Deliverable 2 Costs & Benefits

Vehicle-Grid Integration Communications Protocol Working Group

Noel Crisostomo, Air Pollution Specialist, Fuels & Transportation Division California Energy Commission

California Public Utilities Commission - San Francisco August 21, 2017

Deliverable 2 example and proposal (from 8/7 CEC PPT)

1. Evaluate use of [Comm. Protocol 1] to implement Use Case [1]

Stakeholder	Costs	Inc/Dec Factors	Benefits	Inc/Dec Factors
User				
Host				
PEV OEM				
EVSE OEM				
Operator				
VGI Aggregator				
DSO/LSE/CCA/ISO				
Ratepayer/Society				

- 2. Repeat for [Comm. Protocol 1-X], or alternative, for Use Cases [1 X]
- 3. Juxtapose use case implementations, delineate opportunity costs

- Subgroups?
- Divide and Conquer:
 - Type of implementation: Comm. Protocol, alternative, or null (Suggested)
 - Use Cases
 - Costs
 - Benefits

ENERGY COMMISSION

Connection to Deliverable 1

- Use Cases → extracted Requirements
- Standards → mapped to meet Requirements
 - Standards or Alternatives
 - 1. IEEE 2030.5 (SEP 2.0)
 - 2. CHAdeMO (IEEE 2030-1-1)
 - 3. CNMP (IEEE P 2690)
 - 4. ISO 15118
 - 5. OpenADR <u>2.0b</u>
 - 6. OCPP v1.6
 - 7. SAE J3072 / SAE J2847 / SAE J2931 / SAE J1772
 - 8. Telematics
- Launch point for Deliverable 2, Question 1

Subject Matter Expert Teams Designing Implementations

Automaker

EVSE Manufacturer

VGI Aggregators

Grid Operator

Standard 1

- - -

Alternative

List Cost Categories necessary to implement one use case

- Standard 1
 - 1. EV charge controller
 - 1. Quant. if available
 - 2. EVSE charge controller
 - 1. Quant, if available
 - 3. ...
- 2. Categorize costs given other stakeholders needed to complete use case.
- How does adoption or absence of standard affect cost? List factors increasing or decreasing costs.
- 4. Repeat for other use cases. Indicate costs added or saved when implementing other use cases
 - 1. If applicable. If subsequent implementations do not change cost structure, do not list.

List Benefit Categories achievable from implementing one use case

Standard 1

- Demand charge management
 - 1. Quant. if available
- 2. Frequency regulation
 - 1. Quant. if available
- 3. ...
- 2. Categorize benefits accrued to stakeholders.
- 3. How does adoption or absence of standard affect benefits? List factors increasing or decreasing benefits.
- 4. Repeat for other use cases. Indicate benefits added or lost when implementing other use cases
 - If applicable. If subsequent implementations do not change cost structure, do not list.

Note: Listing Costs & Benefits

- In the absence of knowing what existing (billing, metrology, communication) supporting systems or grid service markets or available or needed to complete service, list them.
 - Can be removed later if determined to be available.
 - Unavailable items can be noted as policy issues.

Costs

- Note assumed counterfactual charging system.
- Benefits
 - Working Group will be gathering Business Practice Manual and utility contract terms required for deliverability.
 - Can include qualitative, non-grid service benefits.

Deliverable 2 Questions 1 & 2

- Answers to Question 2 flow from analysis and synthesis of Question 1.
 - Juxtapose costs & benefits of implementations
 - Distinguish for use cases *only with material changes* in equipment structure or stakeholders involved
 - Combine and eliminate duplications in categories
 - Identify commonalities and options for net benefits

Next Steps

- Today: Identify SME teams designing implementations of standards and alternatives
- Build upon cost/benefit presentations from 8/7 and more detailed instructions and outline
- 9/5: Present on progress

Questions or Feedback?

Noel Crisostomo | CEC noel.crisostomo@energy.ca.gov

Questions to keep in mind...

- What benefits are accrued with certain information and what is foregone without it?
 - How is adoption enabled or hindered?
 - What will encourage private investment?
 - What future use cases are stifled without intelligence?
- What are the implementation costs if levelized over "widespread" scale?
 - Sensitivity to thousands of units? Millions?
- How can the efficiencies of a international automotive market be leveraged?
- What advanced technologies are concerning? How do risk tolerances differ among stakeholders?

What is the <u>incremental cost*</u> to develop a standards-based smart charging system?

Stakeholder costs can yield private and social benefits

Public investment in R&D, customer rate-base

Ratepayer or Society

Lower air pollution and GHG, economic growth, market efficiency

Billing and settlement system upgrades, EVSE investments

DSO/LSE/CCA/ISO

Advanced rate enrollments, avoided upgrades, increased load factor & renewables use, flexibility services

Software development, customer acquisition

VGI Aggregator Eased enrollments, grid services, measurement & verification, faster settlements, increased revenues

Smart charging systems (\$/EV, \$/EVSE or \$/year,...)

Host

Lower energy costs, higher asset utilization, increased charging carrying capacity, attracted tenants & retained employees, value added services

PEV OEM

EVSE OEM EVSP or Operator

User

Delightful customer experiences, decreased costs, simplicity, increased sustainability

Higher sales, interoperability, scale economies, efficient investments

Achieving benefits for California relies on PEV charging data

Data should be

- Accountable
- Specific
- Verifiable
- Fungible
- Secure

Other nonpolicy uses for this data will exist!

Select Agency ZEV Activities

Open, authenticated access to public charging sessions

Charge control per Time-Of-Use or Dynamic rates

Provision and settlement of grid ancillary services as DERs

Accurate receipt of commercial sale of electric fuel

Monitoring traffic flows/congestion, road capacity, and tolling

Validating Credit Generation for Low Carbon Fuel Standard

Analyzing utilization and maintenance of deployed networks

Improving load and generation forecasting and grid planning

Allocating construction costs to drivers proportionate to use

Target future **strategic investments** in charging networks

ranger ratare chategre in recine in enarging networks

Track deployment, petroleum & emissions reduction goals

Meet energy efficiency and fleet procurement targets

