# RESOURCE ADEQUACY (RA) PROGRAM TRACK 3 PROPOSALS (R.17-09-020)

MARCH 13, 2019





- Seasonal Local RA Requirements
- Hydroelectric Resource Qualifying Capacity (QC) Methodology



### **Seasonal Local RA Requirements**

### Summary of Proposal:

### Proposal

 Calculate separate summer (May to September) and non-summer (e.g. "winter") local RA requirements instead of an annual local RA requirement using a ratio of local RA requirement to forecasted peak seasonal demand.

### Rationale

- More cost effective and efficient (example later)
  - Reduces potential for over-procurement
  - Maximizes the value of wind and solar resources
  - Allows for optimization of maintenance
- Consistent with previous decisions capping local RA at system RA requirements
- Responsive to CAISO concerns about backstop procurement

#### Formula:

- Load Ratio = CAISO LCR / August Forecast Peak Demand for TAC <u>OR</u> 4,461 / 19,531
- Non-Summer LRAR = Max(Forecast Peak Demand <sub>Non-Summer</sub>) \* Load Ratio <u>OR</u> 15,508
  \* 23% for Bay Area and 28% for Other PG&E Area

### **Example for PG&E TAC:**

|                                         | Jan    | Feb    | Mar    | Apr    | May    | Jun    | Jul    | Aug    | Sep    | Oct    | Nov    | Dec    |
|-----------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 2020 Forecast (MW)                      | 14,549 | 14,214 | 13,306 | 14,319 | 16,489 | 19,262 | 20,254 | 19,531 | 18,589 | 15,508 | 13,841 | 14,944 |
| 2020 Requirements (MW)                  | 16,731 | 16,346 | 15,302 | 16,467 | 18,962 | 22,151 | 23,292 | 22,461 | 21,377 | 17,834 | 15,917 | 17,186 |
|                                         |        |        |        |        |        |        |        |        |        |        |        |        |
| Bay Area Requirements (MW)              | 4,461  | 4,461  | 4,461  | 4,461  | 4,461  | 4,461  | 4,461  | 4,461  | 4,461  | 4,461  | 4,461  | 4,461  |
| Other PG&E Area Requirements<br>(MW)    | 5,387  | 5,387  | 5,387  | 5,387  | 5,387  | 5,387  | 5,387  | 5,387  | 5,387  | 5,387  | 5,387  | 5,387  |
|                                         |        |        |        |        |        |        |        |        |        |        |        |        |
| Bay Area Requirements (Ratio)           | 23%    | 23%    | 23%    | 23%    | 23%    | 23%    | 23%    | 23%    | 23%    | 23%    | 23%    | 23%    |
| Other PG&E Area Requirements<br>(Ratio) | 28%    | 28%    | 28%    | 28%    | 28%    | 28%    | 28%    | 28%    | 28%    | 28%    | 28%    | 28%    |
|                                         |        |        |        |        |        |        |        |        |        |        |        |        |
| Bay Area Requirements (MW)              | 3,542  | 3,542  | 3,542  | 3,542  | 4,461  | 4,461  | 4,461  | 4,461  | 4,461  | 3,542  | 3,542  | 3,542  |
| Other PG&E Area Requirements<br>(MW)    | 4,277  | 4,277  | 4,277  | 4,277  | 5,387  | 5,387  | 5,387  | 5,387  | 5,387  | 4,277  | 4,277  | 4,277  |



A seasonal local RA requirement is more cost effective and efficient in that it reduces potential overprocurement, maximizes the value of renewable resources, and allows for the optimization of maintenance scheduling.

#### **Example of CAISO Showing**

|                                      | Jan            | Feb   | Mar            | Apr   | May            | Jun            | Jul            | Aug            | Sep            | Oct            | Nov            | Dec            |
|--------------------------------------|----------------|-------|----------------|-------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Other PG&E Area Requirements<br>(MW) | 5,387          | 5,387 | 5,387          | 5,387 | 5,387          | 5,387          | 5,387          | 5,387          | 5,387          | 5,387          | 5,387          | 5 <i>,</i> 387 |
|                                      |                |       |                |       |                |                |                |                |                |                |                |                |
| Other PG&E Area Portfolio<br>(MW)    | 5,387          | 5,435 | 5 <i>,</i> 595 | 6,051 | 5,997          | 6,283          | 6,221          | 6,207          | 6 <i>,</i> 055 | 5,975          | 5,469          | 5,387          |
| Solar Resources                      | 0              | 48    | 208            | 664   | 610            | 896            | 834            | 820            | 668            | 588            | 82             | 0              |
| Other Resources                      | 5 <i>,</i> 387 | 5,387 | 5 <i>,</i> 387 | 5,387 | 5 <i>,</i> 387 | 5,387          |
|                                      |                |       |                |       |                |                |                |                |                |                |                |                |
| Other PG&E Area Requirements<br>(MW) | 4,277          | 4,277 | 4,277          | 4,277 | 5,387          | 5,387          | 5,387          | 5,387          | 5,387          | 4,277          | 4,277          | 4,277          |
|                                      |                |       |                |       |                |                |                |                |                |                |                |                |
| Other PG&E Area Portfolio<br>(MW)    | 4,777          | 4,825 | 4,985          | 5,441 | 5,387          | 5,673          | 5,611          | 5,597          | 5,445          | 5,365          | 4,859          | 4,777          |
| Solar Resources                      | 0              | 48    | 208            | 664   | 610            | 896            | 834            | 820            | 668            | 588            | 82             | 0              |
| Other Resources                      | 4,777          | 4,777 | 4,777          | 4,777 | 4,777          | 4,777          | 4,777          | 4,777          | 4,777          | 4,777          | 4,777          | 4,777          |

### Seasonal local RA requirements could reduce the procurement "needed" and accommodate variable resources



### **Hydroelectric Resource QC Proposal**

### Summary of Proposal:

### Proposal

 The Commission should adopt QC counting rules for hydro resources that reflect resource's availability to the market. An exceedance methodology, or similar, may better capture the contribution of hydro resources to system and local reliability.

#### Rationale

 The existing methodology for dispatchable and non-dispatchable hydro resources likely overstates hydro availability because it does not reflect variability driven by hydrological conditions, weather patterns, FERC licensing, upstream powerhouses, and storage levels.

## **Statewide Hydro Generation by Watershed**

The current QC methodologies for dispatchable and non-dispatchable hydro resources do not reflect significant annual variation in output from hydro resources.



Source: https://www.energy.ca.gov/hydroelectric/



### **Exceedance Methodology: Questions**

### **Exceedance for Hydro Resources**

### Considerations

- 1. Should all hydro be treated the same (e.g., run of river versus dispatchable hydro, hydro in various watersheds)?
- 2. How to ensure excess capacity is not "stranded" if a wet year follows a dry year?
- 3. How should or should outages be accounted for in the methodology?
- 4. How are exceedance valuations reasonably set or determined for hydro resources?

An exceedance methodology has been previously adopted by the Commission for variable energy resources, but would need to be tailored to hydroelectric resources.