Water/Energy Cost Allocation

Sam Newman Program Manager, Water/Energy Nexus

CPUC Cost Allocation Workshop May 4, 2015

PG&E Water/Energy offerings in 2014 drought

PG&E is prioritizing water-saving energy efficiency measures to help droughtaffected customers and water agencies achieve water savings, including:

- Promoting water/energy products through programs to save >1B gallons/yr:
 - Clothes washers partnership with water agencies
 - Faucet aerators and shower heads through direct install programs
 - New rebates and program offerings for agricultural irrigation systems
 - Custom projects for industrial processes, HVAC, and other opportunities
 - New measures for food service facilities
- Conducting water/energy nexus projects to evaluate future potential:
 - Agricultural irrigation leak detection and soil moisture sensors
 - Water system optimization scoping project with foothills water agencies
 - Leak detection and repair for rural water agencies and irrigation districts
- Energy efficiency support for drought-affected customers:
 - Increased incentives for pump overhauls and pump tests
 - IDEEA-365 programs for SMB ag and water agencies scaling up
 - Considering new product and program no regrets offerings
- Collaboration on Title 20 code updates to achieve broad water conservation

- Expand water/energy nexus programs to help customers save water in historic drought
- Maintain focus of energy public purpose funds on projects which benefit energy customers
- Consistently calculate and record embedded energy savings from projects
- Operationalize Navigant water/energy models

PRAE[®] Principles for cost allocation

- **1.** How should we allocate W-E program costs and savings credit?
- 2. What factors should be considered in determining cost allocations?

Program design goal:

 Divide program costs between water and energy agency in proportion to system benefits

Flexibility needed for real-world implementation:

- Costs and benefits considered as part of a portfolio
- Regional averages used to plan and evaluate programs, with targeting to focus on highest-impact locations and agencies
- Evaluate cost effectiveness by comparing energy program investment to energy system benefit

ypothetical Toilet Replacement Program

Cost effectiveness methodology for a hypothetical water efficient toilet program

-		Savings	Benefits	Incremental Cost	Program Costs	Combined TRC	Combined PAC	
	Energy Utility	0 kWh (direct) 103 kWh (embedded)	\$113	\$450	\$250 incentive	2.07	3.46	
	Water Agency	13,000 gallons	\$116 (water) \$808 (WW)		\$50 admin			

- Water: \$200 Incentive, \$40 Admin
- \$50 Incentive, \$10 Admin **Energy**:

Allocate Full IMC to Energy Efficiency				Split IM	Split IMC 50-50			Split IMC in Proportion to Benefits				Split IMC in Proportion to Program or Incentive Cost			
	IMC	TRC	PAC		IMC	TRC	PAC		IMC	TRC	PAC		IMC	TRC	PAC
Energy Utility	\$450	0.25	1.88	Energy Utility	\$225	0.48	1.88	Energy Utility	\$49	1.91	1.88	Energy Utility	\$90	1.13	1.88
Water System	\$0	23.09	3.85	Water System	\$225	3.49	3.85	Water System	\$401	2.09	3.85	Water System	\$360	2.31	3.85

Note: Illustrative estimates for representative assumptions using Navigant water/energy calculator.

Hypothetical Toilet Replacement Program

Program design for a hypothetical water efficient toilet program

Note: Illustrative estimates for representative assumptions using Navigant water/energy calculator.

- IOUs begin operationalizing water/energy nexus cost effectiveness tools in program design and analysis
 - Requires review/approval from the DEER ex-ante team of tool values
 - Further work to test cost effectiveness tools and review assumptions
 - Clarification on customization vs locked values
- For program design, look to partner with water agencies, with each supporting program costs in proportion to NPV benefits.
- For reporting, use Navigant tool to create modified inputs for existing cost-effectiveness tools:
 - Modify measure energy claim to include embedded energy
 - Use NPV benefits from site and embedded energy savings, but not water avoided costs (potential water agency partner would claim water avoided costs)
 - Modify measure IMC in proportion to NPV benefits (potential water agency partner would claim the rest of the IMC)
- Work to couple test programs with drought assistance in 2015-16