Benchmarking the Costs of Charging Infrastructure and Services

Noel Crisostomo
Fuels and Transportation Division
California Energy Commission

TE Program Evaluation Metrics Workshop
California Public Utilities Commission
May 9, 2019
Outline and Summary

• Goal
 – Identify ways to measure successes from public investment in charging infrastructure for transportation electrification
 – Enable market signals for scaled private sector investment

• Challenges: metrics are subject to uncertainty
 – Location-specific build costs, timing of EV need, charger utilization
 – Systemic changes: innovative charging technologies and models

• A solution: Concept for efficient infrastructure deployment
 – Encourage enablement of charging services, not just charger counts
 – How to monitor programs in preparation for scaled need
By 2025, CA needs 250,000 EV chargers, including 10,000 DCFCs. Many factors affect demand and cost.
For chargers to be accepted and installed by customers, charging programs must reflect the diversity of the local built environment.

Statewide and utility-class averages do not capture local variation.

New policy, technology, and market-based solutions are needed.
The market has not yet grown to support the goal that any PEV can plug into any EVSE, anywhere, any time.

Global interoperability requires ...

Interoperability will provide standardized devices that are capable of functioning as intended with each other — without special effort by the user.

Codes & standards are essential for:

Interoperable PEVs, EVSE, and communication networks

Sending industry predictable investment requirements for them to achieve scale economies

Key Standards

- AC L1&L2 charge communication
- DC communication
- Interoperability
- Wireless charging

European Commission Joint Research Center / U.S. DOE - Argonne National Lab, EV-Smart Grid Interoperability Centers
Competitiveness and readiness of smart and vehicle-to-grid chargers is improving.

CEC analysis of EVSE product pages, work papers, and OEM interviews.
Investing in capabilities that improve utilization or decrease overall costs is critical to enabling benefits.

P.U. Code 740.12: “programs…shall seek to minimize overall costs and maximize overall benefits”

<table>
<thead>
<tr>
<th>Investment in Charger $/kW</th>
<th>Enabled Adoption $/EV</th>
<th>EV Use of Charger $/kWh</th>
<th>Operational Costs $/kWh & $/kW</th>
<th>Emiss. Intensity kWh/ton</th>
<th>Replaced Vehicle Baseline ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>New demand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support additional electric travel for existing EV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Theoretical Use (100% Load Factor)

- Simplifies utilization growth likely over time and different types of installations (home, work, public)
- Can overstate benefits from residential chargers. E.g. most are currently used by one car a few times/week.
- Does not adjust for the savings in network capacity from sharing the charging supply (when capacity is not needed coincidently).

Estimated or Measured Use

- Differentiates across types (home, work, public) and access management
- Normalizing benefit potential to projected or actual use encourages business model innovation & interoperability, reducing buildout costs.
- Requires data to segment use across locations (particularly challenging for public and workplace) and geo-temporal analysis.

Note: The above $/kWh figures do not intend to represent retail charging costs to end-use drivers. Charging services are not subject to regulated pricing, nor does charging function as a commodity due to drivers’ schedules, value of time, and subsequent effect on how parking is used.
Given local built conditions, diverse solutions - each with cost and benefit tradeoffs - compete as substitutes.
How could advanced charging technology and high utilization improve the efficiency of serving 5 PEVs?

<table>
<thead>
<tr>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
<th>Case 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1G BEV</td>
<td>V1G BEV</td>
<td>V2G BEV</td>
<td>V2G BEV</td>
</tr>
<tr>
<td>One BEV using one $500 Level 2 EVSE installed for $1,500 at home: $2,000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BAU

- Four PHEVs at work
- (4) $5,000 Level 2s
- (4) $5,000 Upgrade
- (4) $5,000 Install

Dual Port

- (2) $5,000 Level 2s
- (2) $5,000 Upgrade
- (2) $5,000 Install

V2G Off-Grid

- (1) $7,000 V2G L2
- (2) $5,000 L2s
- (2) $5,000 Install

V2G + Wireless + Level 4 Autonomy

- (1) $7,000 V2G L2
- (1) $7,000 Wireless
- (1) $5,000 Install

Total Capital Expenditure (Indexed to Case 1)

<table>
<thead>
<tr>
<th></th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
<th>Case 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$62,000</td>
<td>$32,000</td>
<td>$29,000</td>
<td>$21,000</td>
</tr>
<tr>
<td>Indexed</td>
<td>1</td>
<td>0.52</td>
<td>0.47</td>
<td>0.34</td>
</tr>
</tbody>
</table>
A consistent market signal should enable efficient substitution between types of installations and reflect market and policy changes.
Thank you!

For questions, please contact:
Noel Crisostomo
Air Pollution Specialist
Noel.Crisostomo@energy.ca.gov
916-653-8625