2015 Consumer Confidence Report

Water System Name: WARRING WATER SERVICE INC

microbial contaminants.

Report Date:

June 2016

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2015.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alquien que lo entienda bien.

Type of water source(s) in use: According to CDPH records, this Source is Groundwater. This Assessment was done using the Default Groundwater System Method.

Your water comes from 3 source(s): Well 01, Well 02 and Well 04 and from 6 treated location(s): 3562 Pacific Ave, 3699 E Center St, 3999 Sacramento St., 4046 Citrus View Dr., 4079 Market St. and 509 Temescal St.

For more information about this report, or any questions relating to your drinking water, please call (805) 524 - 3267 and ask for Loriann Boon.

TERMS USED IN THIS REPORT Maximum Contaminant Level (MCL): The Primary Drinking Water Standards (PDWS): MCLs and highest level of contaminant that is allowed in MRDLs for the contaminants that affect health along with their drinking water. Primary MCLs are set as close to monitoring and reporting requirements, and water treatment the PHGs (or MCLGs) as is economically feasible. requirements. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water. Secondary Drinking Water Standards (SDWS): MCLs for the contaminants that affect taste, odor, or appearance of the Maximum Contaminant Level Goal (MCLG): drinking water. Contaminants with SDWSs do not affect the The level of a contaminant in drinking water below health at the MCL levels. which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Treatment Technique (TT): A required process intended to Protection Agency (USEPA). reduce the level of a contaminant in drinking water. Public Health Goal (PHG): The level of a Regulatory Action Level (AL): The concentration of a contaminant in drinking water below which there contaminant which, if exceeded, triggers treatment or other is no known or expected risk to health. PHGs are requirements that a water system mush follow. set by the California Environmental Protection Agency. **ND:** not detectable at testing limit Maximum Residual Disinfectant Level **ppm:** parts per million or milligrams per liter (mg/L) (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing **ppb:** parts per billion or micrograms per liter (µg/L) evidence that addition of a disinfectant is necessary for control of microbial contaminants. **pCi/L:** picocuries per liter (a measure of radiation) Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control

The sources of drinking water: (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants,* such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants,* such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides,* that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products if industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- *Radioactive contaminants,* that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the California Department of Public Health (Department) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. Department regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, 6 and 7 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The Department allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

Table 1 - SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER										
Lead and Copper (complete if lead or copper detected in last sample set)	Sample Date	90th percentile level detected	No. Sites Exceeding AL	AL	PHG	Typical Sources of Contaminant				
Copper (ppm)	11 (2015)	0.52	1	1.3	.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives				

Any violation of MCL, AL or MRDL is highlighted. Additional information regarding the violation is provided later in this report.

	Table 2 - SAMPLING RESULTS FOR SODIUM AND HARDNESS											
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant						
Sodium (ppm)	(2013 - 2015)	113	99 - 123	none	none	Salt present in the water and is generally naturally occurring						
Hardness (ppm)	(2013 - 2015)	536	494 - 600	none		Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring						

Table 3 - I	DETECTION	OF CONTA	MINANTS W	ITH A <u>PR</u>	IMARY DRI	NKING WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Sources of Contaminant
Arsenic (ppb)	(2015)	ND	ND - 2	10	0.004	Erosion of natural deposits; runoff from orchards, glass and electronics production wastes
Fluoride (ppm)	(2013 - 2015)	0.7	0.7 - 0.8	2		Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories.

Nitrate as N (ppm)	(2014 - 2015)	1.1	0.8 - 1.4	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Nitrate + Nitrite as N (ppm)	(2013 - 2015)	1.6	1.3 - 2.1	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Selenium (ppb)	(2013 - 2015)	ND	ND - 8	50	30	Discharge from petroleum, glass, and metal refineries; erosion of natural deposits; discharge from mines and chemical manufacturers; runoff from livestock lots(feed additive)
Gross Alpha (pCi/L)	(2014 - 2015)	5	3.94 - 6.42	15	(0)	Erosion of natural deposits.
Uranium (pCi/L)	(2014 - 2015)	3.25	2.19 - 3.82	20	0.43	Erosion of natural deposits
Total Radium 228 (pCi/L)	(2007 - 2015)	ND	ND - 0.914	5	n/a	Erosion of natural deposits

Table 4 - DETE	CTION OF C	ONTAMINA	NTS WITH A <u>SE</u>	CON	DARY DRI	NKING WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant
Chloride (ppm)	(2013 - 2015)	81	72 - 90	500	n/a	Runoff/leaching from natural deposits; seawater influence
Iron (ppb)	(2015)	ND	ND - 140	300	n/a	Leaching from natural deposits; Industrial wastes
Specific Conductance (umhos/cm)	(2013 - 2015)	1430	1280 - 1610	1600	n/a	Substances that form ions when in water; seawater influence
Sulfate (ppm)	(2013 - 2015)	417	360 - 490	500	n/a	Runoff/leaching from natural deposits; industrial wastes
Total Dissolved Solids (ppm)	(2013 - 2015)	993	880 - 1140	1000	n/a	Runoff/leaching from natural deposits
Turbidity (NTU)	(2013 - 2015)	0.3	ND - 0.7	5	n/a	Soil runoff

Any violation of MCL, AL or MRDL is highlighted. Additional information regarding the violation is provided later in this report.

Table 5 - TREATED DETECTION OF CONTAMINANTS WITH A <u>SECONDARY</u> DRINKING WATER STANDARD

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant
Color (Units)	(2015)	ND	N/A	15	n/a	Naturally-occurring organic materials
Odor Threshold at 60 °C (TON)	(2015)	ND	ND - 4	$1 \prec 1 \qquad n/a$		Naturally-occurring organic materials.
Turbidity (NTU)	(2015)	ND	ND - 0.3	5	n/a	Soil runoff

Any violation of MCL, AL or MRDL is highlighted. Additional information regarding the violation is provided later in this report.

	Table 6 - DETECTION OF UNREGULATED CONTAMINANTS											
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notification Level	Typical Sources of Contaminant							
Boron (ppm)	(2013 - 2015)	0.6	0.6 - 0.7	1	The babies of some pregnant women who drink water containing boron in excess of the notification level may have an increased risk of developmental effects, based on studies in laboratory animals.							

Table 7 - DETECTION OF FEDERAL DISINFECTANT/DISINFECTANT BYPRODUCT RULE

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL (MRDL)	PHG (MCLG)	Violation	Typical Sources of Contaminant
Total Trihalomethanes (TTHMs) (ppb)	(2015)	14.9	N/A	80	n/a		By-product of drinking water disinfection

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts if some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with the service lines and home plumbing. *Warring Water Service* is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

About our Copper: Copper is an essential nutrient, but some people who use water containing copper in excess of the action level over a relatively short amount of time may experience gastrointesteinal distress. Some people who drink water containing copper in excess of the action level over many years may suffer liver or kidney damage. People with Wilson's Disease should consult their personal doctor.

For Arsenic (As) results above 5 ppb up to and including 10 ppb: While your drinking water meets the federal and state standard for arsenic, it does contain low levels of arsenic. The arsenic standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from the drinking water. The U.S. Environmental Protection Agency continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

About our Specific Conductance: The conductivity of your water was found at levels that exceed the secondary MCL. The secondary MCLs were set to protect you against unpleasant aesthetic affects such as color, taste and odor. Violating this MCL does not pose a risk to public health.

About our Total Dissolved Solids: The TDS or Total Dissolved Solids in your water was found at levels that exceed the secondary MCL. The TDS MCLs was set to protect you against unpleasant aesthetic affects such as color, taste or hardness. Violating this MCL does not pose a risk to public health.

About our Odor Threshold at 60 °C: Odor was found at levels that exceed the secondary MCL. The Odor MCL was set to protect you against unpleasant aesthetic affects such as color, taste, odor and the staining of plumbing fixtures (e.g., tubs and sinks), and clothing while washing. Violating this MCL does not pose a risk to public health.

2015 Consumer Confidence Report Drinking Water Assessment Information

Assessment Information

A source water assessment was conducted for the WELL 01 - STANDBY and the WELL 02 of the WARRING WATER SERVICE INC water system in October, 2001. A source water assessment was conducted for the WELL 04 of the WARRING WATER SERVICE INC water system in January, 2009.

- Well 01 is considered most vulnerable to the following activities not associated with any detected contaminants: Chemical/petroleum processing/storage Historic gas stations
- Well 02 is considered most vulnerable to the following activities not associated with any detected contaminants: Chemical/petroleum processing/storage Historic gas stations
- Well 04 is considered most vulnerable to the following activities not associated with any detected contaminants: Agricultural Drainage Grazing [> 5 large animals or equivalent per acre] Wells - Agricultural/ Irrigation

Acquiring Information

A copy of the complete assessment may be viewed at: SWRCB Division of Drinking Water 1180 Eugenia Place Suite 200 Carpinteria, CA 93013

You may request a summary of the assessment be sent to you by contacting: Jeff Densmore District Engineer 805 566 1326

Warring Water Service Analytical Results By FGL - 2015

	LEAD AND COPPER RULE											
		Units	MCLG	CA-MCL	PHG	Sampled	Result	90th Percentile	# Samples			
Copper		ppm		1.3	.3			0.52	11			
CuPb-3890 Olive St.	SP 1506704-5	ppm				2015-06-16	0.06					
CuPb-3962 Center St.	SP 1509583-1	ppm				2015-08-27	0.06					
CuPb-3962 Center St.	SP 1506704-6	ppm				2015-06-16	2.43					
CuPb-4058 Center St.	SP 1509331-1	ppm				2015-08-21	0.52					
CuPb-4074 E. Market St.	SP 1506704-7	ppm				2015-06-16	0.15					
CuPb-504 N. River St.	SP 1506704-2	ppm				2015-06-16	0.21					
CuPb-577 N. Church St.	SP 1506704-1	ppm				2015-06-16	0.10					
CuPb-589 N. Main St.	SP 1506704-8	ppm				2015-06-16	0.10					
CuPb-753 N. Orchard St.	SP 1506704-10	ppm				2015-06-16	ND					
CuPb-79 N. Main St.	SP 1506704-4	ppm				2015-06-16	0.92					
CuPb-926 N. Main St.	SP 1506704-9	ppm				2015-06-16	0.26					

	SAMPLI	ING RESU	ULTS FOR	SODIUM A	ND HAI	RDNESS			
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Sodium		ppm		none	none			113	99 - 123
Well 01	SP 1301390-1	ppm				2013-02-12	99		
Well 02	SP 1511040-1	ppm				2015-10-05	116		
Well 04	SP 1501565-1	ppm				2015-02-10	123		
Hardness		ppm		none	none			536	494 - 600
Well 01	SP 1301390-1	ppm				2013-02-12	514		
Well 02	SP 1511040-1	ppm				2015-10-05	600		
Well 04	SP 1501565-1	ppm				2015-02-10	494		

PRIMARY DRINKING WATER STANDARDS (PDWS)												
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)			
Arsenic		ppb		10	0.004			ND	ND - 2			
Well 02	SP 1511040-1	ppb				2015-10-05	2					
Well 04	SP 1501565-1	ppb				2015-02-10	ND					
Fluoride		ppm		2	1			0.7	0.7 - 0.8			
Well 01	SP 1301390-1	ppm				2013-02-12	0.7					
Well 02	SP 1511040-1	ppm				2015-10-05	0.8					
Well 04	SP 1501565-1	ppm				2015-02-10	0.7					
Nitrate as N	·	ppm		10	10			1.1	0.81324 - 1.4			
Well 01	SP 1401840-1	ppm				2014-02-18	0.81324					
Well 02	SP 1511040-1	ppm				2015-10-05	1.4					
Well 04	SP 1401842-1	ppm				2014-02-18	1.15209					
Nitrate + Nitrite as N		ppm		10	10			1.6	1.3 - 2.1			
Well 01	SP 1301390-1	ppm				2013-02-12	1.3					
Well 02	SP 1511040-1	ppm				2015-10-05	1.4					
Well 04	SP 1501565-1	ppm				2015-02-10	2.1					
Selenium		ppb	50	50	30			ND	ND - 8			
Well 01	SP 1301390-1	ppb				2013-02-12	ND					
Well 02	SP 1511040-1	ppb				2015-10-05	8					
Well 04	SP 1501565-1	ppb				2015-02-10	ND					
Gross Alpha		pCi/L		15	(0)			5.00	3.94 - 6.42			
Well 01	SP 1401841-1	pCi/L				2014-02-18	3.94					
Well 02	SP 1511040-1	pCi/L				2015-10-05	6.42					
Well 04	SP 1401841-3	pCi/L				2014-02-18	4.63					
Uranium		pCi/L		20	0.43			3.25	2.19 - 3.82			
Well 01	SP 1401841-1	pCi/L				2014-02-18	3.82					

Well 02	SP 1511040-1	pCi/L				2015-10-05	2.19		
Well 04	SP 1401841-3	pCi/L				2014-02-18	3.73		
Total Radium 228		pCi/L	0.019	5	n/a			ND	ND - 0.914
Well 01	SP 0714470-1	pCi/L				2007-12-31	0.914		
Well 02	SP 1511040-1	pCi/L				2015-10-05	ND		
Well 04	SP 0714470-3	pCi/L				2007-12-31	ND		

	SECONI	DARY DRINK	ING WA	TER STANI	DARDS	(SDWS)			
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Chloride		ppm		500	n/a			81	72 - 90
Well 01	SP 1301390-1	ppm				2013-02-12	72		
Well 02	SP 1511040-1	ppm				2015-10-05	82		
Well 04	SP 1501565-1	ppm				2015-02-10	90		
Iron		ppb		300	n/a			ND	ND - 140
Well 02	SP 1511040-1	ppb				2015-10-05	ND		
Well 04	SP 1501565-1	ppb				2015-02-10	140		
Specific Conductance		umhos/cm		1600	n/a			1430	1280 - 1610
Well 01	SP 1301390-1	umhos/cm				2013-02-12	1280		
Well 02	SP 1511040-1	umhos/cm				2015-10-05	1610		
Well 04	SP 1501565-1	umhos/cm				2015-02-10	1400		
Sulfate		ppm		500	n/a			417	360 - 490
Well 01	SP 1301390-1	ppm				2013-02-12	360		
Well 02	SP 1511040-1	ppm				2015-10-05	490		
Well 04	SP 1501565-1	ppm				2015-02-10	400		
Total Dissolved Solids		ppm		1000	n/a			993	880 - 1140
Well 01	SP 1301390-1	ppm				2013-02-12	880		
Well 02	SP 1511040-1	ppm				2015-10-05	1140		
Well 04	SP 1501565-1	ppm				2015-02-10	960		
Turbidity	•	NTU		5	n/a			0.3	ND - 0.7
Well 01	SP 1301390-1	NTU				2013-02-12	0.2		
Well 02	SP 1511040-1	NTU				2015-10-05	ND		
Well 04	SP 1501565-1	NTU				2015-02-10	0.7		

	TREATED SEC	CONDARY	Y DRINKI	NG WATER	STAND	ARDS (SDWS)		
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Color		Units		15	n/a			ND	ND -
3562 Pacific Ave	SP 1512249-1	Units				2015-11-03	ND		
3562 Pacific Ave	SP 1508586-1	Units				2015-08-04	ND		
3562 Pacific Ave	SP 1504913-1	Units				2015-05-06	ND		
3562 Pacific Ave	SP 1501566-1	Units				2015-02-10	ND		
3999 Sacramento St.	SP 1507474-1	Units				2015-07-07	ND		
3999 Sacramento St.	SP 1503662-1	Units				2015-04-06	ND		
3999 Sacramento St.	SP 1500080-1	Units				2015-01-06	ND		
509 Temescal St.	SP 1513741-1	Units				2015-12-09	ND		
509 Temescal St.	SP 1509726-1	Units				2015-09-01	ND		
509 Temescal St.	SP 1506140-1	Units				2015-06-02	ND		
509 Temescal St.	SP 1502436-1	Units				2015-03-03	ND		
Odor Threshold at 60 °C		TON		3	n/a			ND	ND - 4
3562 Pacific Ave	SP 1512249-1	TON				2015-11-03	ND		
3562 Pacific Ave	SP 1508586-1	TON				2015-08-04	ND		
3562 Pacific Ave	SP 1504913-1	TON				2015-05-06	ND		
3562 Pacific Ave	SP 1501566-1	TON				2015-02-10	ND		
3999 Sacramento St.	SP 1511087-1	TON				2015-10-06	ND		
3999 Sacramento St.	SP 1507474-1	TON				2015-07-07	ND		
3999 Sacramento St.	SP 1503662-1	TON				2015-04-06	ND		
3999 Sacramento St.	SP 1500080-1	TON				2015-01-06	4		
509 Temescal St.	SP 1513741-1	TON				2015-12-09	ND		
509 Temescal St.	SP 1509726-1	TON				2015-09-01	ND		

509 Temescal St.	SP 1506140-1	TON			2015-06-02	ND		
509 Temescal St.	SP 1502436-1	TON			2015-03-03	ND		
Turbidity		NTU	5	n/a			ND	ND - 0.3
3562 Pacific Ave	SP 1512249-1	NTU			2015-11-03	ND		
3562 Pacific Ave	SP 1508586-1	NTU			2015-08-04	ND		
3562 Pacific Ave	SP 1504913-1	NTU			2015-05-06	ND		
3562 Pacific Ave	SP 1501566-1	NTU			2015-02-10	0.3		
3999 Sacramento St.	SP 1511087-1	NTU			2015-10-06	ND		
3999 Sacramento St.	SP 1507474-1	NTU			2015-07-07	ND		
3999 Sacramento St.	SP 1503662-1	NTU			2015-04-06	ND		
3999 Sacramento St.	SP 1500080-1	NTU			2015-01-06	0.2		
509 Temescal St.	SP 1513741-1	NTU			2015-12-09	ND		
509 Temescal St.	SP 1509726-1	NTU			2015-09-01	ND		
509 Temescal St.	SP 1506140-1	NTU			2015-06-02	ND		
509 Temescal St.	SP 1502436-1	NTU			2015-03-03	ND		

		UNREG	ULATED	CONTAMIN	IANTS				
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Boron		ppm		NS	n/a			0.6	0.6 - 0.7
Well 01	SP 1301390-1	ppm				2013-02-12	0.7		
Well 02	SP 1511040-1	ppm				2015-10-05	0.6		
Well 04	SP 1501565-1	ppm				2015-02-10	0.6		

DETI	ECTION OF FED	ERAL DIS	SINFECTA	NT/DISINF	ECTAN	Г BYPRODUC	Γ RULE		
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Total Trihalomethanes (TTHMs)		ppb		80	n/a			14.9	14.9 - 14.9
STG 2 - East End of Center St	SP 1507473-1	ppb				2015-07-07	14.9		
Average STG 2 - East End of Center St								14.9	

Warring Water Service CCR Login Linkage - 2015

FGL Code	Lab ID	Date_Sampled	Method	Description	Property
3562 Pacific Av	SP 1501566-1	2015-02-10	Coliform	3562 Pacific Ave	Bacti Monitoring - Rotation 2
	SP 1501566-1	2015-02-10	Wet Chemistry	3562 Pacific Ave	Bacti Monitoring - Rotation 2
Bacti-Rout-ss03	SP 1504913-1	2015-05-06	Wet Chemistry	3562 Pacific Ave	Bacti Monitoring - Rotation 2
	SP 1504913-1	2015-05-06	Coliform	3562 Pacific Ave	Bacti Monitoring - Rotation 2
	SP 1508586-1	2015-08-04	Wet Chemistry	3562 Pacific Ave	Bacti Monitoring - Rotation 2
	SP 1508586-1	2015-08-04	Coliform	3562 Pacific Ave	Bacti Monitoring - Rotation 2
	SP 1512249-1	2015-11-03	Wet Chemistry	3562 Pacific Ave	Bacti Monitoring - Rotation 2
	SP 1512249-1	2015-11-03	Coliform	3562 Pacific Ave	Bacti Monitoring - Rotation 2
3699 E Center S	SP 1501566-2	2015-02-10	Coliform	3699 E Center St	Bacti Monitoring - Rotation 2
Bacti-Rout-ss04	SP 1504913-2	2015-02-10	Coliform	3699 E Center St	Bacti Monitoring - Rotation 2
Dacti-Rout-5504	SP 1508586-2	2015-08-04	Coliform	3699 E Center St	Bacti Monitoring - Rotation 2
	SP 1508580-2 SP 1512249-2	2015-08-04	Coliform	3699 E Center St	•
2000 Calenanta					Bacti Monitoring - Rotation 2
3999 Sacramento		2015-01-06	Wet Chemistry	3999 Sacramento St.	Bacti Monitoring - Rotation 1
	SP 1500080-1	2015-01-06	Coliform	3999 Sacramento St.	Bacti Monitoring - Rotation 1
	SP 1503662-1	2015-04-06	Wet Chemistry	3999 Sacramento St.	Bacti Monitoring - Rotation 1
	SP 1503662-1	2015-04-06	Coliform	3999 Sacramento St.	Bacti Monitoring - Rotation 1
Bacti-Rout-ss01	SP 1507474-1	2015-07-07	Wet Chemistry	3999 Sacramento St.	Bacti Monitoring - Rotation 1
	SP 1507474-1	2015-07-07	Coliform	3999 Sacramento St.	Bacti Monitoring - Rotation 1
	SP 1511087-1	2015-10-06	Wet Chemistry	3999 Sacramento St.	Bacti Monitoring - Rotation 1
	SP 1511087-1	2015-10-06	Coliform	3999 Sacramento St.	Bacti Monitoring - Rotation 1
4046 CITRUS	SP 1502436-2	2015-03-03	Coliform	4046 Citrus View Dr.	Bacti Monitoring - Rotation 3
Bacti-Rout-ss06	SP 1506140-2	2015-06-02	Coliform	4046 Citrus View Dr.	Bacti Monitoring - Rotation 3
	SP 1509726-2	2015-09-01	Coliform	4046 Citrus View Dr.	Bacti Monitoring - Rotation 3
	SP 1513741-2	2015-12-09	Coliform	4046 Citrus View Dr.	Bacti Monitoring - Rotation 3
4079 Market St.	SP 1500080-2	2015-01-06	Coliform	4079 Market St.	Bacti Monitoring - Rotation 1
	SP 1503662-2	2015-04-06	Coliform	4079 Market St.	Bacteriological Monitoring
Bacti-Rout-ss02	SP 1507474-2	2015-07-07	Coliform	4079 Market St.	Bacteriological Monitoring
	SP 1511087-2	2015-10-06	Coliform	4079 Market St.	Bacteriological Monitoring
509 Temescal	SP 1502436-1	2015-03-03	Wet Chemistry	509 Temescal St.	Bacti Monitoring - Rotation 3
	SP 1502436-1	2015-03-03	Coliform	509 Temescal St.	Bacti Monitoring - Rotation 3
Bacti-Rout-ss05	SP 1506140-1	2015-06-02	Wet Chemistry	509 Temescal St.	Bacti Monitoring - Rotation 3
	SP 1506140-1	2015-06-02	Coliform	509 Temescal St.	Bacti Monitoring - Rotation 3
	SP 1509726-1	2015-09-01	Wet Chemistry	509 Temescal St.	Bacti Monitoring - Rotation 3
	SP 1509726-1	2015-09-01	Coliform	509 Temescal St.	Bacti Monitoring - Rotation 3
	SP 1513741-1	2015-12-09	Wet Chemistry	509 Temescal St.	Bacti Monitoring - Rotation 3
	SP 1513741-1	2015-12-09	Coliform	509 Temescal St.	Bacti Monitoring - Rotation 3
CuPb-ss05	SP 1506704-5	2015-06-16	Metals, Total	CuPb-3890 Olive St.	Copper & Lead Monitoring
CuPb-ss06	SP 1506704-6	2015-06-16	Metals, Total Metals, Total	CuPb-3962 Center St.	Copper & Lead Monitoring
3962 Center St.	SP 1509583-1	2015-08-27	Metals, Total	CuPb-3962 Center St.	EPA Lead & Copper Monitoring
4058 Center St.	SP 1509331-1	2015-08-21	Metals, Total	CuPb-4058 Center St.	EPA Lead & Copper Monitoring
CuPb-ss07	SP 1506704-7	2015-06-16	Metals, Total	CuPb-4074 E. Market St.	Copper & Lead Monitoring
CuPb-ss02	SP 1506704-2	2015-06-16	Metals, Total	CuPb-504 N. River St.	Copper & Lead Monitoring
CuPb-ss01	SP 1506704-1	2015-06-16	Metals, Total	CuPb-577 N. Church St.	Copper & Lead Monitoring
CuPb-ss08	SP 1506704-8	2015-06-16	Metals, Total	CuPb-589 N. Main St.	Copper & Lead Monitoring
CuPb-ss10	SP 1506704-10	2015-06-16	Metals, Total	CuPb-753 N. Orchard St.	Copper & Lead Monitoring
CuPb-ss04	SP 1506704-4	2015-06-16	Metals, Total	CuPb-79 N. Main St.	Copper & Lead Monitoring
CuPb-ss09	SP 1506704-9	2015-06-16	Metals, Total	CuPb-926 N. Main St.	Copper & Lead Monitoring
DBPR-STG2-ss01	SP 1507473-1	2015-07-07	EPA 551.1	STG 2 - East End of Center St	DBPR Monitoring
STW-1	SP 0714470-1	2007-12-31	Radio Chemistry	Well 01	Radiological Monitoring
	SP 1301390-1	2013-02-12	General Mineral	Well 01	Well #1 DHS Monitoring
	SP 1301390-1	2013-02-12	Metals, Total	Well 01	Well #1 DHS Monitoring
	SP 1301390-1	2013-02-12	Wet Chemistry	Well 01	Well #1 DHS Monitoring
	SP 1401840-1	2014-02-18	Wet Chemistry	Well 01	Well #1 GenMin/Phys & IOC
	SP 1401841-1	2014-02-18	Radio Chemistry	Well 01	Radiological Monitoring
WELL02	SP 1511040-1	2015-10-05	General Mineral	Well 02	Well 2 - Post Rehab Title 22

	SP 1511040-1	2015-10-05	Radio Chemistry	Well 02	Well 2 - Post Rehab Title 22
	SP 1511040-1	2015-10-05	Wet Chemistry	Well 02	Well 2 - Post Rehab Title 22
	SP 1511040-1	2015-10-05	Metals, Total	Well 02	Well 2 - Post Rehab Title 22
STW-4	SP 0714470-3	2007-12-31	Radio Chemistry	Well 04	Radiological Monitoring
	SP 1401842-1	2014-02-18	Wet Chemistry	Well 04	Well #4 GenMin/Phys & IOC
	SP 1401841-3	2014-02-18	Radio Chemistry	Well 04	Radiological Monitoring
	SP 1501565-1	2015-02-10	Wet Chemistry	Well 04	Well #4 GenMin/Phys & IOC
	SP 1501565-1	2015-02-10	Metals, Total	Well 04	Well #4 GenMin/Phys & IOC
	SP 1501565-1	2015-02-10	General Mineral	Well 04	Well #4 GenMin/Phys & IOC

Consumer Confidence Report Certification Form

(to be submitted with a copy of the CCR) (to certify electronic delivery of the CCR, use the certification form on the State Board's website at <u>http://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/CCR.shtml</u>)

Water System Name: WARRING WATER SERVICE INC Water System Number: 5610021

The water system above hereby certifies that its Consumer Confidence Report was distributed on

(date) to customers (and appropriate notices of availability have been given). Further, the system certifies that the information contained in the report is correct and consistent with the compliance monitoring data previously submitted to the State Water Resources Control Board, Division of Drinking Water.

Certified By:	Name			
	Signature			
	Title			
	Phone Number	()	Date

To summarize report delivery used and good-faith efforts taken, please complete the form below by checking all items that apply and fill-in where appropriate:

CCR was distributed by mail or other direct delivery methods. Specify other direct delivery methods used:

netł	nods:
	Posted the CCR on the internet at http://
	Mailed the CCR to postal patrons within the service area (attach zip codes used)
	Advertised the availability of the CCR in news media (attach a copy of press release)
	Publication of the CCR in a local newspaper of general circulation (attach a copy of the published notice, including name of the newspaper and date published)
	Posted the CCR in public places (attach a list of locations)
	Delivery of multiple copies of CCR to single bill addresses serving several persons, such as apartments, businesses, and schools
	Delivery to community organizations (attach a list of organizations)
	Other (attach a list of other methods used)
or	systems serving at least 100,000 persons: Posted CCR on a publicly-accessible internet site