

Energy+Environmental Economics

Promoting Plug-in Vehicles

Reduce GHG and electric rates

Snuller Price, Partner Eric Cutter, Senior Consultant

State Interest in EVs

+ 2013 ZEV Action Plan

- 1.5 million by 2025
- ZEVs are necessary to meet the 2050 GHG targets
- State needs utility support of plug-in vehicle policies
- + E3 believes there is now an opportunity to really push the plug-in market
 - Viable PEVs on the market
 - Electricity getting cleaner
 - Utilities need off-peak load

Energy+Environmental Economics

Reducing carbon in 2050

Carbon Savings for 2050 Reductions

Zero-carbon electricity generation is the dominant energy source in this 2050 economy. The constraints on other low-carbon resources drive low-carbon electricity to be the fuel of choice. Source: Energy and Environmental Economics, Inc 2009

Energy+Environmental Economics

- At plug-in charging rates of \$0.10/kWh to \$0.20/kWh, revenue neutral ratepayer costs can range from \$1,000 to \$3,000 per vehicle
- At this electricity charging cost, plug-in vehicles still save plug-in owners ~\$1,000

	Low	Rate	Me	d Rate	Hig	h Rate
Off-peak Rate \$/kWh	\$	0.10	\$	0.12	\$	0.20
Off-peak Cost \$/kWh	\$	0.05	\$	0.05	\$	0.05
Difference \$/kWh	\$	0.05	\$	0.07	\$	0.15
CTF \$/Year	\$	183	\$	256	\$	548
7 year NPV \$	\$	950	\$	1,330	\$	2,850
Gasoline Savings	\$	1,579	\$	1,579	\$	1,579
Plug-in Electric Cost	\$	365	\$	438	\$	730
Plug-in Savings	\$	1,214	\$	1,141	\$	849

Discount Rate	8%
Gasoline Cost	\$3.75
miles / kWh	3
conventional miles/gal	26
kWh/day	10
kWh/year	3,650

Energy+Environmental Economics

+ Early Path

- Provide ratepayer funded incentive to reduce upfront cost of vehicles to increase adoption, funded by net system benefits
- Use TOU pricing (or a simple load-control signal) to encourage super-off peak charging with simple timers or onboard charge controllers in the vehicles

+ Mid Term

- Expand charging availability for multi-family and workplace charging through (a) new construction standards, (b) incentives and (c) possibly utility 'make ready' construction
- Transition to using system benefits to lower retail electric rates

+ Long term

- Expand charging infrastructure for 'range anxiety' of pure EVs
- Create dynamically controlled charging for additional grid benefits after significant plug-in vehicle penetration is achieved

- Plug-in vehicles are important to achieve California's long-term CO2 goals
- Increased use of existing electricity grid in the offpeak produces benefits that can be used to transform the market or reduce rates for all customers
- Implementation: Keep it simple
 - Upfront incentives, TOU pricing and/or simple load control in the near term
 - Expand charging access, in particular in the multi-family segment