| | | | 2015 | Santa Catalina Is | siand Drin | king v | vater Quality | | | |-------------------------------------|---|-----------------------------------|--|-------------------------------------|--------------------|---------------|--|---|--| | Range of Dates Contaminant (2015) | | Average of Levels Detected | and the second s | Range of MCL/
Detections [MRDL] | | MCLG)
DLG] | Typical Source of Contaminant/Additional Information | | | | Contaminants with a Primary D | rinking Water Standa | rd | | | | | | | | | rsenic (ppb) | 1/8 – 11/10 1.10 0.17 – 4. | | 0.17 - 4.50 | 10 | 0.004 | | Erosion of natural deposits; runoff from orchards; glass and electronics production wastes | | | | arium (ppm) | 1/8 - 6/5 | 0.1 | 0.1 0.06 - 0.2 | | 2 | | Discharges of oil drilling wastes and from metal refineries; erosion of natural deposits | | of natural deposits | | hlorine, Total Residual (ppm) | 1/6 - 12/28 | 1.1 | 0.4 - 3.1 | [4] | [4 | 1 | Drinking water disinfectant added for treatment | | | | uoride (ppm) | 1/8 - 6/5 | 0.30 | 0.19 - 0.44 | 17 | 1 | | Erosion of natural deposits; discharge from fertilizer and aluminum factories | | n factories | | eterotrophic Plate Count (cfu/ml) 1 | 1/6 - 12/28 | 198 ND - 5700 TT | | П | N/ | Α | Naturally present in the en | vironment :Inadequately treated water | may contain disease-causing organisms | | exavalent Chromium (ppb) | 1/8 – 3/10 | 0.83 | 0.026 - 1.9 | 10 | 0.0 |)2 | Discharge from electroplating factories, leather tanneries, wood preservation, chemical synthesis, re
manufacturing facilities; erosion of natural deposits | | reservation, chemical synthesis, refractory production, and ter | | itrate as NO ₃ (ppm) | 1/8 - 6/5 | 2.35 | ND - 6.40 | 45 | 45 | 5 | | | and sewage; erosion of natural deposits | | otal Trihalomethanes (TTHMs) (ppb)5 | 1/8 - 12/7 | 76 | ND - 130 | 80 | N/ | | Byproduct of drinking water disinfection. | | | | aloacetic acids (ppb)5 | 2/11 – 12/7 | 29 | 10 - 46 | 60 | N/ | 19/1 | Byproduct of drinking water disinfection | | | | ontaminants with a Secondary | y Drinking Water Stan | | | | | | Diplocation annual water | y distriction | | | nloride (ppm) | 1/8 - 12/16 | 283 | 100 - 420 500 | | N/ | Ά | Runoff/leaching from natural deposits; seawater influence | | | | on (ppb) | 1/8 - 12/16 | 634.5 | ND - 1800 | 300 | N/ | 'A | Leaching from natural deposits; industrial wastes | | | | anganese (ppb) | 1/8 - 6/5 | 15.38 | 0.09 - 72 | 50 | N/ | Ά | Leaching from natural deposits | | | | paming Agents (MBAS) (ppb) | 1/8 - 6/5 | 59 | 53 - 450 | 500 | N/ | Ά | Municipal and industrial waste discharges. | | | | dor-Threshold (units) | 1/6 - 12/16 | 1 | 1 - 2 | 3 | N/ | Ά | Naturally-occurring organic materials | | | | H (pH units) | 1/8 - 12/17 | 7.7 | 7.05 - 8.16 | 6.5 – 8.5 | N/ | 'A | Erosion of natural deposits | | | | ecific conductance (µS/cm) | 1/8 - 12/17 | 1,289 | 990 - 2,00 | 1,600 | N/ | Ά | Form ions when in water; seawater influence. | | | | Ifate (ppm) | 1/8 - 10/14 | 71 | 36 - 100 | 500 | N/ | 'A | Runoff/leaching from natural deposits; industrial wastes | | | | tal Dissolved Solids (TDS) (ppm) | 1/8 - 12/16 | 916 600 – 1,200 | | 1,000 | N/ | Ά | Runoff/leaching from natural deposits | | | | urbidity (NTU's) | 1/6 – 12/16 | 4.74 ND - | | 5 | N/ | Ά | Microbiological Contaminant: Soil runoff. Turbidity is a measure of water cloudiness; a good indicator of water quality. High turb can hinder disinfection. | | | | nc (ppm) | 1/8 - 10/14 | 0.27 | ND - 2.3 | 5 | N/ | Ά | Runoff/leaching from natural deposits; industrial wastes | | | | nregulated Contaminants | | | | | | | | | | | calinity as CaCO ₃ (ppm) | 1/8 - 12/17 | 319 235 - 430 | | N/A | N/ | Ά | Erosion of natural deposits | s | | | carbonate Alkalinity (ppm) | 1/8 - 6/5 | 437 | 340 - 530 | N/A | N/ | Ά | Erosion of natural deposits | | | | alcium (ppm) | 1/8 - 12/17 | 205 | 68.2 - 275 | | N/ | | Erosion of natural deposits | | | | ardness (ppm) | 1/8 - 6/5 | 474 | 339 - 608 | | N/ | | Naturally occurring cations (characteristically magnesium and calcium) | | | | agnesium (ppm) | 1/8 - 6/5 | 59 33.8 – 8 | | | N/ | | Erosion of natural deposits | | | | tho-Phosphate (ppm) | 1/14 - 12/17 | 0.30 | 0.20 - 0.45 | | N/ | | Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits | | | | odium (ppm) | 1/8 – 6/5 | 128 72 - 160 | | N/A | N/ | 220 | Refers to the salt present in the water and is generally naturally occurring | | | | adiological Data 3 | 116 - 015 | 120 | 72 - 160 | IN/A | IN/ | A | Refers to the sait present | in the water and is generally naturally o | ccurring | | oss Alpha (pCi/L) | 3/22 - 3/29 (2012) & 1/8
- 10/9 (2015) | 1.63 | 33 0 - 5.38 15 | | N/ | 'A | Decay of natural and man-made deposits | | | | oss Beta (pCi/L) | 1/8 | 6.1 6.1 | | 50 | 0 | | Decay of natural and man-made deposits | | | | icrobiological Contaminants | | | | | | | Doddy of flatarar and flat | Timado deposito | NAME OF THE OWNER OWNER OF THE OWNER OWNER. | | | Detections Allowed | per | | | | MARKET S | | | | | ontaminant | Month | Months in Vie | olation | Total Detected | Detected Date Dete | | MCL/[MRDL] | PHG/(MCLG)/[MRDLG] | Typical Source of Contaminant | | al Coliform Bacteria | 1 | 0 | | 1 | 4/7/2015 | 5 | 1 per month | (0) | Naturally present in the environment: Used as indicator fo
presence of other, potentially-harmful bacteria | | ad and Copper Data 4 | | | | | | | | | | | ontaminant | Date Range | 90th Percentile Level
Detected | | Sites Exceeding
AL/No of Samples | AL | PHG | Typical Source of Contaminant | | | | ad (ppb) | 9/15 - 9/17 | 5.3 0 / 20 | | | 15 | 0.2 | Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits | | | | | 9/15 – 9/17 | 0.29 0/20 1.3 | | | | 0.3 | Corrosion of plumbing systems; erosion of natural deposits; leaching of wood preservatives | | | ² There is no PHG, MCLG, or mandatory standard health effects language for these constituent because secondary MCLs are set on the basis of aesthetics. ³ Every nine years radiological is tested. Most recent set of samples were collected in 2012, with the exception of Howlands Well 03 and Middle Ranch Well 06 which are sampled quarterly. ⁵ As of 2015, compliance is determined on a locational running annual average (LRAA). Range listed above shows the max and min of all monitoring locations and the average value listed represents the highest determined LRAA. ## Important Information Regarding Your Drinking Water: ### What happened? - During the testing of the newly installed Howlands Well 03, the secondary MCLs (SMCLs) for Iron, TDS and Specific Conductance were exceeded. - SCE is currently installing additional treatment to mitigate the iron levels at the source. The treatment system will be completed by the second quarter of 2016. Iron, TDS and Specific Conductance are regulated under a SMCL based solely on aesthetics and are not considered to present a risk to human health at the SMCL. - During the sampling event of Sweetwater Canyon Well 01A in June the SMCLs for Manganese and Specific Conductance were exceeded. - Manganese and Specific Conductance are all regulated under a SMCL based solely on aesthetics and are not considered to present a risk to human health at the SMCL. #### What should I do? Please share this information with all the other people who drink this water, especially those who may not have received this notice directly (for example, people in apartments, nursing homes, schools, and businesses). You can do this by posting this public notice in a public place or distributing copies by hand or mail. ## Stage 2 Disinfection By Product Compliance Monitoring Extension SCE routinely disinfects our drinking water with chlorine to ensure all microorganisms and pathogens are removed. During the disinfection process, disinfection byproducts (DBPs) are formed from the reaction of chlorine and organic matter that occurs naturally in ground water supplies. DBPs are regulated by the Stage 2 Disinfectant and Disinfection Byproducts Rule (Stage 2 DBPR). SCE had installed mitigation measures at two locations in the drinking water system to comply with the Stage 2 DBP rule in 2013. On March 13, 2014, SCE received notification from the DDW to add a third site to mitigate DBPs. SCE submitted a detailed plan to the DDW with critical milestones to mitigate the presence of DBPs at the third site. SCE is on track to complete this request by the first quarter of 2017. # Be Water Wise! SCE is requesting residents to practice water conservation measures due to the finite amount of water on Catalina Island and the arid state of the land. Don't leave water running when washing dishes or brushing your teeth, install a low-flow showerhead, and fix leaky faucets and pipes. SCE provides low-flow showerheads and garden hose nozzles at no charge. Please visit SCE at #1 Pebbly Beach Road, Avalon, CA 90704 to obtain these items free of charge. # 2015 Consumer Confidence Report # Southern California Edison Santa Catalina Island Water System # Background Southern California Edison Company (SCE) is providing you with this Consumer Confidence Report for our operations on Catalina Island. This report is required by the State Water Resources Control Board (SWRCB) Division of Drinking Water (DDW) and was developed to provide you details about where your drinking water comes from, what it contains, and how it compares to California water quality standards. SCE is responsible for providing a safe and dependable supply of drinking water. We conduct more than 6,000 tests for over 330 drinking water contaminants. In 2015, SCE tested for regulated as well as some unregulated contaminants. Unregulated contaminant monitoring helps the US Environmental Protection Agency (USEPA) and the SWRCB to determine where certain contaminants occur and whether the contaminants need to be regulated. The tests conducted during 2015 indicate that the drinking water provided to you meets all regulatory requirements. If you have any questions about this report, want to discuss the quality of your water, or are looking for public participation opportunities, please contact Ron Hite, SCE Catalina District Manager at (310) 510-4312. We are committed to providing you information and welcome your comments. Si habla Español: Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alguien que lo entienda bien. # Water Supply Information The water in the Catalina Island Water System is a blended supply, with fresh groundwater sources located in the interior of the island and seawater processed by the desalination system located at the Pebbly Beach Generating Station. As water travels over the land surface or through the ground on its way to the groundwater sources, it dissolves naturally-occurring minerals, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. The primary sources for the groundwater wells are located in Middle Ranch. As part of our continued management of the drinking water system, an assessment of the drinking water sources for the Catalina Island Water System was completed in November 2009, SCE is currently updating the assessment and is on track to have it completed by 2017. The source water assessment indicates that fresh groundwater sources are considered most vulnerable to the following influences: septic tanks, grazing animals, and poorly constructed or abandoned wells in the aquifer. The seawater well watershed contains few contaminant sources and most will not significantly affect the quality of ocean water pumped. Copies of the assessments are available at SWRCB DDW, Central District Office, 500 North Central Avenue, Suite 500, Glendale, CA 91203 or Southern California Edison, Catalina Water System, #1 Pebbly Beach Road, Avalon, CA 90704. You may request a copy from the DDW District Engineer at (818) 551-2004 or the SCE local office at (310) 510-4312. # Information on Lead If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. SCE is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or at: http://www.epa.gov/safewater/lead # **EPA Resources** Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline at (800) 426-4791. Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants. The guidelines are available from the Safe Drinking Water Hotline at (800) 426-4791. # SCE Monitoring SCE is required to test for a number of different contaminants in the Catalina Island Water System, with the timing of the sampling varying based on the state's requirements. In order to ensure that drinking water is safe to drink, USEPA and the DDW prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. California Department of Public Health regulations also establish limits for contaminants in bottled water that must provide the same level of protection for public health. Drinking water contaminants detected during tests in 2015 are listed in the table within this brochure as well as an explanation of terms and abbreviations. Note that the presence of the listed contaminants in water does not necessarily mean that the water poses a health risk and that all contaminants detected are below regulatory levels established by the DDW. Sincerel Ron Hite, SCE Catalina District Manager RIPL #### Terms Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste and appearance of drinking water. Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the USEPA. Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. Primary Drinking Water Standard (PDWS): MCLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements. Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water. #### Abbreviations cfu/ml – colony forming units per milliliter µS/cm – micro Siemens per centimeter N/A - not applicable ND - not detectable at testing limit NTU – Nephelometric Turbidity Unit pCi/L – picocuries per liter ppb - parts per billion or micrograms per liter ppm - parts per million or milligrams per liter