

SCE's Wildfire & Contact with Energized Equipment Risk Assessments (SED RAMP Review Appendix C)

Wendy Al-Mukdad, P.E.

May 29, 2019

Main Sections

- ANALYSIS OF SCE'S WILDFIRE RISK ASSESSMENT
- ANALYSIS OF CONTACT WITH ENERGIZED EQUIPMENT (CEE) RISK ASSESSMENT

ANALYSIS OF SCE'S WILDFIRE RISK ASSESSMENT

- POLE DRIVER & RELATED MITIGATION PROGRAMS
- CIRCUIT BY CIRCUIT RISK ANALYSIS FOR WCCP
 - USING INDEX SCORE FOR RSES (RSES = RISK SPEND EFFICIENCIES)
- TREE TRIMMER SAFETY RISK ANALYSIS
 - WITH INCREASED VEGETATION MANAGEMENT
- WILDFIRE RELEVANT CONSEQUENCES

POLE DRIVER & RELATED MITIGATION PROGRAMS

- Pole Loading & Deterioration Pole Replacement Programs
 - NOT part of SCE's Wildfire Risk Assessment
 - Disagree that Completely Compliance Programs
- Pole Drivers NOT Included as Wildfire Triggering Event
- Risk Analysis on Pole Failure Ignition Events Needed
- Pole Top Deterioration Causes Wire-Down
 - PL & Deterioration Assessments Programs do **NOT** detect
 - Can These **High Cost** Programs Mitigate this Pole Driver?
- Would Pole Top Inspections Be More Beneficial?
- Lack of Root Cause Analysis (1/31/2017 SED Report)
- Pole by Pole Risk Analysis RSE calculations

CKT BY CKT RISK ANALYSIS FOR WCCP USING INDEX SCORE FOR RSES

- W. Kent Muhlbauer Pipeline Risk Management Authority
- Index Score Combined with Average Cost of CC per Mile
 - Estimated Cost per Ckt Improve RSE Calculations (Future?)
 - HFTA Circuits with Highest Risk Reduction per Cost
- Compare Ckt Index Scores For ALL Mitigation Measures
 - Refined Project Cost Estimates Per Ckt Improve RSEs

CC = Covered Conductor WCCP = Wildfire Covered Conductor Program

Top 9 Ranked OH Circuits for Fire Threat Characteristics

		Total Circuit Length (OH Primary) (Ckt Mi.)	t Total HFRA Length - OH Primary (Ckt Mi.)	Fire Threat (Frequency) Characteristics						1		
	OH Circuit			Length (Ckt Mi.) Within Tier 3 - OH Primary	Length (Ckt Mi.) Within Tier 2 - OH Primary	High Wind in HFRA Length (Ckt Miles) - OH Primary	Historical Wiredown Count (May 2014 - 2017)	Small Conductor (Ckt Miles)		HFRA Vegetation Fault Count	Second second	Potentially Mitigated HFRA Faults (2015-2017)
1	THACHER	83.55	83.56	83.53	0.03	67.77	2	36.58	0.12	8	39.51	10
2	METTLER	130.09	130.09	129.45	0.64	111.59	2	45.80	0.12	0	36.93	16
3	CUDDEBACK	89.07	89.42	87.77	1.65	60.59	2	29,46	0.09	5	34.09	8
4	JORDAN	164.04	164.04	0.00	164.04	63.33	2	151.23	0.04	3	32.47	6
5	HUGHES LAKE	102.19	89.59	67.84	21.51	80.37	2	56.25	0.06	2	28.76	6
6	CHAWA	98.99	98.99	97.56	1.43	87.01	1	44.91	0.02	0	27.91	2
7	GALAHAD	57.33	57.36	57.05	0.31	57.36	5	32.92	0.09	3	27.50	5
8	TITAN	118.74	103.15	46.45	27.17	102.83	3	81.72	0.03	1	26.86	4
9	TENNECO	100.36	100.36	47.08	51.09	57.74	1	55.00	0.11	3	26.53	11

TREE TRIMMER SAFETY RISK ANALYSIS WITH INCREASED VEGETATION MANAGEMENT

Increased Veg Mgt to Reduce WF Risks Due to WMP

- Could Increase Tree Trimmer Worker Risk for CEE (Arc Flash)

• SED CEE Scenario with Potential Larger 3rd Party CEE Risks

- Probability of Outcome 3, Intact Energized Wire Contact
- If Tree Trimmers Inexperienced and/or Lack Sufficient Training

• SED has Concerns with CEE Historical Data Utilized

- Recommend Risk Analysis with Recent & Projected Data
- CEE Section for Further Analysis

WILDFIRE RELEVANT CONSEQUENCES

- SCE's Risk Assessment Modeling Consequences (25% each)
 - Serious Injuries (SI), Fatalities, Reliability, and Financial
- **CalFIRE** Consequences to Improve Risk Analysis
 - Acres Burned; Structures Destroyed; & Structures Damaged
 - Beyond Financial Consequences similar to Fatalities & SI
- U.S. EPA Air Quality Index (AQI)
 - Unsafe AQI for Weeks due to Tragic Nov'18 Camp Fire
 - Very Unhealthy (AQI = 201 to 300)
 - Hazardous (AQI greater than 300)
 - Consequence for Incremental AQI After Wildfire
 - Area of Unsafe Air Quality & # People Impacted
 - Use AQI for each Day/Hour/15-minute Increment?

ANALYSIS OF CEE RISK ASSESSMENT

- SCE DATA: WIRE-DOWN & 3RD-PARTY CONTACT EVENTS
- POLE DRIVER
- METALLIC BALLOONS (INCLUDING FOIL OR FOIL-LINED)
- WIRE-DOWN TRIGGERING EVENT FREQUENCIES
- COMPLIANCE PROGRAM CM1
- CONTROL 1 OH CONDUCTOR PROGRAM
- CEE COMBINED RISK ANALYSIS & ARC FLASH RISKS
- RISK ANALYSIS OF DESIGN, CONSTRUCTION & OPERATION INCLUDING GROUNDING METHODOLOGIES
- CIRCUIT/LINE SECTION/LINE SEGMENT RISK ANALYSIS
- THIRD PARTY (TREE TRIMMERS) SAFETY RISK ANALYSIS

SCE DATA: WIRE-DOWN & 3RD-PARTY CONTACTS

- Two Triggering Events in SCE's CEE Bowtie Risk Analysis
 - 1. Wire Down: Ave 1,154/Yr Events from 2015-2017
 - 2. Contact With Intact OH Conductor: 5/Yr from 2008-2016
- Five Primary Wire-Down Drivers (D1 to D5)
 - Two Main Wire-Down Drivers: D1 & D2
- One Primary CEE (Intact) Driver (D6 3rd Party Contact)

2018 Projected CEE Driver Frequency					
Name	Frequency				
D1 - Equipment Caused	206				
D2 - Equipment / Facility Contact	773				
D3 - SCE Work / Operation	7				
D4 - Unknown	168				
D5 - Downstream Equipment	0				
D6 - Third Party Contact	5				

- Why Different Historical Years Ranges for RSEs?
 - Redo CEE RSE calculations for 2015-2018 Data

POLE DRIVER

- Annual Frequency of 11 Wire-Down Triggering Events
- 5% of all Equipment Cause drivers
- Only Tiny Fraction (i.e. 1%) ALL CEE Events
 - Pole Failure due to Vehicle Collision NOT included Here
 - Separate Sub-Driver D2E Vehicle for Collisions

CEE D1 Equipment Cause Frequencies							
Driver	Name	Annual Frequency	Percentage (Category)	Percentage (All Triggering Events)			
D1a	Connector / Splice / Wire	130	63%	11%			
D1b	Other	65	32%	6%			
Dic	Pole	11	5%	1%			
D1	Equipment Cause	206	100%	18%			

Lack of Root Cause Data related to Pole Failures

METALLIC BALLOONS (INCLUDING FOIL OR FOIL-LINED)

- Metallic Balloon Contacts with OH Lines
 - Can Create a Short Circuit
 - Can Trigger Ckt Damage, Overheating, Fire, or an Explosion
- Cal. Penal Code § 653.1 (Foil Balloon Law)
 - Requires All Helium-Filled Balloons to Be Weighted

CEE D2 Equipment / Facility Contact Frequencies							
Driver	Name	Annual Frequency	Percentage (Category)	Percentage (All Triggering Events)			
D2a	Animal	53	7%	5%			
D2b	Metallic Balloons	111	14%	10%			
D2c	Other	39	5%	3%			
D2d	Vegetation	171	22%	15%			
D2e	Vehicle	206	27%	18%			
D2f	Weather	193	25%	17%			
CEE D2	Equipment / Facility Contact	773	100%	68%			

- No-Cost Solution = Ban Metallic Balloons in CA
 - New Law Could Eliminate/Significantly Reduce This Driver

WIRE-DOWN TRIGGERING EVENT FREQUENCIES

- SED Combined into One Table for Better Perspective
 - Annotations included based on SCE's RAMP info
- Addressed further for OH Conductor Program Control Measure

Wire-Down Triggering Event Frequ Name	Annual	%
Connector / Splice / Wire	130	11%
Other Equipment Cause	65	6%
Pole (normally top degradation)	11	1%
Animal (e.g. squirrel, bird etc.)	53	5%
Metallic Balloons	111	10%
Other (e.g. Gunshot damage, Drones, etc.)	39	3%
Vegetation	171	15%
Vehicle Accidents (usually into pole)	206	18%
Weather	193	17%
Unknown	168	15%
TOTAL Annual Triggering Events:	1147	100%

• SCE Should Work to Have Less Unknown Events (15%)

COMPLIANCE PROGRAM - CM1

• SCE Did NOT Model Compliance Activities in Risk Analysis

10	Namo	Driver(s) Impacted	Outcome(s) Impacted	Consequence(s)	2017 Recorded Cost (SM)			
				Impacted		Capital		D&M
CM3	Distribution Deteriorated Pole Remediation Program and Pole Loading Program (PLP) Replacements	Not Modeled	Nos Modeled	Not Modeled	s	273,9	s	30.9
:M2	Vegetation Management.	Not Modeled	Not Modeled	Not Modeled	5	1	5	64.3
CM3	Overhead Detailed Inspection, Apparatus Inspections, and Preventive Maintenance	Not Modeled	Not Modeled	Not Modeled	s	4	s	36.0
N4	Intrusive Pole inspections and Pole Loading Assessments.	Not Modeled	Not Modeled	Not Modeled	s	1	5	6.0
C1	Overhead Conductor Program (OCP)	Dialb, D2ald_f		5	s	138.7	5	1
C1a	Overhead Conductor Program (OCP) Utilizing Targeted Covered Conductor	Distb, Dield,f	01	521, 527	5		5	
CZ.	Public Outreach		01.03	308, 307	5	8	5	5.1

- SED Does NOT believe CM1 (High Cost) is a Compliance Program
 - At Minimum, Portions of the PLP Replacements are NOT
 - Some of SCE's Internal Standards Are More Stringent than GOs
 - High Fire Areas (HFAs)
 - Wind Loading
- CM1 Risk Reduction Analysis with RSEs to Determine Effectiveness
 - What Triggering Events & Drivers does CM1 Mitigate?

CONTROL 1 – OH CONDUCTOR PROGRAM (OCP)

- Model of C1 100% Bare OH Conductor in 2018-2020
- SCE Plans Future Use of Covered Conductor (CC) in Non-HFRAs
 - Only 90% OCP for Years 2021-2023
 - 10% OCP Costs Allocated to C1a OCP & Targeted CC for 2021-2023
- Detailed Circuit/Line Segment RSEs Could Be Utilized

Wire-Down Triggering Ev	ent Frequencies		27 20		
Name	Annual	%	20% Less	New %	New/Old
Equipment Cause	206	21%	91	12%	44%
Equipment / Facility Contact	773	79%	654	88%	85%
	979	100%	745	100%	

- OCP Impacts D1 (Equipment Cause) & D2 (Equip/Facility Contact)
 - Reduce D1 Wire-Downs with 10.9% Mitigation Effectiveness in 2018
 - Growing Significantly Each Year to 55.9% Effectiveness in 2023
 - Reduces the Frequency of Faults
 - Reduce D2 Wire-Downs with 3.0% Mitigation Effectiveness in 2018
 - Growing to 15.5% in 2023 since Reduce Faults Causing Wire-Downs

CONTROL 1 – OH CONDUCTOR PROGRAM (OCP)

- Driver Analysis basis is 1,965 OH Ckt Miles Reconductored 2018-23
- Based on 85% of Wire-Down Events due to **168 Unknown Drivers**
- 5.5% Deployment of Total 36,040 Distribution Ckt Miles
- Two OH Conductor Failure Modes: Arcing & Melting
 - Reconductoring 50% and 90% Effective for Arc & Melt Failures, respectfully
 - Branch Line Fusing 0% and 90% Effective for Arc & Melt Failures, respectfully
- Mitigation Effectiveness by Driver:
 - 90% for Connector/Splice/Wire
 - 80% for Other Equipment Causes (0% for Pole Drivers)
 - 55% for Animal Contact
 - 46% for Other Contact (e.g. Gunshot Damage & Drones)
 - 32% for Mylar Balloons & 28% for Weather & 24% Vegetation
 - 0% for Vehicle (e.g. Hitting Pole/Equipment)
- Why 20% Baseline Wire-Down Risk Reduction for 5.5% Deployment?

CEE COMBINED RISK ANALYSIS & ARC FLASH RISKS

- SCE Defines CEE Risks As OH Public Safety Risks ONLY
- SCE Does NOT Include Risks to:
 - Employees; 3rd Party Contractors; or Alleged Vandals/Thieves
- Risk Analysis for All OH CEE for Distribution Lines
 - Some Drivers May be Different
 - Combined Evaluation May Highlight Certain Risk Drivers More
- Does CEE Risks Include Arc Flash Risks?
 - 3rd Party Arc Flash Risks
 - Arc Flash Well Studied in Past Decade

RISK ANALYSIS OF DESIGN, CONSTRUCTION & OPERATION INCLUDING GROUNDING METHODOLOGIES

- Protection Equipment Can Stop Flow Of Electricity
 - If Fault Temporary, Can Reclose In Secs/Mins
 - If Fault Permanent, Electricity Can Remain Interrupted (Lockout)

• SCE Estimates Almost 1/3 Wire-Down Events Are Energized

- Analysis of System Design to Improve Fault Detection
 - Can Fault Related Risks Be Further Reduced?
 - Can Grounding Methodologies Be Improved to Reduce Risks?
 - Wye vs Delta 3 Phase Systems Relative to Grounding?
 - Multi-Grounded System?
- Comparative Statistics to U.S. Distribution Systems?

CIRCUIT/LINE SECTION/LINE SEGMENT RISK ANALYSIS

- Risk Analysis with RSEs for Circuits is Feasible (Index Scores)
- IEEE Standard Dictionary of Electrical and Electronics Terms (1992)
 - **Circuit (NESC)**: A conductor or system of conductors through which an electric current is intended to flow. (C2-1984)
 - Line Section: A portion of OH line/cable bounded by 2 terminations, a termination and a tap point, or 2 tap points. (859-1987)
 - Line Segment: A portion of a line section that has a particular type of construction or is exposed to a particular type of failure, and therefore which may be regarded as a single entity for the purpose of reporting and analyzing failure and exposure data.
 - Note: A line segment is a subcomponent of a line section. (859-1987)
- Data Available for Line Section/Segment Risk Analysis?
 - Line Sections with Discrete Termination Points for RSEs
 - Further Line Segments Risk Analysis, If Feasible

THIRD PARTY (TREE TRIMMERS) SAFETY RISK ANALYSIS

Three Risk Model Outcomes

2018 CEE Outcome Likelihood						
Óutcome	Name	# of Triggering Events (2018)	%			
ĊEE Ó1	Energized Wire-Down	362.80	31.30%			
ĊEE ÓŻ	De-Energized Wire-Down	791.67	68.30%			
ĊEE Ó3	Intact Energized Wire Contact	4.64	0.40%			
		1159.11	100.00%			

- Primary Safety Impact is 3rd Party Contacts (SCE)
 - Even Though Only 0.4% of All CEE (Public) Outcomes
 - Inputs for O3 is Significantly Higher Than O1
 - 183 (SI) and 159 (Fatalities)
- Data Sources From Different Timeframes Effective?
 - Risk analysis for Similar Years (i.e. 2015-2018)
 - Additional analysis focused on F & SI outcomes

For questions, please feel free to contact me.

Wendy Maria al-Mukdad, P.E. Senior Utilities Engineer

Wendy.al-Mukdad@cpuc.ca.gov 415-703-2311

https://www.cpuc.ca.gov/riskassessment/

