Promoting Plug-in Vehicles

Reduce GHG and electric rates

Snuller Price, Partner
Eric Cutter, Senior Consultant

State Interest in EVs

+ 2013 ZEV Action Plan
- 1.5 million by 2025
+ ZEVs are necessary to meet the 2050 GHG targets
+ State needs utility support of plug-in vehicle policies
+ E3 believes there is now an opportunity to really push the plug-in market
- Viable PEVs on the market
- Electricity getting cleaner
- Utilities need off-peak load

2013

ZEV Action Plan
A roadmap toward 1.5 milion zero-emission vehicles
on California roadways by 2025

Governor's Interagency Working Group on Zero-emission Vehicles Governor Edmund G. Brown tr

Reducing carbon in 2050

Carbon Savings for 2050 Reductions

Zero-carbon electricity generation is the dominant energy source in this 2050 economy. The constraints on other low-carbon resources drive low-carbon electricity to be the fuel of choice.

How do we transform the market?

\#1 Provide incentives to reduce the upfront cost of the plug-in vehicles to the consumer

- Incentives that can be funded by utility ratepayers fall into three categories which can be used in combination
- Ratepayer benefits (incentive is collected back from grid benefits)
- Participant funding (upfront incentive is collected back over time in the plug-in vehicle rate)
- Market transformation subsidies (similar to CSI)

\#2 Encourage the availability of charging

- Develop multi-family infrastructure strategy
- Building standards, incentives to landlords, or utility construction

Benefits of EVs to Ratepayers

Example - NPV of Ratepayer Beneffts

+ At plug-in charging rates of $\$ 0.10 / \mathrm{kWh}$ to $\$ 0.20 / \mathrm{kWh}$, revenue neutral ratepayer costs can range from \$1,000 to \$3,000 per vehicle
+ At this electricity charging cost, plug-in vehicles still save plug-in owners $\sim \mathbf{\$ 1 , 0 0 0}$

	Low Rate		Med Rate			High Rate
Off-peak Rate $\$ / \mathrm{kWh}$	$\$$	0.10	$\$$	0.12	$\$$	0.20
Off-peak Cost $\$ / \mathrm{kWh}$	$\$$	0.05	$\$$	0.05	$\$$	0.05
Difference $\$ / \mathrm{kWh}$	$\$$	0.05	$\$$	0.07	$\$$	0.15
CTF \$/Year	$\$$	183	$\$$	256	$\$$	548
7 year NPV \$	$\$$	950	$\$$	1,330	$\$$	2,850
Gasoline Savings	$\$$	1,579	$\$$	1,579	$\$$	1,579
Plug-in Electric Cost	$\$$	365	$\$$	438	$\$$	730
Plug-in Savings	$\$$	1,214	$\$$	1,141	$\$$	849

Assumptions

Discount Rate	8%
Gasoline Cost	$\$ 3.75$
miles / kWh	3
conventional miles/gal	26
kWh/day	10
kWh/year	3,650

Transformation in Phases

+ Early Path

- Provide ratepayer funded incentive to reduce upfront cost of vehicles to increase adoption, funded by net system benefits
- Use TOU pricing (or a simple load-control signal) to encourage super-off peak charging with simple timers or onboard charge controllers in the vehicles
+ Mid Term
- Expand charging availability for multi-family and workplace charging through (a) new construction standards, (b) incentives and (c) possibly utility 'make ready' construction
- Transition to using system benefits to lower retail electric rates

+ Long term

- Expand charging infrastructure for 'range anxiety' of pure EVs
- Create dynamically controlled charging for additional grid benefits after significant plug-in vehicle penetration is achieved

Plug-in Hybrids in Early Phase

+ In near-term PHEVs ideal transition strategy
- No range anxiety
- Need only level 1 charging
- Very low cost of infrastructure upgrades with off-peak charging
+ Infrastructure needed for PHEVs
- Existing distribution largely can accommodate PHEVs, particularly with night time charging
- Multi-family charging locations (landlord / tenant problem)
- Public charging stations helpful, but not as critical for vehicle purchase

Summary

+ Plug-in vehicles are important to achieve California's long-term CO2 goals
+ Increased use of existing electricity grid in the offpeak produces benefits that can be used to transform the market or reduce rates for all customers
+ Implementation: Keep it simple
- Upfront incentives, TOU pricing and/or simple load control in the near term
- Expand charging access, in particular in the multi-family segment

