Methane Abatement
Best Practices Compliance Plan

François Rongere
April 19th, 2018

The contents of this presentation are confidential and are intended solely for addressee. Any reproduction or dissemination of this transmission is prohibited.
Agenda

• PG&E System and Methane Emission Report

• Compliance Plan Overview

• Best Practices in focus
 – Leak survey frequency (BP#15)
 – Accelerated survey and repair of large leaks (BP#21)
 – Leak backlog reduction (BP#21)
 – Blowdown reduction (BP#3-7)

• R&D and Pilot Programs
• Key Statistics
 – 6,600 miles of gas transmission pipeline
 – 42,700 miles of gas distribution main
 – 4.3 million natural gas customer accounts.
 – Throughput of 820 BCF in 2016

Emission Sources (2016 Report)
Total: 3.1 BCF/y

- 24%
- 22%
- 21%
- 20%
- 9%
- 2%

- Customer Meters
- Distribution M&R Stations
- Distribution Main & Service Pipelines
- Transmission Compressor Stations
- Transmission M&R Stations
- Transmission Pipelines
- Underground Storage

California Pipeline/Storage Facilities:
- PG&E Gas Service Territory
- PG&E Backbone
- PG&E Local Transmission Interconnection
- Compressor Station
- PG&E Gas Storage
- Independent Storage Providers
- Gill Ranch Storage LLC/PG&E
- SoCalGas Storage
- SoCalGas
- Kern/Mojave
- Kern River Gas Transmission
- KRGTHigh Desert Lateral
- Mojave
- North Baja
- Questar Southern Trails
- San Diego Gas & Electric
Compliance Plan Overview

- Substantially reduce methane emissions in 2 years and prepare for deeper abatement towards 2030 goal
- Combination of policies, training, technologies and procedures
- 12 Best Practices are already in place at PG&E, 8 will be implemented in 2018-2019 and 6 will be piloted

<table>
<thead>
<tr>
<th>BP</th>
<th>Description</th>
<th>2018-2019 Cost</th>
<th>Annual Abatement (MMscf)</th>
<th>Cost/Mscf</th>
<th>Cost Benefits per Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-7</td>
<td>Blowdown reduction</td>
<td>$ 2,763,223</td>
<td>240</td>
<td>$ 2.5</td>
<td>$ 792,960</td>
</tr>
<tr>
<td>15</td>
<td>3-year leak survey cycle</td>
<td>$ 26,237,160</td>
<td>129</td>
<td>$ 81</td>
<td>$ 2,644,500</td>
</tr>
<tr>
<td>16</td>
<td>Special leak survey</td>
<td>$ 3,380,291</td>
<td>2.1</td>
<td>$ 785</td>
<td>$ 42,640</td>
</tr>
<tr>
<td>21</td>
<td>Superemitter survey + leak repair</td>
<td>$ 28,902,854</td>
<td>159</td>
<td>$ 70</td>
<td>$ 3,259,500</td>
</tr>
<tr>
<td>23</td>
<td>High bleed pneumatics replacement</td>
<td>N/A</td>
<td>18.4</td>
<td>N/A</td>
<td>$ 60,794</td>
</tr>
<tr>
<td>24</td>
<td>Dig-in reduction</td>
<td>N/A</td>
<td>3.1</td>
<td>N/A</td>
<td>$ 63,550</td>
</tr>
<tr>
<td></td>
<td>Totals</td>
<td>$ 61,283,528</td>
<td>552</td>
<td>$ 43</td>
<td>$ 6,863,944</td>
</tr>
</tbody>
</table>
BP#15 Increase Leak Survey Frequency
The Opportunity

- For a five year survey cycle, there are two times more leaks located in not surveyed areas than in surveyed areas.

- Increasing leak survey frequency
 - reduces the number of unknown leaks
 - leaves less time for leaks to appear
 - raises the cost of leak survey but not of repair on the long term
A 3 year transition period

Year 1 of transition

Surveyed 4 years prior + Surveyed 3 years prior = Year 1 Transition survey area

Theoretical change in emission moving to 3-yr survey

<table>
<thead>
<tr>
<th>Yearly Emissions</th>
<th>4-year survey</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>3-year survey</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unsurveyed area</td>
<td>Surveyed area</td>
<td>Unsurveyed area</td>
<td>Surveyed area</td>
<td>Unsurveyed area</td>
</tr>
<tr>
<td>0%</td>
<td>100%</td>
<td>75%</td>
<td>75%</td>
<td>75%</td>
<td>75%</td>
</tr>
<tr>
<td>50%</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>150%</td>
<td>150%</td>
<td>150%</td>
<td>150%</td>
<td>150%</td>
<td>150%</td>
</tr>
<tr>
<td>200%</td>
<td>200%</td>
<td>200%</td>
<td>200%</td>
<td>200%</td>
<td>200%</td>
</tr>
<tr>
<td>250%</td>
<td>250%</td>
<td>250%</td>
<td>250%</td>
<td>250%</td>
<td>250%</td>
</tr>
<tr>
<td>300%</td>
<td>300%</td>
<td>300%</td>
<td>300%</td>
<td>300%</td>
<td>300%</td>
</tr>
</tbody>
</table>
BP#21 Accelerate Detection and Repair of Large Leaks
The concept of Super Emitters

- Methane emissions in distribution system are driven by a relatively small number of large leaks named Super Emitters.

- Opportunity for substantially reducing methane emissions by accelerating detection and repair of large leaks.

WSU study: Only 2% of leaks were > 10 scfh but accounted for 56% of total emissions.
The opportunity

• Large leaks are **easy to detect** with mobile surveys (Picarro).

• Even if leak flow rate quantification is still challenging, **solid data** coming from NYSEARCH study is now available to support rigorous calculations

 – Two controlled tests at training facilities (PSE&G, SoCalGas)

 – Field test in New York suburban area

NYSEARCH Test Unity Plot

- **1:1 line**
- **$\sqrt{10}$ greater**
- **$\sqrt{10}$ smaller**
Proposed Method

1. Drive Picarro car on an accelerated basis (eg. once a year)
2. Filter out any indications <10 scfh (Picarro’s algorithm)
3. Investigate and repair leaks associated with large indications (>10 scfh)
4. Capture methane abatement from two sources:
 a) **Accelerated detection** and repair of “super emitters”
 b) **Reduction of Emission Factors** for the other leaks

- Leveraging advanced technology to rapidly reduce emission at the lowest cost
- Paving the way to progressively capture deeper reduction by lowering the threshold below 10 scfh and/or increasing mobile survey frequency
R&D work performed in 2017

1. **Analyzed 2016 leak survey data** treated with Picarro’s algorithm

2. **Developed a method** leveraging NYSEARCH validation data and WSU leak distribution information to calculate emission abatement including all uncertainties.

3. **Tested the approach in the field** by directly measuring flow rate of leaks related to large detection by Picarro system (>10 scfh)

Results:
Reduction by 22% (120 MMscf) of the Distribution System methane emissions
Additional repair of 300 leaks the first year and 100 leaks the following years
Cost: $0.7M/y for additional mobile surveys and $3M for repairs (first year), $1M (following years)

Cost assumptions:
- Drive: $100/hr
- Repair: $10,600/leak
Field validation

1. Tested the approach in the field by directly measuring flow rate of large leaks related to large detection by Picarro system (>10 scfh)
 - Found about 2 large detections per week
 - Picarro prediction within order of magnitude of actual leak rate
Field tests results

Field Test - 2017

- Actual vs Measured
- 1:1 Ratio
- 3.16 times Larger
- 3.16 times Smaller
Example 1

Measured: 60 scfh
Actual: 98 scfh
Example 1

Bar-hole locations:
R&D efforts on Best Practices

<table>
<thead>
<tr>
<th>Category</th>
<th>Best Practice</th>
<th>Title</th>
<th>R&D and Pilots</th>
<th>Budget</th>
</tr>
</thead>
</table>
| **Company Policy** | BP 5 | Methane Evacuation Implementation Procedures | • Methane Oxidation Catalysts for Reduction of Emissions in Flaring (NYSEARCH)
• (5.16.n) Methods to Prevent Blowdown of Gas (OTD) | $163k |
| **Leak Detection** | BP 16 | Special Leak Surveys | • Risk based leak survey method | $2,000k |
| | BP 17 | Enhanced Methane Detection | • Evaluation of Optical Gas Imaging technologies for detection of distribution system leaks (NYSEARCH)
• Field test of the new generation of handheld devices based on NASA/JPL high sensitivity technology
• Integration of NASA/JPL high sensitivity technology methane-ethane detector on small Unmanned Aerial Systems for leak detection and localization (NYSEARCH)
• Pilot of fixed wing LiDAR-DIAL (Differential Absorption LiDAR) for Transmission System leak detection | $390k |
| | BP 18 | Stationary Methane Detectors | • (7.16.f) Evaluation of the state of the art in methane detectors. (OTD)
• Quantification of methane emissions from Transmission M&R stations | $181k |
| | BP 19 | Above Ground Leak Surveys | • Pilot of UAS Leak Detection and Quantification
• Evaluating Gas Imaging Technologies (OTD)
• Electrochemical Gas Sensor development project (Stanford) | $567k |
| | BP20 | Leak Quantification & Geographic Evaluation/Tracking | • Stand off Gas Flow Imaging and Analysis System (NYSEARCH)
• (1.14.d) Field Measurement of Leak Flow Rate (OTD) | $143k |
R&D efforts on Best Practices (2)

<table>
<thead>
<tr>
<th>Category</th>
<th>Best Practice</th>
<th>Title</th>
<th>R&D and Pilots</th>
<th>Budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leak Prevention</td>
<td>BP 22</td>
<td>Pipe Fitting Specifications</td>
<td>• Reducing Methane Emissions at Threaded Connections (NYSEARCH)</td>
<td>$130k</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• (5.18.a) Spray-On Leak Seal for Meter Set Joints (OTD)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BP 23</td>
<td>Prevent/Minimize/Stop Fugitive & Vented Methane Emissions</td>
<td>• (5.17.e) Non-traditional Natural Gas Regulators - Slam shut and Vent Limiting regulators (OTD)</td>
<td>$100k</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Catastrophic Releases, High-Bleed Pneumatics, Blowdowns, etc.)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Budget Distribution

- **Distribution**: 79% ($3,673k)
- **Transmission**: 21% ($952k)

Total Budget: $4,626k
Methane Oxidation Catalysts to Avoid Flaring

- Flaring not always feasible because of environmental impact (NOx, noise, infrared radiation)
- “Low temperature oxidation” may be a solution when cross compression is not possible
- Challenge comes from oxidation kinetic
- Stanford has developed advanced catalyst able to yield methane oxidation around 300°C
- Proof of concept in 2018
Smart Pipeline Isolation Technology

- A free-swimming pigging tool with remotely-controlled positioning and plugging functions
- More efficient repair/maintenance operation with significant cost-time saving and emission reduction compared to control fittings
- **Status:**
 - In commercial use for offshore applications over 20 years
 - In tool development and evaluation for the more challenging onshore gas pipeline applications

The conventional way: installation of a control fitting

Smart Pipeline Isolation
Schlieren flow imaging provides integrated characteristics by assessing eddies’ velocity.

- Diffraction index depends on methane concentration.

- May be very effective for most frequent flows in leaks:
 - Transition between laminar and turbulent flows.

Risk Based Leak Survey

- Combining:
 - Risk Ranking developed by DIMP
 - Methane Indications detected by Picarro

Can substantially improve performance of leak surveys
- Leak survey frequency can be adjusted for each plat based on the probability to find leaks
- DIMP provides risk ranking based on history and asset characteristics
- Mobile monitoring indications provide up-to-date confirmation of leak probability
Fixed Wing LiDAR DIAL aerial leak survey

- LiDAR DIAL detector compares absorption in air for two close wavelengths:
 - Centered on methane absorption band
 - Centered in low absorption band area
- Technology has been developed in the 2000s and deployed on helicopters
- Using fixed wing aircrafts reduces cost and improves survey safety
- Tests performed at PG&E have shown good performance for leaks greater than 50 scfh
- Pilot deployment in October 2018
Light handheld and UAV methane detector

- Based on NASA’s detector used on Mars rover Curiosity
- The detector has superior sensitivity (parts per billion) compared to other commercial handheld detectors. It is also lightweight (150g)
- Handheld device for locating leak following Picarro survey is in the industrialization phase
- An UAV (VTOL and fixed wing) has been developed
- Sensor has been adapted to detect ethane and methane
Electrochemical Methane Sensor

- Signature of E/I cycle is specific to the gas.
- Amplitude is proportional to the concentration.
- Easy to fabricate in large volume.
- Low cost.
- Sensor can be stuck at locations were leaks are more common (threads, valves, fittings, etc.)
Continuous monitoring of M&R Stations

- Open Laser Beam measure absorption by methane molecules.
- Wind monitoring is used to estimate methane emissions.
- IoT connection to continuously transfer data to a server.
- Analysis of emission along the time in function of operations and assessment of average emission factors.
- Piloting new technology commercialized by Sensit
Continuous monitoring of M&R Stations:
First Results

Average Emission Each Hour of the Day

<table>
<thead>
<tr>
<th>Time</th>
<th>Emission (ft³/hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00 AM</td>
<td>20</td>
</tr>
<tr>
<td>1:00 AM</td>
<td>15</td>
</tr>
<tr>
<td>2:00 AM</td>
<td>12</td>
</tr>
<tr>
<td>3:00 AM</td>
<td>10</td>
</tr>
<tr>
<td>4:00 AM</td>
<td>8</td>
</tr>
<tr>
<td>5:00 AM</td>
<td>6</td>
</tr>
<tr>
<td>6:00 AM</td>
<td>4</td>
</tr>
<tr>
<td>7:00 AM</td>
<td>2</td>
</tr>
<tr>
<td>8:00 AM</td>
<td>1</td>
</tr>
<tr>
<td>9:00 AM</td>
<td>0</td>
</tr>
<tr>
<td>10:00 AM</td>
<td>0</td>
</tr>
<tr>
<td>11:00 AM</td>
<td>0</td>
</tr>
<tr>
<td>12:00 PM</td>
<td>2</td>
</tr>
<tr>
<td>1:00 PM</td>
<td>4</td>
</tr>
<tr>
<td>2:00 PM</td>
<td>6</td>
</tr>
<tr>
<td>3:00 PM</td>
<td>8</td>
</tr>
<tr>
<td>4:00 PM</td>
<td>10</td>
</tr>
<tr>
<td>5:00 PM</td>
<td>12</td>
</tr>
<tr>
<td>6:00 PM</td>
<td>15</td>
</tr>
<tr>
<td>7:00 PM</td>
<td>20</td>
</tr>
<tr>
<td>8:00 PM</td>
<td>25</td>
</tr>
<tr>
<td>9:00 PM</td>
<td>30</td>
</tr>
<tr>
<td>10:00 PM</td>
<td>30</td>
</tr>
<tr>
<td>11:00 PM</td>
<td>30</td>
</tr>
</tbody>
</table>

Salinas
Pittsburg
Lomita Park
Salinas Weekly Average Emissions Per Hour

- Week 1 (Nov 26-Dec 2)
- Week 2 (Dec 3-Dec 9)
- Week 3 (Dec 10-Dec 16)
- Week 4 (Dec 17-Dec 23)
- Week 5 (Dec 24-Dec 30)
- Week 6 (Dec 31-Jan 6)
- Week 7 (Jan 7-Jan 13)
- Week 8 (Jan 14-Jan 20)
Thank you

François Rongere
fxrg@pge.com
Calculation steps: Bayesian approach

1. What is the probability for a SE to be detected as a SE
\[P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)} \]

Where:
\[A = \text{an actual leak that is} > 10 \text{ scfh} \]
\[B = \text{detected by Picarro as} > 10 \text{scfh} \]

2. What is the emission factor of a leak detected as a SE
\[EF(B) = P(A|B) \cdot EF(A) + (1 - P(A|B)) \cdot EF(\bar{A}) \]

3. Emission abatement:
 - From repair of SE:
 \[Flow_{abated}(B) = \frac{1}{2} \cdot \text{year} \cdot EF(B) \]
 - From reducing emission factors for other leaks
 \[EF(\bar{A}) = \frac{EF \cdot N \cdot \left(1 - P(B|A)\right) \cdot \frac{Emission(A)}{Emission}}{N(\bar{A})} \]
Application to PG&E territory

<table>
<thead>
<tr>
<th>Term</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(B</td>
<td>A)$</td>
</tr>
<tr>
<td>$P(A</td>
<td>B)$</td>
</tr>
<tr>
<td>$P(B</td>
<td>\bar{A})$</td>
</tr>
<tr>
<td>$EF(B)$</td>
<td>10.3 scfh</td>
</tr>
<tr>
<td>$Flow_{Abated}(B)$</td>
<td>45 Mscf/y</td>
</tr>
<tr>
<td>$EF(\bar{A})$</td>
<td>74% * EF</td>
</tr>
<tr>
<td>2016 - Abatement</td>
<td>120 MMscf (22%)</td>
</tr>
</tbody>
</table>

Abatement includes adjustment for Picarro has access to ~75% of PG&E distribution system only

Where:

A = an actual leak > 10 scfh
B = estimated by Picarro as > 10scfh
1. Uncertainty of measurements, based on NYSEARCH data, is approximated by a Weibull distribution

2. WSU distribution of leaks is approximated with a Log Normal Distribution

\[Error = \left| \log_{10} \left(\frac{\text{Measured}}{\text{Actual}} \right) \right| \]
Monte Carlo Simulation

Result:
Abatement: 27%
a) Leak indications qualified as greater than 10 scfh by Picarro represent just over 1% of all indications
b) Leak indications qualified as greater than 10 scfh by Picarro represent more than 25% of all emissions
WSU GRI and CARB (PG&E) Study Data