATION); November 2022; pp. RSP/GSF-9, RSP/GSF-B-2,5,10,11,16. 
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which SCE has already included. In SCE’s RAMP Report, tail-end wildfire risk is characterized by 

using the maximum simulated consequence over an eight-hour simulated burn period for each 

individual circuit segment. The benefit of this approach is that it allows SCE to expand the analysis 

beyond historical catastrophic wildfire information, which, as power law implies, are relatively 

rare events and for which data may not be available at a granular level.”14 MGRA’s informal 

comments on SCE’s 2022 RAMP claimed that the eight hour wildfire spread modeling was 

inadequate to capture the most extreme events that dominate overall loss statistics.15 

 

 In its SCE 2022 RAMP evaluation report, SPD concludes:  

“SPD agrees with MGRA that SCE needs to develop an enterprise risk model (ERM) that 

accurately describes catastrophic wildfire risk. As MGRA referenced, the Commission required in 

D.21-11-009 that ‘Any best practice for wildfire modeling must produce a set of consequences for 

wildfires that sufficiently incorporate high-end losses.’ 

Hence, SPD recommends that SCE demonstrate the extent to which its risk model correctly 

characterizes extreme catastrophic fires by showing its predicted loss distribution fits a power law 

distribution and is consistent with the size distribution of historical catastrophic fires. SPD also 

recommends that if SCE’s current risk model does not adequately represent catastrophic losses, 

then SCE should develop and implement an enterprise risk model (ERM) similar to that of PG&E 

and SDG&E, using a power law distribution to represent catastrophic losses, prior to the 

submission of its Test Year 2025 GRC filing.”16 

 

SCE has served its 2025 GRC filing, and upon initial review it does not appear that SCE has 

adopted SPD’s recommendation to adopt a power law model in its enterprise risk analysis, though 

discovery has not commenced in that proceeding. Instead, SCE has developed a novel approach to 

potentially catastrophic fires that dispenses entirely with probability estimation. Instead, it creates 

specific categories of potentially catastrophic fire, and recommends the maximum mitigation of 

undergrounding.   SCE calls this methodology its Integrated Wildfire Mitigation Strategy 

 
14 A.22-05-013; SOUTHERN CALIFORNIA EDISON COMPANY’S (U 338-E) REPLY TO PROTESTS 
TO RAMP REPORT; June 30, 2022; p. 5. 
15 MGRA Informal Comments to SPD re SCE’s RAMP Filing, 10/10/22, pages 4-11. 
Included in 
A.22-05-013; Safety Policy Division Staff Evaluation Report on the Southern California Edison Company’s 
2022 Risk Assessment and Mitigation Phase (RAMP) Application;  p. 66/142. (SPD SCE RAMP Report) 
16 SPD SCE RAMP Report; p. 31. 
Cites: MGRA Informal Comments to SPD re SCE’s RAMP Filing, 10/10/22, pages 4-11. 
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(IWMS).17 While SCE’s approach will be tested in the ratemaking proceeding, its technical 

foundations will also be briefly discussed in this White Paper.  

 

Additionally, SCE and SDG&E use Technosylva Wildfire Analyst to determine 

consequence for modeling their operational and planning risk models, with an eight hour fire spread 

limitation.18 PG&E has developed a complex consequence model that takes into account fire 

intensity and flame length values from Technosylva Wildfire Analyst, CAL FIRE wildfire history, 

and VIIRS satellite data.19 To date, power law distributions have only been used for the Monte 

Carlo simulation of wildfire consequences that go into enterprise planning models. However it is 

important that all risk models, including planning and operational models, correctly “incorporate 

high-end losses”, as D.21-11-009 states. This White Paper will open the discussion of how this may 

be best accomplished, which may require additional work in a future phase of the proceeding. 

 

3. QUESTIONS REGARDING TAIL RISK 
 

3.1. Definition of Tail Risk 

 

How is "tail risk" defined for the purpose of utility wildfire mitigation? 

 

The R.20-07-013 Phase 3 Scoping Memo defines “tail risks” or “tail values events” as “low 

probability, high consequence risk events”. 20  

 

The Scoping Memo further explains that “Work on this issue in Phase 3 will center on 

understanding the IOUs’ use to date of the power law probability distribution function to model 

wildfire tail risk, the results, strengths and any weaknesses of this approach, and what further 

 
17 MUSSEY GRADE ROAD ALLIANCE PROTEST TO SOUTHERN CALIFORNIA EDISON  
COMPANY 2025 GENERAL RATE CASE APPLICATION; p. 5-6. 
18 OEIS Docket 2023-2025 WMPs;  
Southern California Edison Company; 2023-2025 WILDFIRE MITIGATION PLAN; 
March 27, 2023; TN11952-2_20230327T125844_20230327_SCE_2023_WMP_R0.pdf; p. 95. (SCE WMP) 
San Diego Gas & Electric Company; 2023-2025 Wildfire Mitigation Plan; March 27, 
2023; TN11948_20230327T160734_20232025_SDGE_WMP_with_Attachments-1.pdf; p. 54. (SDG&E 
WMP). 
19 OEIS Docket 2023-2025 WMPs; Pacific Gas and Electric Company; Wildfire Mitigation Plan; March 27, 
2023; TN11965-1_20230327T160416_PGE's_20232025_Wildfire_Mitigation_Plan.pdf; pp. 146-147. 
(PG&E WMP). 
20 p. 5. 
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guidance by the Commission may be needed. Specifically, work will address whether the 

Commission should require use of the power law probability distribution function to model wildfire 

risk, whether the Commission should recommend use of this approach as a best practice, or 

whether the Commission should take some other course of action to ensure appropriate modeling of 

wildfire tail risk and communication of associated uncertainties in IOU RAMP filings? 

Additionally, discussions will consider how the IOUs have represented other low 

probability, high consequence risk events in their RAMP filings to date, including risks related to 

hydro dam safety and seismic events. Work in this area will explore whether additional guidance is 

needed regarding modeling of low probability, high risk events more generally in the RDF and 

RAMP filings.”21 

 

The purpose of this White Paper is to specifically discuss power law probability 

distributions with respect to wildfire sizes, and the impact of high-end wildfire loss events in 

general. As hydroelectric and seismic risks are not my field of expertise I will defer to subject 

matter experts in these areas, and will note that the power law size dependency is specific to certain 

domains and based upon the physics of the underlying system. 

 

3.1.1. Standard definition of “Tail Risk” 

 

The traditional use of “tail risk” comes from finance and concerns the management of 

financial risk and asset portfolios. Tail risk is generally defined with respect to a normal distribution 

(bell curve) and describes deviations from the mean of three standard deviations or more.22 Its usage 

in Commission proceedings is more closely related to a specific category of tail risk events 

characteristically known as “Black Swan” events,23 which describe the out-sized impact of rare 

events that cannot be explained by the standard normal distribution.  From the Commission’s 

standpoint, the “tail-risk” describes the fact that the vast majority of damage and harm done by 

utility fires comes from a few rare catastrophic events. Part of this observation arises from the 

nature of the power law distribution, and the remainder may be attributed to what are known as 

 
21 Id.; pp. 6-7. 
22 https://en.wikipedia.org/wiki/Tail_risk 
23 From: Taleb, N.N., 2010. The Black Swan - The Impact of the Highly Improbable, Second. ed. Random 
House, New York. 

https://en.wikipedia.org/wiki/Tail_risk
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“common cause failures”. Both of these factors contribute to the utility wildfire problem and both 

will be addressed in this whitepaper. 

 

3.1.2. Power Laws and wildfire 

 

A full description of power laws was provided in the Phase 1 Whitepaper submitted by 

MGRA.24  Highlights from that paper will be repeated here for the reader’s convenience.  

 

Power laws are a class of statistical distributions that follow “scaling” or “self-similar” 

distributions over many orders of magnitude.  If two variables are related by a power law, then the 

increase or decrease of the magnitude of one variable will be proportional to the increase or 

decrease in the magnitude of the other variable.  Mathematically this is shown as:  

 

𝑦𝑦 = 𝐶𝐶𝑥𝑥−𝛼𝛼 

 

These are often plotted on log-log plots, since this demonstrates the linear relationship 

between the scales:  

 

log𝑦𝑦 = −α log 𝑥𝑥 + log𝐶𝐶 

 

Power laws are observed in numerous disciplines:  physics, economics, information 

technology, sociology, biology, ecology, urban planning, to name some.  While some power laws 

are direct manifestations of physical laws (for instance Kepler’s Law in astronomy), some power 

law relationships arise spontaneously from interrelationships between system components, or are 

“self-organized”. This has led to an entire discipline of “complexity science” that attempts to 

explain phenomena as a result of universal scaling laws.  The literature on this topic is extensive, 

including not only academic articles but numerous books, as well as popular treatments.25 Per Bak, 

one of the founders of complexity science explained that “complex behavior in nature reflects the 

tendency of large systems with many components to evolve into a poised, ‘critical’ state, way out of 

 
24 R.20-07-013; WILDFIRE STATISTICS AND THE USE OF POWER LAWS FOR POWER LINE FIRE 
PREVENTION; FINAL: FEBRUARY 11, 2021 
https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M368/K055/368055506.PDF 
25 For example, “Scale: The Universal Laws of Growth, Innovation, Sustainability, and the Pace of Life in 
Organisms, Cities, Economies, and Companies”, by Geoffrey West; 2017; Penguin Press. 

https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M368/K055/368055506.PDF
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balance, where minor disturbances may lead to events, called avalanches, of all sizes. Most of the 

changes take place through catastrophic events rather than by following a smooth gradual path.”26 

 

Wildfire sizes were among the first natural hazard phenomena to be characterized as power 

law distributions. Malamud, Morein and Turcotte’s pioneering work in 199827 found scaling 

behavior when looking at a variety of wildfire size data sets.  This work and others28 also 

demonstrate that the power law behavior can be generated by simple toy models of wildfire 

ignition, such as cellular automata.  

 

 
 
Figure 1 - Example wildfire size distribution from Malamud, et. al. (Reference 27). This distribution shows wildfire 
sizes in km2 (horizontal axis) from US Fish and Wildlife Service lands from 1986 to 1995. The data are plotted as a 
non-cumulative distribution, in which the y axis value represents the total number of fires within a particular size bin.  
Power laws show a linear distribution when plotted on a log-log plot.  

 

This relationship was studied by other authors as well. Some authors such as Beguini and 

Marinov29 confirmed the direct power law relationship for wildfire sizes. Others, using wildfire 

sized distributions from different areas, such as Newman, which uses a larger data set, shows an 

apparent truncation in the data, which he asserts “could follow a power law but with an exponential 

 
26 Bak, P., 1999. How Nature Works: the science of self-organized criticality, First Softcover edition. ed. 
Copernicus, New York. 
27 Malamud, B.D., Morein, G., Turcotte, D.L., 1998. Forest Fires: An Example of Self-Organized Critical 
Behavior. Science 281, 1840–1842. https://doi.org/10.1126/science.281.5384.1840 
28 Turcotte, D.L., Malamud, B.D., Guzzetti, F., Reichenbach, P., 2002. Self-organization, the cascade model, 
and natural hazards. PNAS 99, 2530–2537. https://doi.org/10.1073/pnas.012582199 
https://www.pnas.org/content/99/suppl_1/2530 
Drossel, B., Schwabl, F., 1992. Self-organized critical forest-fire model. Phys. Rev. Lett. 69, 1629–1632. 
https://doi.org/10.1103/PhysRevLett.69.1629 
29 Benguini and Marinov, 2015; Reference 4.  

https://doi.org/10.1073/pnas.012582199
https://www.pnas.org/content/99/suppl_1/2530
https://doi.org/10.1103/PhysRevLett.69.1629


 

 

9 

 

cutoff”.30 Li and Banerjee have shown that California wildfire size distributions since 2000 are best 

described by a truncated Pareto distribution (a power law).31 

 

The consensus of the literature is that utility wildfire size distributions follow a power law 

over a wide span of sizes.  Therefore, the modeling of utility fires should be able to either directly 

utilize or alternatively reproduce the “naturally” occurring distribution.  

 

Recommendation: 

Wildfire risk models should either 1) directly use an appropriate power law distribution, such as the 

base distribution for a Monte Carlo simulation or 2) be able to show that their model produces 

results that are consistent with a power law when appropriately weighted by probability and 

consequence. 

 

3.2. Fat-Tailed Distributions and Extreme Consequences 

 

What might be the consequences of failing to adequately model tail risk in enterprise, planning, 

and operational models? How significant are these consequences? 

 

Power laws are an example of “fat-tailed” distributions, in which the overall weight of the 

distribution is dominated by rare or even extreme events. In fact, for certain values of the exponent 

(|α| < 1 for the cumulative distribution) the integral of the power law (used for weighting 

probabilities) does not converge, which means that the contributions from extreme events will 

always dominate the results.32 The mean, if calculated, becomes larger as more events are included 

in the distribution, so it is impossible to predict the mean accurately based on any amount of past 

data. Contributions from future events will always be larger (in the long run) than those from past 

events.  

 

 

 

 
30 Newman, M.E.J., 2005. Power laws, Pareto distributions and Zipf’s law. Contemporary Physics 46, 323–
351. https://doi.org/10.1080/00107510500052444 
31 Li, S., Banerjee, T., 2021. Spatial and temporal pattern of wildfires in California from 2000 to 2019. Sci 
Rep 11, 8779. https://doi.org/10.1038/s41598-021-88131-9 
32 Id. 

https://doi.org/10.1080/00107510500052444
https://doi.org/10.1038/s41598-021-88131-9
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The absolute value of the power law exponent for power line wildfires is small, less than 

0.5.  This throws a monkey wrench into standard statistical treatments, which are based on 

projections from historical data.  An exponent this small implies that one cannot derive an accurate 

mean using past history. Future events will always be larger, and throw off any mean based on 

backwards-looking data. This is true for any exponent with an absolute value less than 1.0.  As 

Taleb writes about this class of power law, “…there is no mean. We call it the Fuhgetaboudit. If you 

see something in that category, you go home and you don’t talk about it.”33 Those of us who have 

homes or operate businesses in the wildland urban interface (WUI) and regulators who oversee 

companies in the WUI do not have the luxury of “fuhgettingaboudit”. We have to determine how 

best to determine and bound this risk. 

  

One key consideration with fat-tailed distributions is uncertainty.  Out on the tail of the 

distribution the statistical uncertainty is larger, as well as the potential for systematic uncertainties, 

such as effects driven by rare and as yet unmeasured phenomena. Because of the overweighted 

contribution of the extreme tail to the overall result, these uncertainties can have a significant or 

even dominant effect.  

 

3.2.1. Effect of underestimation of tail risk 

 

In wildfire, one can easily observe that the cumulative losses are dominated by the very 

largest fires. This is evinced in the following graph: 

 

 
33 Taleb, N.N., 2020. Statistical Consequences of Fat Tails: Real World Preasymptotics, Epistemology, and 
Applications. STEM Academic Press. https://arxiv.org/abs/2001.10488; pp. 27-28. 

https://arxiv.org/abs/2001.10488
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Figure 2 - Total area burned per logarithmic bin for California wildfires 2005 to 2019, calculated by multiplying 
logarithmic mean of bin by number of wildfires in the bin. Power line related wildfires are compared against full sample 
with wildfires removed. It is important to note that these are not cumulative plots.  
 

These data show that the total losses for both power line and non power line caused fires are 

dominated by the very largest fires.  Underestimating wildfire size has a number of direct 

consequences: 

 

• Risk models will show overall financial and safety consequences that are too small, 

and therefore underestimate the value of mitigation. This may lead to 

underinvestment in mitigation, and consequently the loss of life and property. 

• When applied to fire spread models, such as are used by SCE and SDG&E for 

planning and operation and by SCE for its enterprise risk models, underestimating 

fire size will “urbanize” predicted risk, since the model will not adequately represent 

risk from ignition points at a great distance from the area where losses occur.  

 

3.2.2. Wildfire simulations and the 8 hour limitation 

 

As pointed out in numerous previous MGRA filings and as acknowledged by the 

Commission and OEIS, the 8 hour limitations place upon fire spread simulations by the utilities 

places an inherent cap on the size of possible wildfires.34 This is evidenced by the figure below, 

 
34 MGRA 2023 WMP Comments; pp. 33-36.  
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which shows raw Technosylva fire size data provided by SCE and PG&E in data requests in other 

proceedings: 

 
Figure 3 - Raw Technosylva simulation data was provided by SCE and PG&E in response to MGRA data requests, and 
the logarithm of maximum wildfire size for each set of 8-hour runs was accumulated into histograms.35 

 

As can be seen from these figures, the size of the distribution is flat, then falls off rapidly to 

a cutoff. For SCE, this cutoff is approximately 50,000 acres and for PG&E it is approximately 

25,000 acres. The flat mesa-like distribution is an artifact of the fact that Technosylva simulations 

are only run on “worst-case” wildfire days.36 Hence the fire sizes are heavily biased to be larger. 

However, the 8 hour cutoff prevents wildfires from growing to the full extent typically seen under 

worst case conditions, sometimes exceeding 200,000 acres. 

 

Recommendation: 

Technosylva should be requested to provide a probability-weighted wildfire size distribution that 

will remove bias introduced by use of the “worst case” weather days. This distribution can then be 

validated on a log-log plot to validate whether the Technosylva simulations follow the power law 

dependency seen in natural wildfires. 

 

 

 

 

 
35 MGRA 2023 WMP Comment workpapers: 
https://github.com/jwmitchell/Workpapers/blob/main/WMP23/perimeters_19_1.xlsx 
36 Op. Cite. 

https://github.com/jwmitchell/Workpapers/blob/main/WMP23/perimeters_19_1.xlsx
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3.2.3. Effect of the 8 hour limitation on operational and planning risk models 

 

In its 2022 Wildfire Mitigation Plan, PG&E’s WDRM v2 consequence model used only 

Technosylva wildfire spread modeling with an 8 hour cutoff to estimate consequences. The results 

of this are shown in the wildfire risk map for PG&E’s service area in the vicinity of Sacramento and 

Lake Tahoe: 

 

 
Figure 4 - PG&E's calculated risk scores using its WDRM v2 in the Sacramento / Lake Tahoe area.37 
 

The noteworthy feature of Figure 4 is that the higher risk circuit segments (shown in orange 

and yellow) are closer to the urban areas. More remote areas generally show lower risk. This 

dependence is driven by the consequence values, which are higher near the point of ignition if the 

size of the fires is limited.  

 
37 OEIS Docket 2022-WMPs; MUSSEY GRADE ROAD ALLIANCE COMMENTS ON 2022 WILDFIRE 
MITIGATION PLANS OF PG&E, SCE, AND SDG&E; April 11, 2022; p. 46. 
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In 2023, PG&E adopted WDRM v3, its more complex and elaborate consequence model 

that no longer depends directly on fire sizes calculated by Technosylva fire modeling. As noted 

earlier, it uses flame length and fire intensity calculations by Technosylva, but also uses historical 

fire sizes and VIIRS satellite data. Consequence values calculated in this manner result in a very 

different risk distribution, as seen below: 

 
Figure 5 – Figure PG&E-6.2.2-9 of PG&E’s WMP showing WDRM v3 consequence scores for the PG&E service 
area.38 

 
38 2023 PG&E WMP; p. 169. 
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It is clearly evident that the modelled consequence in WDRM v3 is radically different from 

that seen in WDRM v2. Primarily, it shows that the greatest consequence scores are more generally 

found in more remote regions where large fires are more likely to start. In this way, WDRM v3 

appears to more accurately model large fires. However, MGRA’s 2023 WMP comments noted a 

number of issues with it that suggest that WDRM v3 too may underrepresent the tail risk posed by 

large fires.39  

 

A final example of how consequence models with limitation on fire sizes affect planning 

risk calculations is shown below in SDG&E’s 2023 wildfire consequence modeling.  

 

 

 

 

 
39 MGRA 2023 WMP Comments; pp. 62-63. 
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Figure 6 – SDG&E WiNGS v3 consequence scores for overhead circuits, on a scale of green for lower risk to red for 
higher risk. Superimposed are the ignition points and final perimeters for the Witch/Guejito, Cedar, and Laguna fires.40 

 

SDG&E’s WiNGS v3 consequence model, also using Technosylva Wildfire Analyst with an 

8 hour fire spread limitation, finds the greatest consequences in the immediate vicinity of populated 

areas – specifically within and directly east of the population centers of Ramona, Alpine, and Valley 

Center.  More remote and mountainous areas (eastward in San Diego County) have lower predicted 

consequences.   

 

For comparison, the ignition points of the three largest historical wildfires in San Diego 

County are plotted: The Witch/Guejito fire (2007, 198,000 acres), the Cedar fire (2003, 273,000 

acres), and the Laguna fire (1970, 170,000 acres). The superimposed perimeters of these three fires 

are indicated by the violet area.  These three fires caused more loss of life and property than all the 

 
40 Id; pp. 40-41. Ignition and perimeter data from Cal Fire. SDG&E circuit risk data from 2023 WMP Data 
Request Response CalAdvocates-5-Q4. 
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other San Diego fires combined, demonstrating how the risk of wind-driven Southern California fire 

is dominated by “tail risk” events.  

 

3.3. Risk Drivers 

 

Are there specific drivers of “tail risk” (catastrophic) events or are “tail risk” events simply 

the limit of a continuous distribution? 

 

This is an important question because it asks whether use of a power law distribution is 

sufficient to characterize the risk of utility power line fires. Looking at California fires divided by 

origin into “power line” fires and others, we can see that both of these are well-represented by a 

power law distribution over several orders of magnitude:  

 

 
 

Figure 7 – CAL FIRE perimeter data for wildfires attributed to power line ignitions, shown as cumulative 
distributions plotted on log-log axes.  2007 and 2017 fire attributions are corrected with CAL FIRE and CPUC 
assessments. The trendlines are a guide to the eye, rather than a best fit and shows how power line exponents 
would appear. These are extreme fat-tailed distributions.  Deviations from power law behavior appear above 
30,000 acres (without power lines) and 80,000 acres for power line fires. Maximum scale may be 500,000 acres, 
with large uncertainty. 

 

Trendlines are plotted and serves as a guide to the eye.41  For wildfires, with power line fires 

excluded, a power law with exponent of -0.48 would describe the data over 3 orders of magnitude. 

 
41 As per Clausset 2009 (Footnote 11), least squares methods are prone to bias by tail statistics and a 
maximum likelihood method should be employed to obtain accurate power law exponents.  
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For power line fires, a power law with exponent of -0.44 would fit the data over 3.5 orders of 

magnitude. Both distributions show a drop off, with non-power line fires deviating from power law 

above 30,000 acres and power line fires deviating over 80,000 acres. Statistics are poor and 

uncertainties large for the largest fires, but the data is at least apparently consistent with a maximum 

size scale on the order of 500,000 acres for California fires, which is the cap chosen by PG&E and 

SDG&E for their modeling (Section 3.4). 

 

So superficially, power line fires follow a similar size distribution to other fires in 

California. However, non-power line fires seem to truncate much more steeply for the largest fires. 

In practical terms, this means that fires from electrical sources tend to have larger impacts than fires 

from other sources. This can be seen in the CAL FIRE “Top 20” fire listings: 

 
Wildfires Number of Electrically 

Caused(out of 20) 
Fraction of Losses Due to 
Electrically Caused Wildfires 

Deadliest  4 39% 
Most Destructive 8 66% 
Largest  3 21% 

 
Table 1 - CAL FIRE “Top 20” deadliest (by fatalities), most destructive (by structures), and largest (by acres burned) as 
of November 2022 showing relative contribution of electrically ignited wildfires to total numbers and total losses. 

 

3.3.1. Tail risk from wind - a “common cause” risk driver 

 

As electrically caused wildfires typically make up less than 10% of overall wildfires, there is 

something about them that makes them especially pernicious. As MGRA filings have noted since 

2009, this is because of the coincidence of weather conditions that cause the outage that ignites the 

fire and weather conditions conducive to the rapid spread of wildfire.  

 

The answer to the questions posed for this section is that severe utility wildfires are natural 

outcomes of a power law distribution that can be amplified by external driver events. 

 

The extreme dependence of outage rates on local wind speeds was shown by Mitchell.42 

This work studied SDG&E outage data and measured the relative probability of outages on circuits 

 
42 Mitchell, J.W., 2013. Power line failures and catastrophic wildfires under extreme weather conditions. 
Engineering Failure Analysis, Special issue on ICEFA V- Part 1 35, 726–735. 
https://doi.org/10.1016/j.engfailanal.2013.07.006 
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based on the peak wind gust speed at the nearest weather station.  

 
Figure 8 - Excess outage probability as a function of wind speed obtained by normalizing SDG&E outage data with 
historical Mesowest weather station data. For each outage, a wind speed was determined at the nearest appropriate 
weather station for the circuit having the outage. Historical data for each of these weather stations was analyzed to 
determine what fraction of time the wind speed exceeded the speed at which the outage occurred. Data were then 
normalized against a baseline wind speed of 8 km/hr, giving the number of outages per unit time at a particular wind 
speed at that location compared to number of outages that would be expected during calm weather. The vertical scale is 
logarithmic. Data show a ten-fold increase in outage rate for every 15-20 mph increase in wind gust speed. Reproduced 
from Mitchell 2012, Footnote 42.  

 

Mitchell also demonstrates that catastrophic utility wildfires are usually caused by a 

“common cause” failure. The external cause – wind – creates the conditions for 1) damage to utility 

equipment that causes sparks, 2) increased probability that arcing utility equipment will ignite 

vegetation, 3) situations where fire agencies will have a smaller chance of controlling the ignition,43 

and 4) situations where the wildfire will spread rapidly, potentially becoming catastrophic. 

 

 

 

 

 

 
43 Mitchell, J.W., 2009. Power lines and catastrophic wildland fire in southern California, in: Proceedings of 
the 11th International Conference on Fire and Materials. Citeseer, pp. 225–238. 
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3.3.2. Tail risk from external drivers  

 

In the context of “tail risk” we should introduce the concept that the external drivers (wind, 

temperature, and drought) are also subject to statistical fluctuations, and that their extrema will have 

an outsized effect on wildfires:  

 

• Extreme drought. California has recently suffered two severe droughts (2012-2016 

and 2020-2022). Lower fuel moisture leads to greater potential for more easily 

ignited and larger fires. It was during the latest drought that the Dixie fire became the 

largest recorded California wildfire from a single ignition.  

• Extreme fire winds. It is not known what the most intense foehn event (Santa Ana, 

Sundowner, Diablo) wind event can possibly be, but planning and mitigation must be 

robust against the potential that future events will exceed historical events in 

intensity. However, the most recent climate models show a weak prediction that the 

intensity of Santa Ana winds will decrease over time, though this has not yet been 

observed in data.44,45 

 

Recommendation: 

Use of a power law distribution to model utility risk should tune parameters to fit the curve shown 

for power line fires, which tends to have a higher cutoff due to the influence of external risk drivers. 

Recommendation: 

Risk models using simulation must be able to incorporate consequence events from the largest and 

most destructive wildfires. 

 

3.4. Cap of the Truncated Power Law Distribution 

 

What should be the appropriate cap, or method for determining the appropriate cap, in the case 

of a truncated power law probability distribution? 

 

 
44 Hughes, M., Hall, A., 2010. Local and synoptic mechanisms causing Southern California’s Santa Ana 
winds. Clim Dyn 34, 847–857. https://doi.org/10.1007/s00382-009-0650-4 
45 Guzman‐Morales, J., Gershunov, A., 2019. Climate Change Suppresses Santa Ana Winds of Southern 
California and Sharpens Their Seasonality. Geophysical Research Letters 46, 2772–2780. 
https://doi.org/10.1029/2018GL080261 

https://doi.org/10.1007/s00382-009-0650-4
https://doi.org/10.1029/2018GL080261
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3.4.1. Justification for and importance of a cap on the power law distribution 

 

The first item that should be considered with regard to selecting an appropriate cap for the 

power law distribution is whether such a cap actually exists. The statistics in this region, 

corresponding to the very largest wildfires, are extremely limited. It is possible that larger fires are 

possible and that we simply haven’t seen them yet.  Such a hypothesis would be supported by the 

fact that the record for the largest wildfire in California has been broken every few years over the 

past two decades. So, the possibility of larger future fires cannot be discounted. 

 

However, there is theoretical support justifying a maximum fire size. A physical limit will 

be reached as the wildfire size approaches that of the largest contiguous burnable spaces which are 

bounded by the sea and non-vegetated areas, and fire-resistant developed areas. This effect is 

captured in Moritz et. al. which examined data from the Los Padres National Forest and found that 

scaling of wildfire sizes followed a power law with exponent of α = 0.5. 46 Moritz et. al. use a 

“highly optimized tolerance” (HOT) probability loss resource (PLR) model to fit the data, which 

incorporates deviation from power law behavior at both low and high size limits: 

 

𝑦𝑦 = 𝐶𝐶[(𝑎𝑎 + 𝑥𝑥)−𝛼𝛼 − (𝑎𝑎 + 𝐿𝐿)−𝛼𝛼] 

 

where a is the small size cutoff and L is the large size cutoff.  

 

Newman (2005), who used a larger data set size than other researchers, suggested that the 

wildfire size distribution can be described as a power law with an exponential cutoff.  Li and 

Banerjee (fn 31) also have determined that a truncated Pareto distribution provides a better fit to 

recent California fire data than other “fat tail” distributions. 

 

The tractability of a utility wildfire risk calculation depends on the truncation of the power 

law dependency at a maximum size.  Otherwise, the overall risk goes to infinity as time increases.  

 
46 Moritz, M.A., Morais, M.E., Summerell, L.A., Carlson, J.M., Doyle, J., 2005. Wildfires, complexity, and 
highly optimized tolerance. Proceedings of the National Academy of Sciences 102, 17912–17917. 
https://doi.org/10.1073/pnas.0508985102 

https://doi.org/10.1073/pnas.0508985102
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However, there are physical limitations on physical systems. Trees do not grow to the sky. The 

question is how one estimates the size of the largest fire that has not occurred yet. 

 

3.4.2. PG&E approach – Sensitivity analysis 

 

In its 2021 White Paper, PG&E posits a maximum consequence size that is roughly equal to 

five times the losses faced in the Camp fire.47  PG&E tested a number of truncation values from 1.5 

to 100 times the losses of the Camp fire for goodness of fit to existing data. This is shown in the 

figure below: 

 

 
Figure 9 - Truncated PD1 (Type 1 Pareto Distribution) and untruncated lognormal distribution fits to wildfire safety 
consequence data.48  

 

PG&E performed a test of out likely the exceedance of a catastrophic safety consequence 

value was for different cutoffs and for comparison the lognormal distribution. 

 
47 PG&E Power Law White Paper; p. 6. 
48 Id; p. 15; Figure C1. 
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Table 2 - PG&E's calculated survival probability (probability to exceed a specified safety consequence) when using 
each distribution with right truncation points set at various multipliers of the maximums observed from the datasets.49 
 
 

Using this method, PG&E decided to use a multiplier of 5 “to strike the balance of not 

flattening the curve too much but also preserve the tail risk of extreme events.”50 

 

PG&E’s tail risk analysis methodology was rigorous and should be considered a best 

practice. However, as can be clearly seen in Figure 9, the fits that are being conducted are 

extrapolations from areas where data exists into areas where data does not exist, leaving room for 

considerable uncertainty.  Future work in this area should include an exploration of what the 

physical limitations are that would limit wildfire sizes. 

 

Recommendation: 

PG&E’s estimation of safety and financial caps is rigorous and should be adopted as a best practice. 

 

3.4.3. Determining maximum wildfire sizes 

 

While PG&E’s method is statistically rigorous, it is still a statistical extrapolation and 

therefore prone to uncertainties once the size of historical fires is exceeded. It may be of value in 

future work in this proceeding or others to determine the maximum “worst case” fire size that can 

be generated from ignition at a specific geographic point. The distribution of these “worst case” 

wildfire sizes would set an upper limit on the cutoff parameter for enterprise risk models, and the 

geography-specific worst cases could be used in determining tail risk for operational and planning 

models.  

 
49 Id; p. 16; Table C2. 
50 Id. 
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One way of determining “worst case” wildfire risk scenarios would be to run simulations 

such as Technosylva’s Wildfire Analyst for a considerably longer period than the 8 hours typically 

used for utility consequence modeling.  Twenty-four hour simulations were run, for example, when 

Technosylva provided simulations of potential fires that might have been prevented from PSPS 

damage.51   

 

There are two issues with longer wildfire simulations. First, the computing time, and 

therefore cost, increases exponentially with the length of the run. This is not particularly relevant 

because a simulated test of the wildfire maximum size would be a single run per location, whereas 

utility planning and operational simulations typically do large numbers of weather scenarios 

(planning) or periodic runs based on new weather information (operational).  More important is that 

the reliability of the simulation decreases as time progresses. Wildfire simulations do not take into 

account fire suppression, and it is not likely they will do so in the foreseeable future because fire 

suppression is based on individual human decisions in a dynamic and evolving landscape.  One 

particular area where suppression plays a significant role is encroachment of wildfire into developed 

areas, which would drive losses for long wildfire runs. It might be that a combination of extended 

wildfire modeling and input from subject matter experts with experience in wildland firefighting 

could be used to construct reasonable “worst case” scenarios. These scenarios can then be compared 

against the caps derived from purely statistical means and used to adjust maximum losses. 

 

Recommendation: 

“Worst case” simulations should be considered for utility service areas consisting of extended 

wildfire simulations in combination with input from SMEs with strategic firefighting knowledge. 

 

3.4.4. Plume-driven wildfires and climate change 

 

Technosylva claims to be able to adequately model wind-driven wildfires but is challenged 

by “plume-driven” (vegetation driven) wildfires. Examples of vegetation driven wildfires include 

the Butte and Dixie fires.  Wildfire models using more detailed atmospheric physics perform better 

 
51 California Public Utilities Commission; Safety Enforcement Division; 2019 PSPS Event –Wildfire 
Analysis Report IOU: Southern California Edison (SCE); and other utilities. Located at: 
https://www.cpuc.ca.gov/consumer-support/psps/technosylva-2019-psps-event-wildfire-risk-analysis-reports 

https://www.cpuc.ca.gov/consumer-support/psps/technosylva-2019-psps-event-wildfire-risk-analysis-reports
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in this domain,52 but consume considerable computing time and cannot yet be scaled to mass-

production in the way that the Technosylva models have been. 

 

Specific characteristics of plume/vegetation driven wildfires are relevant to the CPUC: 

 

• Because surface winds play a secondary role in wildfire spread, PSPS is not an 

effective mitigation against this kind of wildfire. 

• For wind-driven wildfires, the typical outage causes leading to ignition are 

equipment damage and vegetation contact. For vegetation-driven wildfires any 

ignition is equally likely to contribute to ignition. The probability of ignition (POI) 

machine learning models used by SCE and PG&E are therefore currently adequate to 

accommodate this scenario. 

• “Worst case” plume-driven wildfires can be expected under drought scenarios and 

under conditions of high temperature and low vegetation water content. Climate 

change scenarios should therefore consider these scenarios. 

 

Recommendation: 

It may be beneficial to model “worst case” plume wildfire events in selected areas using models 

capable of incorporating wildfire and atmospheric dynamics to determine the tail risk from this 

class of event. 

 

3.4.5. Extreme wind events 

 

Most of California’s wildfire losses, particular loss of life and property, have occurred due 

to extreme wind events. Hence we have some experience of “tail-risk” wind events, and in fact 

some mitigations in place – specifically PSPS.  The impact of a PSPS event is not evenly 

distributed, with some areas experiencing high winds and other areas quiescent.  Different PSPS 

events also have different lengths. In the table below, weather station data is shown from SDG&E, 

who has the densest weather station mesh in California.  It shows a tally of data collected between 

2015 and 2022, showing the number of weather stations above a certain threshold, as well as the 

 
52 Coen, J.L., Schroeder, W., Conway, S., Tarnay, L., 2020. Computational modeling of extreme wildland 
fire events: A synthesis of scientific understanding with applications to forecasting, land management, and 
firefighter safety. Journal of Computational Science 45, 101152. https://doi.org/10.1016/j.jocs.2020.101152 

https://doi.org/10.1016/j.jocs.2020.101152
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number of measurements taken above that threshold (each measurement corresponding to a time 

increment, mostly 10 minutes).  

 

Wind gust speed 

greater than (mph) 

Stations Measurements M – Sill Hill 

48 146 54030 46488 

55 104 17499 13285 

70 26 1391 482 

85 6 133 5 

111 0 0 0 
 
Table 3 - Wind speed exceedance at SDG&E weather stations, 2015-2022.  'Stations' is the count of the stations 
exceeding threshold at least once during this period. 'Measurements' are the total number of measurements (usually 10 
minute intervals), and is a measure of how much time is spent over threshold. ‘M-Sill Hill’ removes data from the 
anomalously high Sill Hill weather station, whose corresponding circuit has since been undergrounded.53 

 

The “M-Sill Hill” column has the data from the “Sill Hill” weather station removed, which 

regularly experiences gusts over 85 mph.  Otherwise, gusts over 85 mph have historically been rare, 

although that does not preclude them from occurring in the future. 

 

Even though maximum fire wind speeds are not expected to increase in climate change 

scenarios, it is prudent to project what would happen if projections change or if we simply see a 

“tail-risk” wind event.  We would likely have adequate warning of such an event from both 

governmental and utility meteorologists.  Historically, a severe or extreme fire wind event, 

compared to a milder one, is characterized by three things: 1) peak winds are at high or record-

breaking levels at many weather stations, 2) the geographical area over which the event occurs is 

larger, possibly extending beyond areas that typically see this type of event, and 3) the event tends 

to last much longer than milder events. 

 

From the utility standpoint, even if the public is adequately protected from utility-ignited 

wildfire by PSPS, they would still not be protected from the protracted negative impacts of power 

 
53 MGRA 2023 Comments; p. 109, cites: 
Workpaper TURN-SEU-015_ATTACH_Q7_Q8_8584_Weather_jwm.xlsx 
https://github.com/jwmitchell/Workpapers/blob/main/WMP23/TURN-SEU-
015_ATTACH_Q7_Q8_8584_Weather_jwm.xlsx 
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loss. It is possible that in a conceivable “tail risk” even utility supplies of portable generators, etc. 

would be exhausted early in the event, and its personnel may not be sufficient to cope with issues 

experienced by vulnerable and special needs customers. Utilities should have the capability to 

withstand an “off-scale” wind event without imposing an undue burden on customers. 

 

Recommendation: 

Utilities should have contingency plans in place to manage an extreme intensity and duration fire 

wind event.  Utilities should coordinate with partner stakeholders, agencies, and CES. Utilities 

should construct mutual aid agreements with other regions if possible.  The contingency plan should 

be periodically tested by table-top exercises. 

Recommendation: 

Hardening or undergrounding should be prioritized for areas with frequent or extended PSPS 

outages. 

 

3.5. Power law distributions as a best practice 

 

Should the power law probability distribution be required as the baseline distribution 

function for modeling the consequences of wildfire risk?  Should it be recommended as a best 

practice? 

 

Does the power law probability distribution appropriately incorporate tail risk events in 

the wildfire risk, as compared to the use of other distribution functions? 

 

The power law function was shown in Section 3.1.2 to be widely accepted as describing 

wildfire size dependencies over many orders of magnitude.  PG&E’s analysis stops short of 

recommending the power law distribution as a best practice,54 because the technical complexities 

involved and limited data do not permit it to reject other distributions with reasonable statistical 

certainty.  

 

PG&E investigated various loss parameters (area, buildings, fatalities) in its own service 

area and found a visually good match to power law dependencies: 

 
54 PG&E Power Law Whitepaper; p. 9. 
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Figure 10 – PG&E White Paper: Noncumulative frequency-area, frequency-structure, and frequency-fatality graphs 
using large fire (greater than 300 acres) data in PG&E Territory (2015-2020).55 

 

PG&E provides both visual and statistical analysis comparing potential power law 

distributions against the lognormal distribution it had been using. Their analysis shows that the 

lognormal tends to provide a best fit in the low to moderate loss region but significantly 

underestimates tail risk, as shown in the example below: 

 

 
Figure 11 - PG&E Whitepaper Figure 3 - Wildfire data and truncated PD1, truncated PD2, and untruncated lognormal 
distribution fits. In both graphs, the logs of the ranks of the data are plotted against logs of their x values (dollars and 
fatalities).  
 

PG&E also performs goodness-of-fit testing using the Kologorov-Smirnov (KS) test, which 

performs fitting across the entire data set.  Generally, the lognormal fares somewhat better than the 

power law distribution in most attribute tranches, as might be expected from the curves shown in 

Figure 11, since most of the low and moderate values lie closer to the lognormal curve. However, 

 
55 Id.; p. 4. Figure 1. 
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the figure also makes clear that the lognormal distribution will tend to underestimate tail risk by 

orders of magnitude.  

 

Li and Banerjee (fn 31) reached a similar conclusion to PG&E, which when it examined 

wildfires in California from 2000 to 2019 also found that the truncated Pareto distribution provided 

a fit superior to other “fat tail” distributions, as shown in the table below: 

 

   
Table 4 - Li and Banerjee, 2021 Table 2 showing goodness of fit results for California wildfires between 1920 and 1999 
and 2000-2019. Goodness of fit test results are Akaike Information Criterion (AIC), Kolmogorov–Smirnov (K–S) test, 
and Cramer-Von Mises (CvM) test for heavy-tailed distribution fitting. Best fit is shown by the smallest value of the test 
metric. 

 

The important question with respect to how a particular function fits the wildfire size 

distribution is whether these functions are predictive in the ranges responsible for most losses and 

also outside the range of existing data.  The advantage of the power law distribution is not so much 

that it provides an adequate fit to existing data (which it does), but rather that it is based on physical 

and dynamical models that are known to apply to the physical, dynamic wildfire system. 

 

This is exemplified in the comparison performed by MGRA between a power law 

distribution function and a gamma function, which SDG&E had been using for its enterprise risk 

models.  

 

 

 

Wildfire Losses, $ 

Billions 

Gamma 

(3,0.8) 

Power Law (-0.5) Power Law,  

$40 B Max 

2.1 46.3814% 49.8813% 51.0296% 

2.64 61.6927% 55.3316% 57.8912% 
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3.33 76.3285% 60.1893% 64.0067% 

4.19 87.9305% 64.5187% 69.4570% 

5.27 95.2107% 68.3772% 74.3147% 

6.64 98.6246% 71.8162% 78.6440% 

8.36 99.7388% 74.8811% 82.5026% 

10.52 99.9707% 77.6128% 85.9415% 

13.25 99.9983% 80.0474% 89.0065% 

16.68 100.0000% 82.2172% 91.7382% 

21.00 100.0000% 84.1511% 94.1728% 

26.44 100.0000% 85.8746% 96.3426% 

33.28 100.0000% 87.4107% 98.2764% 

41.90 100.0000% 88.7798% 100.0000% 
 
Table 5 - Comparison of power law to gamma function from MGRA informal comments on SDG&E RAMP. The table 
shows Probability of wildfire losses less than specified amount using gamma distribution (SDG&E), power law, and 
power law truncated at $40 billion (MGRA). The gamma function values were calculated using Microsoft Office 
Excel’s GAMMA.DIST function, and match the P95 and P98 values reported by SDG&E in its data request 
responses.56 
 

It was this in part, and partially because the fit was adequate, that PG&E and SDG&E chose 

to use Pareto Distributions to model their enterprise wildfire risk. 

 

As to the question of whether this should be a best practice, the answer is that: 

Wildfire size distributions follow a power law up to a large truncation point, and this 

should be represented in utility risk models. Utilities may use this relationship itself, for instance 

in a Monte Carlo distribution. If a utility uses another method to calculate risk, such as fire 

spread simulation, it must show that its method is equivalent to a power law distribution with a 

cutoff adequate to incorporate tail risk. 

 

3.6. Use of Power Law for Operational and Planning Risk Models 

 

 
56 Safety Policy Division Staff Evaluation Report on SDG&E’s and SoCalGas’ Risk Assessment and 
Mitigation Phase (RAMP) Application Reports (A.) 21-05-011, (A.) 21-05-014; November 5, 2021, (pp. 
209-213/295) Appendix: MUSSEY GRADE ROAD ALLIANCE INFORMAL COMMENTS TO THE 
SAFETY POLICY DIVISION REGARDING SAN DIEGO GAS AND ELECTRIC  COMPANY’S RAMP 
FILING; October 22, 2021; pp. 2-5.  
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Currently, power law distributions are applied only to enterprise risk calculations.  How can 

we represent tail risk in 1) planning and 2) operational risk models? 

 

The original scoping of tail risk and power laws within this proceeding does not include 

operational and planning risk models.  However, the considerations applied to enterprise risk 

models apply equally to operational and risk models, so it is important to raise this issue now so as 

to show that the treatment of tail risk will be incomplete until these issues are addressed.  This 

section therefore lays out potential areas for future discussion regarding tail risk and power laws for 

potential future phases or proceedings. 

 

Current utility planning and operational models have not been shown to reflect the power 

law size dependency for losses.  Figure 3 shows clearly that the wildfire simulations used for 

modeling utility risk do not show a power law dependency.  Technosylva representatives have said 

that such a dependency might become evident if the fire simulation results were weighted by the 

probability of the weather event leading to each result. This should be verified.  

 

However the most important issue is whether operational and planning models properly 

capture tail risk.  This is an involved question that extends beyond the scope of Phase 3, but the 

Commission should at the least lay out a roadmap for how the utilities and stakeholders (who have 

been carrying on technical discussions on these issues in Energy Safety’s Risk Mitigation Working 

Group)57, should finally begin to ensure that their risk estimations capture tail risk. 

 

One of the primary issues is that an eight hour simulation by Technosylva’s Wildfire 

Analyst, used by both SCE and SDG&E, does not capture the largest wildfires. SCE for its part has 

decided to live with the 8 hour limitation, but has in compensation defined classifiers based upon 

consequences alone under which SCE classifies circuits as high risk and assigns them to be 

undergrounded. 

 

3.6.1. Determining tail risk from a wildfire simulation 

 

 
57 https://efiling.energysafety.ca.gov/eFiling/Getfile.aspx?fileid=54072&shareable=true 
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Since it is known that 8 hour fire spread simulations are inadequate to model worst-case tail 

events, what are the difficulties with allowing for longer wildfire spread simulations? As noted in 

Section 3.4.3, Technosylva ran 24 hour simulations to determine the potential losses from wildfires 

that might have been ignited during PSPS events. These calculations have never been validated. 

Perhaps it is time to see whether longer duration Technosylva runs could be useful to at least 

determine statistical distributions of potential wildfire sizes.  

 

A “toy” example of such a study was presented by SCE in its 2023 WMP. In the following 

figure, SCE studied 174 historical wildfires and compared their final sizes to the size at 8 hours 

based on a simulation program: 

 
Figure 12 - SCE study of 174 wildfires comparing the final size of the fire based on a simulation (Sim Table) estimate 
of its size at 8 hours.58 

 

As can be seen in this figure, much of the wildfire growth is occurring after 8 hours has 

passed.  It is important to note that these simulations are not Technosylva’s but rather a product 

called “SimTable”.59  This product apparently produces simulations that always end up matching 

the actual wildfire perimeter as the final result, as shown in the figure below: 

 
58 SCE 2023 WMP; p. 217; Figure SCE 7-19. 
59 http://www.simtable.com/ 
Example fire result: 
https://www.simtable.com/apps/fireProgression/output2019/CAINF_000903_JORDAN.html 

http://www.simtable.com/
https://www.simtable.com/apps/fireProgression/output2019/CAINF_000903_JORDAN.html
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Figure 13 - Plot of raw SimTable data provided by SCE.60 As can be seen, no fire is ever larger than the actual 
measured value, which means this is a post-hoc simulation. 

 

Figure 13 shows all wildfires larger than 100 acres, and calculates percentage burned after 8 

hours, with the actual wildfire size as an upper bound. A simulation such as Technosylva, in 

contrast, can produce a final result that either exceeds or is smaller than the actual wildfire 

perimeter. 

 

The basic principle – that we can compare simulations to historical real fires and obtain 

statistical relationships that might provide additional predictive value – should be tested with the 

simulation model being used by utilities. 

 

There are two approaches, not exclusive, that might be used to approach this problem: 

 

 
60 2023-WMPs; SCE reply to MGRA DR-6.  
Data at https://github.com/jwmitchell/Workpapers/blob/main/R2007013/02_MGRA%2006%20Q2%20-
%20jwm.xlsx 
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1. Run Technosylva 8 hour simulations for historical wildfires. These should be “raw” 

simulations and not adjusted in any way for the specifics of the wildfire.  Compare the 8 

hour wildfire size value to the final measured wildfire size and obtain a ratio. This ratio 

will form a distribution. It may be possible to use this distribution as a weighting 

function or a source distribution for a Monte Carlo that could be applied to the 8 hour 

consequence values. The same approach can be applied to structure losses. 

2. Run longer Technosylva simulations for historical fires to determine how long the 

simulation needs to run to reproduce observed acreage burned and structure loss.  This 

value may depend upon weather conditions. This could be used to adjust the 

Technosylva run time according to weather conditions. 

 

On July 11, 2023, SCE presented at an OEIS workshop on large wildfires at which it 

displayed comparisons of 8 and 24 hour simulation spreads, and claimed they were not effectively 

different.  It presented data for its service territory as a consequence chart, shown below.  

 

 
Figure 14 - Simulated consequence map generated by SCE in its service area, showing runs for 8 and 24 hours. Spatial 
characteristics are generally similar, though magnitudes of losses are higher. Edison claims to see a slight shift to more 
rural areas in the 24 hour run, which is as expected.61 

 

 
61 OEIS; Risk Mitigation Working Group; July 11, 2023 meeting slide deck; p. 78. 
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SCE claims that this figure shows that the effective losses after an 8 hour and 24 hour 

simulation appear to be in the same areas, as evidenced by the similarity of the two plots. SCE’s 

explanation is that most fires reach a maximum size as they encounter physical boundaries such as 

built areas.  However, it is the difference in these two plots that would identify the areas that might 

be underserved by an 8 hour simulation.  SCE provided another example that can be used to 

demonstrate this point.  

 

 
Figure 15 - Technosylva 24 simulation performed as part of its "PSPS damage" exercise shows 24 hours of wildfire 
growth.  Colors and ticks show hourly spread from ignition to the 24 hour point.62 A potential ignition point to the 
northeast was added by the author. 

 

The figure above demonstrates that fire size growth is limited by the physical boundaries, 

but losses may increase as wildfire encroaches into neighborhoods. In the particular example, only a 

quantitative difference between the 8 hour and 24 hour simulations would be seen. However, if the 

point of ignition is shifted slightly to the east, then the fire front would not reach the developed area 

in 8 hours, and there would be both a quantitative and qualitative difference between the 8 hour and 

24 hour runs. The erstwhile ignition point, indicated by the blue circle, would be ranked as having a 

 
62 62 OEIS; Risk Mitigation Working Group; July 11, 2023 meeting slide deck; p. 78. 

What about ignition point here? 
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much lower consequence value, even though a 24 hour simulation would bring it into full contact 

with the Wildland Urban Interface.  

 

It is not important for the purposes of computing tail risk that every risk value be accurate, 

but rather that as an aggregate the distribution takes into account the potential for large losses. 

Technosylva experts understand that their model results become harder to trust as simulations 

become longer due to the myriad non-linear effects of weather and fire suppression. The goal is not 

to be able to represent each wildfire accurately, but to determine the distribution of the inaccuracies 

to see whether this can be used as a correction to the existing methods to incorporate tail risk and to 

ensure areas that may reasonably be expected to be at risk from major fires are included in utility 

consequence calculations. 

 

Recommendation: 

The hypothesis that Technosylva’s wildfire size distribution will follow a power law distribution 

when properly weighted by probability should be tested. 

Recommendation: 

Technosylva’s Wildfire Analyst fire spread model should undergo further vetting to see if it can be 

leveraged to accurately predict the magnitude of tail risk events.  Possibilities include: 

- Simulations of historical wildfires and comparison with the Technosylva 8 hour consequence 

values 

- Longer simulations using Technosylva to obtain an appropriate run time that would allow it to 

produce losses equivalent to those of historic wildfires. 

 

3.6.2. PG&E’s WDRM v3 risk model 

 

PG&E describes its WDRM v3 risk model thusly: 

 

“In v3 of the model, PG&E has moved from exclusively using consequence outputs from 

Technosylva and CalFire to using Technosylva, PG&E’s FPI R-score (which is used to call PSPS 

events), and public satellite data from the Visible Infrared Imaging Radiometer Suite (VIIRS). This 

updated approach leverages real and observed fire behavior and consequence outcomes, which is 

an improvement over v2. However, while these outcomes are actually ranges, PG&E is using the 

mean consequence from each range in their risk modeling. The current structure of the consequence 
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model uses VIIRS observed fires and Technosylva simulations to classify fires or simulations as 

either destructive, or potential conditions, or not destructive potential conditions by ignition point. 

The probability of a destructive or non-destructive fire for each ignition point is then determined to 

be the number of days within the sample window, 2014-2020, where conditions matched those 

defined for a destructive or non-destructive fire, over the total number of days in the timeframe. 

PG&E then manually calculated the cost of each historical VIIRS fire by assessing the number of 

acres and facilities burned, assigning $1M/structure and $1,175/acre. The cost of a destructive fire 

was defined as the mean value for each category, destructive or non-destructive. The actual 

consequence value at each ignition point is then calculated to be: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑜𝑜 𝑅𝑅𝑅𝑅𝐶𝐶𝑅𝑅 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐸𝐸 

(𝐶𝐶𝐶𝐶𝑅𝑅𝐸𝐸)= (𝑃𝑃𝑃𝑃𝐶𝐶𝑃𝑃𝑎𝑎𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝐸𝐸𝑦𝑦 𝐶𝐶𝑜𝑜 𝑑𝑑𝐶𝐶𝐶𝐶𝐸𝐸𝑃𝑃𝐶𝐶𝐶𝐶𝐸𝐸𝑅𝑅𝐸𝐸𝐶𝐶 𝑜𝑜𝑅𝑅𝑃𝑃𝐶𝐶 × 𝑀𝑀𝐶𝐶𝑎𝑎𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸 𝐶𝐶𝑜𝑜 ℎ𝑅𝑅𝐶𝐶𝐸𝐸𝐶𝐶𝑃𝑃𝑅𝑅𝐶𝐶𝑎𝑎𝑃𝑃 𝑑𝑑𝐶𝐶𝐶𝐶𝐸𝐸𝑃𝑃𝐶𝐶𝐶𝐶𝐸𝐸𝑅𝑅𝐸𝐸𝐶𝐶 

𝑜𝑜𝑅𝑅𝑃𝑃𝐶𝐶𝐶𝐶)+(𝑃𝑃𝑃𝑃𝐶𝐶𝑃𝑃𝑎𝑎𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝐸𝐸𝑦𝑦 𝐶𝐶𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑𝐶𝐶𝐶𝐶𝐸𝐸𝑃𝑃𝐶𝐶𝐶𝐶𝐸𝐸𝑅𝑅𝐸𝐸𝐶𝐶 𝑜𝑜𝑅𝑅𝑃𝑃𝐶𝐶 ×𝑀𝑀𝐶𝐶𝑎𝑎𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸 𝐶𝐶𝑜𝑜 ℎ𝑅𝑅𝐶𝐶𝐸𝐸𝐶𝐶𝑃𝑃𝑅𝑅𝐶𝐶𝑎𝑎𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑𝐶𝐶𝐶𝐶𝐸𝐸𝑃𝑃𝐶𝐶𝐶𝐶𝐸𝐸𝑅𝑅𝐸𝐸𝐶𝐶 

𝑜𝑜𝑅𝑅𝑃𝑃𝐶𝐶𝐶𝐶) 

The use of the mean for prioritization may poorly characterize risks in areas with large 

ranges of consequence. The use of the mean cost to calculate total risk could overlook areas with 

potentially very high risk or prioritize them lower. Using the mean to calculate risk-spend-efficiency 

could also improperly overlook areas with high mitigation efficiency and promote smaller scale 

mitigations in areas that actually require more fundamental changes. The reverse is true if the 

mean is obviating a very low range. We recognize the clarity a point estimate brings to the 

prioritization process but recommend exploring other more robust measures than the average 

expected value to replace the single point estimate which might improve the quality of information 

communicated to decision-makers and SMEs. These new metrics, which could be supplementary, 

could capture more of the long-tail effects that may impact decision-making. Specifically, if SMEs 

are made aware of the probability of destructive fires for a given location and the range of cost 

consequences, that may serve as an additional point in their decision-making process. In that case, 

they could identify mitigations that may better serve that location. 

Additionally, while the use of consequence data on historical fires is a decent place to start 

and this valuable information should not be discarded, E3 recommends PG&E attempt to 

supplement this data with more specific cost estimates. These estimates should be developed 

alongside the regulator, but could be based on characteristics of the geography such as number of 

people in a given area, density of buildings, value of land (e.g. cropland). It is also important to 

consider equity in these calculations as well to ensure that the consequence model does not 

inappropriately overweight affluent neighborhoods only. 
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Finally, particularly over the timeframes that mitigation can be implemented, a look-back 

approach to consequence, using fire weather data from the 2014-2020 period, may create 

inaccuracies and bias in consequence estimates because climate, weather, and drought conditions 

are non-stationary. Best available science indicates an acceleration in fire weather conditions. We 

recommend that PG&E at least evaluate the possibility of using estimates of intensification of key 

fire weather variables that may increase consequences for the longer-term use cases of the 

model.”63 (Emphasis added) 

 

PG&E acknowledges that its approach of binning is problematic for capturing tail risks. Due 

to the power law distribution, an “average” bin will always underestimate wildfire risk because 

losses are driven by the largest wildfires. PG&E’s model was reviewed by E3, who concluded that 

“The use of the mean for prioritization may poorly characterize risks in areas with large ranges of 

consequence. The use of the mean cost to calculate total risk could overlook areas with potentially 

very high risk or prioritize them lower. Using the mean to calculate risk-spend-efficiency could also 

improperly overlook areas with high mitigation efficiency and promote smaller scale mitigations in 

areas that actually require more fundamental changes. The reverse is true if the mean is obviating a 

very low range.”64 

 

PG&E’s consequence WDRM v3 model therefore likely does not fully incorporate tail risk. 

Instead of using mean values, PG&E may benefit from using a statistical model, in which large fires 

in its categories are fit to a distribution incorporating the known power law size dependencies of 

wildfire. PG&E does this in its enterprise risk model, which uses a Generalized Pareto Distribution. 

PG&E could then use this distribution to generate Monte Carlo data from the distribution to 

estimate consequences, thus capturing tail risk using a physically supported model. 

 

Recommendation: 

The Commission should ensure that all utility risk models: enterprise, operational, and planning, 

properly incorporate tail risk.  This should be noted as a subject for future phases or proceedings. 

 

 

 

 
63 2023-2025 WMPs; E3 Review of PG&E's Wildfire Risk Model Version 3; 3 WMP; pp. 22-23. 
64Id; p. 22. 
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Recommendation: 

PG&E should consider modifying its risk model so that tail risk is captured in a such a way that it is 

not limited to historical events. Fitting its “extreme” distribution bin to a power law with cut-off 

model should allow it to statistically include extreme tail events in its calculation. 

 

3.6.3. SCE’s IWMS Framework 

 

SCE’s IWMS Framework is currently being litigated and reviewed both in the OEIS 2023-

2025 cycle and in its General Rate Case. Nevertheless it is mentioned here because at its foundation 

it is a radically different way to calculate risk and tail risk since it is related to the concept of “risk 

tolerance” that will be discussed during a later phase of this proceeding. MGRA discussed SCE’s 

framework in some detail in its 2023-2025 WMP Comments, portions of which are reproduced 

below.65 

 

What SCE calls its IWMS (Integrated Wildfire Mitigation Strategy) Risk Framework, is an 

alternative planning framework to MARS (Multi-Attribute Risk Score),66 which is based on the 

methodology of the Settlement Agreement.67 As SCE describes it in its 2023-2025 WMP: 

“The IWMS Risk Framework defines three risk tranches within SCE’s HFRA based on potential 

consequences should an ignition occur at a specific utility asset location. This analysis includes 

elements such as potential egress constraints and Communities of Elevated Fire Concern (CEFC). 

The IWMS Risk Framework is anchored on wildfire consequence should an ignition occur and does 

not adjust consequences based on the probability of ignition. SCE takes this approach because 

probability of ignition changes over time due to many variables such as age, loading, etc. 

Furthermore, in some locations the consequences of an ignition that leads to a wildfire may be so 

extreme that it is prudent to mitigate ignition risk regardless of probability.”68 

 

The classical definition of risk, particularly in terms of the CPUC S-MAP Settlement 

Agreement is  

Risk = Probability of Risk Event X Consequences of Risk Event 

 
65 MGRA 2023-2025 WMP Comments; pp. 69-76. 
66 SCE 2023-2025 WMP; p. 89. 
67 D.18-12-014; Appendix A; p. A-3. (Settlement Agreement) 
68 Id; p. 90. 
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Under this definition, IWMS is not a risk framework, because it has no probability 

component. IWMS implicitly rejects the risk framework agreed to by the Stakeholders. 

 

As justification, SCE cites a number of potential overriding concerns that merit specific SCE 

infrastructure in certain locations, which it terms an “SCE High Fire Risk Area (HFRA)” as being 

subject to IWMS and not the standard MARS framework. Specifically: 

 

• Egress issues, specifically constrained evacuation, high fire frequency, or the 

potential for burn-in of an egress route, 

• Areas for which an ignition can result in a fire significantly larger than 10,000 acres, 

• High wind areas, 

• Areas where smaller fast-moving fires have a potential to impact communities under 

“benign” weather conditions (CEFCs or Communities of Elevated Fire Concern).69 

 

HFRAs are divided into three risk tranches: Severe Risk Areas, High Consequence Areas, 

and Other HFRA depending on the potential for large fires.70 This process of classification is a 

manual process that SCE admits is “time consuming and labor intensive”.71 These tranches define 

SCE’s preferred mitigation. For Severe Risk Areas, SCE proposes undergrounding when feasible, 

and covered conductor plus REFCL when not. For High Consequence Areas, it proposes covered 

conductor plus REFCL. For other HFRA it proposes enhanced inspections and vegetation 

management.72 

 

Noteworthy is that probability does not come into these calculations at all, so they deviate 

from the Settlement Agreement.  However, it is important to understand the statistical and ethical 

foundations of these arguments in order to properly analyze what place if any they have in the Risk-

based Decision-Making Framework. 

 

 

 
69 SCE 2023-2025 WMP; pp. 101-103. 
70 Id. 
71 Id.; p. 113. 
72 Id.; p. 206, and 
DR Response 08_CalAdvocates-SCE-2023WMP-08 Q.08. 
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3.6.4. What is acceptable risk? 

 

SCE is appealing to the philosophy that risk, particularly extreme risk, should be mitigated 

to the full extent possible. There is some philosophical and technical backing for such an approach 

with regard to tail risks. The ALARP (As Low As Reasonably Practicable) proposal from CPUC 

staff was a proposed framework for such an analysis.73 The ALARP premise is that there is a 

societally acceptable level of risk, and conversely that there are certain risks which are unacceptable 

and should be mitigated – not necessarily to zero but to the level where the risk is again within the 

acceptable range. 

 

This is particularly applicable with respect to tail risk, because as demonstrated in the 

previous sections, most of the risk comes from large events. PG&E and SDG&E have adopted a 

Pareto Distribution (power law) with a cutoff of 500,000 acres for their enterprise risk calculations, 

but as noted in Section 3.4, the uncertainties of that calculation are considerable and need to be 

improved.  In fact, for this type of distribution the uncertainty is large with respect to the value 

itself. This has implications. As Taleb describes it in his book The Black Swan:  

“… we do not realize the consequences of the rare event. 

What is the implication here? Even if you agree with a given forecast you have to worry 

about the real possibility of significant divergence from it… I would go even further and, …state 

that it is the lower bound of estimates (i.e. the worst case) that matters when engaging in a policy — 

the worst case is far more consequential than the forecast itself. This is particularly true if the bad 

scenario is not acceptable.”74 

 

As MGRA contends in its Comments in the 2023-2025 WMPs, this framing of the problem 

may be reasonable under certain circumstances. In the specific case of utility wildfire risk there are 

issues that must be resolved before a consequence-only model should be considered: 

 

 
73 A.15-05-002-5; COMMENTS OF THE MUSSEY GRADE ROAD ALLIANCE (MGRA) ON THE 
INTERVENOR SMAP WHITE PAPER; February 12, 2016. 
74 Taleb, Nassim Nicholas. The Black Swan - The Impact of the Highly Improbable. Second edition. New 
York: Random House, 2010; pp. 161-162. 
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• The decision of what constitutes acceptable risk is a societal decision, and not one that 

should be left to an interested party. This determination must be made by regulators, as 

proxies for the public, and not a utility acting in its own interest. 

• Criteria used in SCE’s particular case are non-transparent and appear somewhat arbitrary.  

• It may be possible to quantify probabilities for SCE’s IWMS classification and thereby 

integrate them properly into its risk model. 

• The risk of truly catastrophic fire is not solely from utility lines. In fact, as utilities argued 

for many years at the initiation of CPUC wildfire proceedings, utility ignitions represent a 

small fraction of ignitions, though a significant fraction of losses. If the goal is to protect the 

public from catastrophic wildfire loss then other more holistic mitigation needs to occur 

outside of the utility sphere. 

• The burden of rate increases on the poorest and most vulnerable populations may offset risk 

improvements for Wildland Urban Interface residents.  

 

Specific decisions made by SCE for its classification of risk tranches worthy of this special 

treatment will be discussed and reviewed in the records of the 2023-2025 WMPs and in the SCE 

GRC. However, the idea of addressing tail risk solely by using consequence and not probability is 

related to the idea of risk tolerance, and needs further review by the Commission. 

 

Recommendation: 

The Commission should address the question of what tail-risks are acceptable and whether it is 

possible to ignore probability based on specific criteria when determining mitigations. This should 

be raised in a future phase or proceeding. 

Recommendation: 

Other companies should be discouraged from taking a similar approach to mitigation planning until 

SCE’s IWMS has been adequately reviewed. 

 

3.7. Additional Reporting Requirements 

 

Should there be any additional reporting requirements or guidelines to accompany the 

application of the power law distribution to make the results accessible to the layperson? 
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If a group is using the power law in the standard manner, additional reporting requirements 

are not necessary. It is helpful if the utility is able to analyze the degree to which the power law 

function affects the outcome, i.e. how much of the risk is tail risk. For example, SDG&E reports 

that using the power law distribution function increased its estimate enterprise wildfire risk by 

15%.75 

 

In the event that a utility uses a method that doesn’t directly use a power law, it should 

demonstrate that function’s performance with respect to a power law. Two examples are the data 

submitted by MGRA to support the use of power law against SDG&E’s use of the gamma 

function,76 and the extensive comparisons performed by PG&E in its “Power Law Distribution” 

white paper. 

 

Recommendation: 

Utilities should report the effect of using a power law distribution function in order to gauge the 

amount of risk coming from tail events. 

Recommendation: 

When a utility opts to use a method other than a power law, it should justify its use by direct 

comparison with the power law distribution. 

 

3.8. Other Tail Risk Events 

 

Should the use of the power law distribution be required (or other Commission guidance 

provided) to address other non-wildfire risk events that similarly have low probability, high 

consequence risk events (e.g., hydro dam failure, seismic events, etc.)? 

 

 
75 A.22-05-016; MGRA-01-2E; DIRECT TESTIMONY OF THE MUSSEY GRADE ROAD ALLIANCE 
SAN DIEGO GAS AND ELECTRIC COMPANY 2024 GENERAL RATE CASE; ERRATA 2; June 8, 
2023; p. 12. 
76 Safety Policy Division Staff Evaluation Report on SDG&E’s and SoCalGas’ Risk Assessment and 
Mitigation Phase (RAMP) Application Reports 
(A.) 21-05-011, (A.) 21-05-014; November 5, 2021, (pp. 209-213/295) Appendix: 
MUSSEY GRADE ROAD ALLIANCE INFORMAL COMMENTS TO THE SAFETY POLICY DIVISION 
REGARDING SAN DIEGO GAS AND ELECTRIC  COMPANY’S RAMP FILING; October 22, 2021; pp. 
2-5.   
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The concept of tail risk is applicable to many other domains in which there is potential for 

extreme risks with outsized consequences.   However, the power law distribution emerges naturally 

in physical systems with build up / cascade dynamics, otherwise known as “self-organized” 

systems.  Other physical domains will have different underlying dynamics and therefore may have 

different statistical distributions describing their extreme events.  I am not an expert in these 

domains and therefore this whitepaper doesn’t offer specific recommendations on them.  Many of 

these utility risks, however, have well-developed standards, engineering practices, and bodies that 

can provide additional guidance on how to deal with worst-case scenarios. 

 

Some lessons from the wildland fire domain still apply.  For example, a long-term utility 

outage can arise from a number of risks – not only extended fire wind events but also cyberattack 

and coronal mass ejections.  In any of these cases the utility must have a contingency plan in place, 

have completed a scenario analysis, should have run simulations with tabletop exercises, and should 

be coordinating with partners and emergency agencies on strategies in case such a foreseeable but 

low probability event occur. 

 

It is also important that external drivers that can lead to multiple failure modes be 

understood. For example, a tail-risk atmospheric river event77might not only cause flooding and 

landslides, but could potentially lead to simultaneous dam failures.78 The Commission should 

ensure that utilities have plans in place and can recognize the warning signs of an impending tail 

risk event and have responses prepared. 

 

Recommendations: 

The Commission should require that utilities conduct scenario analysis and have contingency plans 

in place for reasonably conceivable tail risk events, such as seismic, dam failure, cyberattack, solar 

coronal mass ejections, and extreme PSPS.  These should be accompanied by periodic tabletop 

exercises including essential partners such as Emergency Services. 

 

 

 
77 Huang, X., Swain, D.L., 2022. Climate change is increasing the risk of a California megaflood. Science 
Advances 8, eabq0995. https://doi.org/10.1126/sciadv.abq0995 
78 Cox, C., Lowell, S., 2023. The Trillion-Gallon Question: What if California’s Dams Fail? The New York 
Times. https://www.nytimes.com/2023/06/22/magazine/california-dams.html Downloaded 7/12/2023. 

https://doi.org/10.1126/sciadv.abq0995
https://www.nytimes.com/2023/06/22/magazine/california-dams.html
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4. CONCLUSION 
 

Wildfire size distributions have been shown to be well-represented by power law 

distributions over many orders of magnitude, so there is sufficient justification for using them either 

directly for wildfire simulations or indirectly as a check on other methods such as wildfire spread 

simulations.  PG&E and SDG&E have adopted power law distributions for their enterprise risk 

models, and SCE should be encouraged to do so or to validate the method it chooses against a 

power law distribution to show that its model produces equivalent results.  The same arguments 

apply to operational and planning risk models. While these may be outside the scope of the current 

phase of this proceeding, the Commission should examine how tail risk estimation can be improved 

in these models in the future.  

 

Currently, PSPS provides significant protection against tail-risk wind-driven fires but will be 

less effective against plume-driven fires.  Utilities, even if not directly mitigating against low-

likelihood tail-risk events, should have contingency plans in place, consult with essential partners, 

and periodically conduct simulation exercises to ensure that the effect of future tail risk events can 

be minimized. 

 

5. SUMMARY OF RECOMMENDATIONS 
 

• Wildfire risk models should either 1) directly use an appropriate power law 

distribution, such as the base distribution for a Monte Carlo simulation or 2) be able 

to show that their model produces results that are consistent with a power law when 

appropriately weighted or probability and consequence. 

• Technosylva should be requested to provide a probability-weighted wildfire size 

distribution that will remove bias introduced by use the “worst case” weather days. 

This distribution can then be validated on a log-log plot to validate whether the 

Technosylva simulations follow the power law dependency seen in natural wildfires. 

• Use of a power law distribution to model utility risk should tune parameters to fit the 

curve shown for power line fires, which tends to be somewhat shallower and have a 

higher cutoff due to the influence of external risk drivers. 
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• Risk models using simulation must be able to incorporate consequence events from 

the largest and most destructive wildfires.  

• Utility climate change analysis in utility risk models must be able to incorporate 

potential increase in size of wildfire events and their correspondent consequences.  

• PG&E’s estimation of safety and financial caps is rigorous and should be adopted as 

a best practice. 

• “Worst case” simulations should be considered for utility service areas consisting of 

extended wildfire simulations in combination from input by SMEs with strategic 

firefighting knowledge. 

• It may be beneficial to model “worst case” plume wildfire events in selected areas 

using models capable of incorporating wildfire and atmospheric dynamics to 

determine the tail risk from this class of event. 

• Utilities should have contingency plans in place to manage an extreme intensity and 

duration fire wind event.  Utilities should coordinate with partner stakeholders, 

agencies, and CES. Utilities should construct mutual aid agreements with other 

regions if possible.  The contingency plan should be periodically tested by table-top 

exercises. 

• Hardening or undergrounding should be prioritized for areas with frequent or 

extended PSPS outages. 

• Technosylva’s Wildfire Analyst fire spread model should undergo further vetting to 

see if it can be leveraged to accurately predict the magnitude of tail risk events.  

Possibilities include: 

- Simulations of historical wildfires and comparison with the Technosylva 8 hour 

consequence values 

- Longer simulations using Technosylva to obtain an appropriate run time that would 

allow it to produce losses equivalent to those of historic wildfires. 

• The Commission should ensure that all utility risk models: engineering, operational, 

and planning, properly incorporate tail risk.  This should be noted as a subject for 

future phases or proceedings. 

• PG&E should consider modifying its risk model in such a way that tail risk is 

captured in a such a way that it is not limited to historical events. Fitting its 
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“extreme” distribution bin to a power law with cut-off model should allow it to 

statistically include extreme tail events in its calculation. 

• The Commission should address the question of what tail-risks are acceptable and 

whether it is possible to ignore probability based on specific criteria when 

determining mitigations. This should be raised in a future phase or proceeding. 

• Other companies should be discouraged from taking a similar approach to mitigation 

planning until SCE’s IWMS has been adequately reviewed. 

• Utilities should report the effect of using a power law distribution function in order 

to gauge the amount of risk coming from tail events. 

• The Commission should require that utilities have contingency plans in place for 

reasonably conceivable tail risk events, such as seismic, dam failure, 

cyberattack,solar coronal mass ejections, and extreme PSPS.  These should be 

accompanied by periodic tabletop exercises including essential partners such as 

Emergency Services. 

 

 
To be: 

Respectfully submitted this 26th day of July, 2023, 

 

 By: __/S/____Joseph W. Mitchell____________________ 

Joseph W. Mitchell, Ph.D. 
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