

RESOLVE Model: Additional Technical Topics

IRP Modeling Advisory Group #3 November 17, 2016

> Nick Schlag, Sr. Managing Consultant Arne Olson, Partner

> > Jimmy Nelson, Consultant

- RESOLVE modeling framework review
- System and local reliability in RESOLVE
- Operational model detail

			6				- (0)	đ			70	0	•	•		٨			
$_{-}V $						F													
			-		<u> </u>				1	1		10					<u> </u>		

RESOL

RESOLVE Co-optimizes Investment and Operational Decisions

- RESOLVE is a <u>linear program</u> allows portfolio optimization across a long time horizon (10-20 years)
- Fixed costs capture capital, financing, and fixed O&M associated with new physical infrastructure
- Operational detail focuses on primary drivers of renewable integration challenges
- RESOLVE may select portfolio from a variety of potential "solutions," including:
 - Renewable overbuild
 - Energy storage
 - Advanced demand response
 - Conventional gas generation
 - Gas retrofits

- RESOLVE minimizes the <u>NPV of total costs</u> across a 20+ year time horizon
 - Additional weight applied to last year of analysis to account for end effects
 - Because of computational complexity, RESOLVE is typically not used to model
 all years in analysis horizon

In each <u>modeled year</u>, the portfolio is explicitly modeled, and total cost is calculated as the sum of fixed costs of investment and operating costs

In <u>intermediate years</u>, the total cost of the portfolio is calculated by linear interpolation between the two adjacent modeled years

Example Objective Function with Interpolation

- Objective function includes for each year's total cost (TC_{yy}), either explicitly or calculated via interpolation
- Example illustrates five-year analysis horizon with only first and last years modeled

Year	Method	Total Cost	Discount Factor	Discounted Total Cost
2018	Modeled	TC ₁₈	1.00	<i>TC</i> ₁₈
2019	Interpolated	$0.75TC_{18} + 0.25TC_{22}$	0.95	$0.71TC_{18} + 0.24TC_{22}$
2020	Interpolated	$0.50TC_{18} + 0.50TC_{22}$	0.91	$0.45TC_{18} + 0.45TC_{22}$
2021	Interpolated	$0.25TC_{18} + 0.75TC_{22}$	0.86	$0.22TC_{18} + 0.65TC_{22}$
2022	Modeled	TC ₂₂	0.82	TC ₂₂
Total		2.50TC ₁₈ + 2.50TC ₂₂		2.38 <i>TC₁₈</i> + 2.34 <i>TC₂₂</i>

Objective

function

• 5% discount rate assumed

RELIABILITY STANDARDS IN RESOLVE

	Reliability Standards in RESOLVE
+	Traditionally, these needs are administered to utilities through three requirements:
	 System RA requirement Local RA requirement Flexible RA requirement
+	In its optimization, RESOLVE includes multiple constraints that are intended to ensure that the portfolio developed meets system and local reliability needs
Energy+Env	vironmental Economics

- In each year modeled, RESOLVE imposes a planning reserve margin constraint on the total CALSO generation fleet
- Contribution of each resource to PRM requirement depends on its attributes

PRM Requirement 1-in-2 peak x 115%

PRM constraint designed to ensure that sufficient generation capability is available to meet load during system peak conditions

- Effective load carrying capability (ELCC) is a measure of a resource's contribution to system reliability requirements
- For variable resources, marginal ELCC generally declines as a function of penetration
 - For the first increment of solar PV installed, production is largely coincident with peak demand

Implementation of ELCC Surface

- A reasonable model of renewable ELCC must capture multiple dynamics:
 - 1. Declining marginal ELCC with increasing penetration
 - 2. Interactions between multiple variable renewable technologies

- To accomplish this, E3 uses RECAP—an LOLP model—to create a multi-dimensional ELCC "<u>surface</u>"
 - ELCC surface developed outside of RESOLVE to parametrize relationship of installed capacity to ELCC
 - Each point on the surface reflects the <u>total ELCC</u> of a renewable portfolio as a function of the penetration of each of its resource types (e.g. wind, solar)
 - The "slope" of the surface in any direction represents the <u>marginal ELCC</u> for that resource type

Implementation of ELCC Surface

- Within RESOLVE, the ELCC surface is expressed as a piecewise linear function of multiple variables (e.g. wind and solar penetration)
 - Current formulation includes two dimensions (wind & solar); surface may be expanded to include additional dimensions if necessary

- Results of CALSO's Transmission Plan will be integrated to characterize need for local capacity resources
 - "Deficiency" will be adjusted to reflect any key differences in assumptions between prior TPP and current IRP (e.g. changes in assumed retirements, load forecast)

Table D2: Summary of Long-Term LCR Needs (2025) for Local Reliability Areas in Southern California

Local Area Name	Qualify	ing Capacity (MW)		R Need Bas ment Conti (MW)		2025 LCR Need Based on Multiple Element Contingency (MW)					
	Existing Resources	CPUC- approved procurement contracts	Total	Available Capacity Needed	Deficie ncy	Total	Available Capacity Needed	Deficien cy	Total			
Western LA Basin	2,728	1,813	4,541	<mark>4,54</mark> 1	(695)	5,236	4,541	(973) ⁸	5,514			
Eastern LA Basin	3,531	N/A	3,531	2,132	0	2,132	2,805	0	2,805			
Big Creek/Ventura	3,667	Pending review and decision from the CPUC for the Moorpark sub- area procurement selection	3,667	2,111	0	2,111	2,455	234	2,689			
San Diego/ Imperial Valley	4,618	800	4,618 ⁹	3,151	0	3,151	4,618	(250) ¹⁰	4,868			

Implementing Local RA Constraints

 In each local area with a deficiency, new resources will be required to meet the identified need in each modeled year

 The addition of local RA constraints offer additional location-specific value for candidate resources

- Flexible RA requirements are <u>not</u> represented explicitly in RESOLVE
 - Production simulation modeling indicates this constraint will not be binding upon portfolio decisions
- Instead, "need" for flexibility is determined by system economics
 - Renewable curtailment provides a backstop to system flexibility, but comes at significant cost
 - Integration solutions are justified if the economic value of their flexibility offsets the required investment

CONSTRAINTS ON OPERATIONAL MODEL

		•	i e	9	•	•		•	•	•	0	0	٠	0	•	•	•	•	•	•	•
		'																			
	-		F																		

Overview of Operational Model

- RESOLVE uses an hourly operational model to simulate the economics of system operations, accounting for:
 - · Hourly profiles for load, wind, and solar resources
 - Daily hydro energy budgets
 - Operating constraints on thermal generators and storage resources
 - Regulation, flexibility reserve & frequency response requirements
 - Spinning & non-spinning reserves not currently modeled
- Rather than modeling each generator individually, RESOLVE groups similar plants together to model different classes of thermal generation
 - CAISO existing thermal fleet represented by seven categories of generation

Sampling of Days Captures Long-Run Expectation of Net Load Distribution

•	For each modeled year in the analysis horizon, RESOLVE simulates operations for 37 independent days		
•	Results of 37 days weighted to approximate long-run distributions of:		
	Hourly load		
	Hourly solar		
	Hourly wind		
	Hourly net load		
	Daily hydro energy		
	 Monthly hydro energy 		
	 Monthly renewable capacity factors by site 		
	1	8	

Operations for each of the 37 days is simulated independently

19

Hourly operations is constrained by many factors:

- Flexibility ("load following") reserve requirements are imposed to ensure that sufficient flexible capacity is reserved to meet subhourly load and renewable variability
- Flexibility reserve requirements are developed exogenously through analysis of five-minute variability and hour-ahead forecast error; example analysis for solar PV shown below:

Meeting Flexibility Reserve Needs

- At high penetrations of renewable generation, flexibility reserve requirements are large and have a significant impact on how a system operates
- RESOLVE assumes that flexibility reserve requirements can be met by a variety of resources:
 - Thermal & hydro resources, based on available headroom & footroom
 - Storage resources, based on available headroom & footroom
 - State of charge assumed to adjust based on assumed utilization of reserves within hour of 20% of reserve contribution
 - e.g. holding 10 MW of upward flex reserves with storage will decrease state of charge by 2 MWh
 - Renewable resources (downward reserves only)

Contributions of Renewables to Downward Reserves

- Renewable resources are assumed to contribute to meet downward flexibility reserve needs—with two important qualifications:
 - Maximum contribution of renewables to meeting downward reserves is 50% of requirement (<u>based on</u> <u>guidance from CAISO</u>)

- Using renewables to meet downward reserves is assumed to result in subhourly curtailment, which is incorporated into the RPS constraint
 - In other words, with all else equal, meeting downward flex reserves with renewables will require additional renewable build to offset subhourly curtailment
 - Relationship between contribution of renewables to downward reserves and expected subhourly curtailment based on 5-minute simulations

Frequency Response Constraint

+ Post contingency, fast response is needed

- <1 minute response assured by frequency response
- Note: different from and in addition to frequency regulation
- In Resolve, frequency response is an upward reserve of 770 MW held in each hour in CAISO
 - Hydro and pumped hydro contribute half of requirement
 - 385 MW response assumed but not modeled

 Batteries can respond quickly 	
 Each MW reserved counts 100% towards requirement 	
 Dispatchable thermal generators respond more slowly 	
 8% of committed capacity counts toward requirement 	
 Other technologies do not currently contribute 	
Energy+Environmental Economics	:4

Thank You!

Energy and Environmental Economics, Inc. (E3) 101 Montgomery Street, Suite 1600 San Francisco, CA 94104 Tel 415-391-5100 http://www.ethree.com