

What is the impact of CPUC Energy Efficiency programs?

2019 Results and 2020 Look Ahead

WHY IS ENERGY EFFICIENCY IMPORTANT?

Energy efficiency is a cornerstone of California's energy and greenhouse gas emissions reductions efforts, and the current goal is to double the state's 2017 level of energy efficiency by 2030.¹

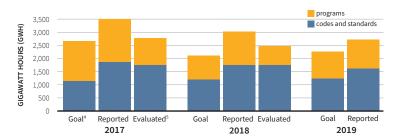
Program Year 2019 impacts:

CO₂ Reduction²

Removing 1,679,277 tons of CO₂ is equivalent to 189 million gallons of gas consumed

Electricity Saved

2,738 GWh is enough to power


327,793 HOMES' electricity usage for a year

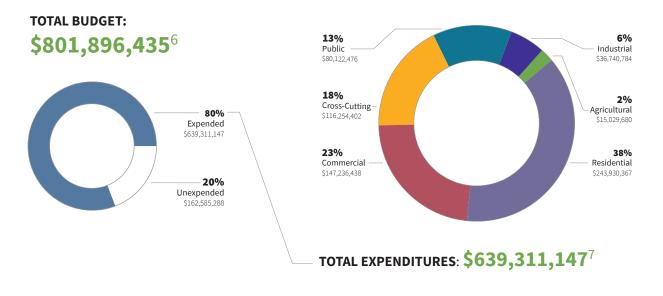
Therms Saved³

84,015,538 Therms is equivalent to CO₂ emissions from **68.6 million** propane cylinders

WHAT ARE THE TRENDS?

Electric Savings Compared to Goals

Utilities continue to meet CPUC energy efficiency savings goals, with the majority of savings coming from codes and standards.


🕑 2019 Look Back:

- Energy Upgrade California 2019 marketing campaign found that 48% surveyed are concerned about energy use and live in ways to reduce usage.
- Updated the method for approving fuel substitution measures, like gas to electric stoves, to promote energy efficiency measures that reduce greenhouse gases.
- EE Case study: **SoCalGas combined their multifamily and low-income energy efficiency programs** to retrofit Angelus Plaza a subsidized community for low-income seniors in Los Angeles; treating 1,000 units and common hot water boilers.

2020 Look Ahead:

- Opening the energy efficiency market to programs developed and designed by third parties (3P). Already the IOUs have contracted for future 3P programs worth \$11 million.
- Aiding innovative measurement and verification practices, such as normalized metered energy consumption (NMEC), that can support pay-for-performance programs.
- Using new CPUC market transformation framework to develop innovative methods to capture energy savings and remove barriers for emerging energy efficiency technologies.

HOW MUCH WAS SPENT ON EFFICIENCY IN 2019?

BY THE NUMBERS⁸

Sector	2019 Expenditures	% of Total Expenditures	Total Portfolio First Year Savings			Portfolio TRC	CO ₂ Reductions (tons)
			GWh	MW	Million Therms		
Residential	\$243,930,367	38%	726	129.42	21	1.15	409,709
Commercial	\$147,236,438	23%	166	35.37	6	0.71	109,714
Public	\$80,122,476	13%	69	7.33	1	0.44	31,802
Industrial	\$36,740,784	6%	44	3.29	6	1.17	56,425
Agricultural	\$15,026,680	2%	21	6.83	0	0.54	11,592
Total	\$523,056,745	82%	1,026	182	35	n/a	619,242
Cross-Cutting	\$116,254,402	18%	1,712	372.45	49	1.81	1,060,035
Total	\$639,311,147	100%	2,738	555	84	1.44	1,679,277

2019 Energy Efficiency Portfolio Performance

Want to learn more? Follow the Energy Efficiency Portfolio with these CPUC proceedings and resources: R.13-11-005 | D.18-05-041 | https://www.cpuc.ca.gov/energyefficiency/

¹ https://www.cpuc.ca.gov/sb350/) ² Pulled from CEDARS 2019 Claims Data (https://cedars.sound-data.com/reports/summary/) ³ Calculated from EPA Greenhouse Gas Equivalencies Calculator using CEDARS data (https://www.epa.gov/ energy/greenhouse-gas-equivalencies-calculator) ⁴ CEDARS Goal Tables (https://cedars.sound-data.com/upload/confirmed-dashboard/SCE/2016/Tinclude_c_n_serture) ⁵ 2017 Evaluated: BFDR on CEDARS data (https://cedars.sound-data.com/ filings/download-bfdr); 2018 Evaluated: Table 'SEPI_2018, Results_Tables_Statewide.alsx' (https://lcedars.sound-data.com/upload/dashboard/list/2018/CE_2019 Claims data.com/reports/summary/) ⁷ Pulled from CEDARS 019 Claims Data (https://cedars.sound-data.com/upload/dashboard/list/2018/?include_c_n_serture) ⁴ 2017 Calculated in the complexity of the complex