

UCDAVIS

POLICY INSTITUTE FOR ENERGY, ENVIRONMENT, AND THE ECONOMY

Leveraging university expertise to inform better policy

Austin Brown, Ph.D., Executive Director

Metrics & Methodologies to Evaluate Transportation Electrification Programs

CPUC Workshop

May 9th, 2019

Notes

- These principles and examples are based on my personal time at the Department of Energy and the National Renewable Energy Lab, as well as published materials
- Great guides at: https://www.energy.gov/eere/analysis/program-evaluation
- These are my personal takes and NOT the official views of DOE or anyone else

Why Evaluation?

- Show what was accomplished
- Foster research opportunities
- Improve future programs
- Inform big picture policy

Key Principles

- Program staff: look under the rock
- Managers: fight the 'gotcha' culture
- Start with the logic model
- Build evaluation into programs
- Understand your counterfactual
- Use deployment as an experiment where possible
- Start with a broad definition of impacts
- Consider direct and indirect (e.g. EV sales) impacts but keep them separate
- Make sure data can be aggregated

Logic Model

Customers/ Activities Outputs Short-Term Intermediate Resources Long-Term **Problems Partners** Outcomes Outcomes Outcomes to be (Includes solved Customer Transfer, Strategic Strategic Decisions Goals Use) Objectives & Actions Program Structure **Outcome Structure** Context: Assumptions, External Influences

Figure 2-1. The Basic Elements of a Logic Model

Source: Gretchen Jordan, EERE Program Evaluation Training, 2014

Logic Model

Note: The outcomes in blue lettering in italics can be calculated using the standard method outlined in this Guide.

Figure I.1 High Level Diagram of EERE Logic

Impact Evaluation for Deployment Programs

Figure 1. Overview of the Impact Evaluation Framework

Impact Evaluation for Deployment Programs - Detail for Steps 2 & 3

Recovery Act Example

Recovery Act Example

RESIDENTIAL LEVEL 2 AVERAGE INSTALLATION WORKPLACE LEVEL 2 AVERAGE INSTALLATION PUBLIC LEVEL 2 AVERAGE INSTALLATION

BLINK DC FAST CHARGER AVERAGE INSTALLATION

https://avt.inl.gov/sites/default/files/pdf /arra/PluggedInSummaryReport.pdf

Smart Grid Investment Grant Example

- "Under the U.S. Department of Energy's (DOE) Smart Grid Investment Grant (SGIG) program, six utilities evaluated operations and customer charging behaviors for in-home and public electric vehicle charging stations:
 - Burbank Water and Power (BWP)
 - Duke Energy (Duke)
 - Indianapolis Power & Light Company (IPL)
 - Madison Gas and Electric (MGE)
 - Progress Energy (now part of Duke Energy as a result of a merger in 2012)
 - Sacramento Municipal Utility District (SMUD)"
- My note: findings mostly qualitative, not combinable between projects

SGIG Example Data

SGIG Example Data

Lessons Learned

Table 5. Summary of Lessons Learned				
Category	Lesson Learned			
Planning and Management	 Initially install a small number of chargers as demonstrations, and evaluate their use to justify larger deployments. Plan for sufficient resources to support customer issues throughout the project. A high level of customer support to address technical issues was typically required. Conduct smaller, in-house process and field tests prior to full field implementation, perhaps using employees. Develop detailed process maps to streamline operating procedures; 			
Market Development	 guide vendors, installers, and service technicians; and provide higher quality customer services and issues resolution. Consider the needs of the different target markets, such as single families, multi-family housing units, fleets, employers, dealerships, and public access. Evaluate use cases for each that examines the charging patterns of the users in those segments. 			
Implementation	 Site and installation scheduling requires hands-on attention which vendors can provide to help ensure customer satisfaction. Locate chargers where it is convenient for the consumers, not necessarily for utilities. This will optimize utilization and shorten capital cost recovery. 			

https://www.energy.gov/sites/prod/files/2/12/f19/SGIG-EvaluatingEVcharging-Dec2014.pdf

Clean Cities

Clean Cities Example

Table 2. Emissions Reduced by Clean Cities Coalitions in 2016

Project Type	Tons of GHG Emissions Averted	Equivalent of Conventional Cars Removed	Percent of Coalition Total
Alternative Fuels and Vehicles	2,012,531	457,894	45%
HEVs	734,310	167,072	16%
Fuel Economy Improvements	530,818	120,773	12%
Idle Reduction	476,464	108,406	11%
VMT Reduction	351,077	79,878	8%
EVs and PHEVs	188,812	42,959	4%
Off-Road Vehicles	111,111	25,280	2%
Outreach Events Estimate	89,064	20,264	2%
Coalition Total	4,494,185	1,022,526	100%

^a Calculated as total passenger car GHG emissions (Table 2–13 in the U.S. Environmental Protection Agency's (EPA's) Inventory of GHG Emissions and Sinks: 1990-2015) divided by total short wheelbase light-duty vehicles (Table VM-1 in the Federal Highway Administration's Highway Statistics, 2015).

Key Principles

- Program staff: look under the rock
- Managers: fight the 'gotcha' culture
- Start with the logic model
- Build evaluation into programs
- Understand your counterfactual
- Use deployment as an experiment where possible
- Start with a broad definition of impacts
- Consider direct and indirect (e.g. EV sales) impacts but keep them separate
- Make sure data can be aggregated

More (Federal) Resources

- Federal Workplace Charging: <u>https://afdc.energy.gov/files/u/publication/federal_wpc_case_study.pdf</u>
- Recovery Act Plug-in Vehicle Infrastructure Analysis: https://inldigitallibrary.inl.gov/sites/sti/67995-70.pdf
- Evaluating EV Charging: <u>https://www.energy.gov/sites/prod/files/2014/1</u> 2/f19/SGIG-EvaluatingEVcharging-Dec2014.pdf
- Evaluation Guide For Project Managers: https://www.energy.gov/sites/prod/files/2015/0 9/f26/project_manager_guide_managing_impact_ process_evaluation_studies.pdf

