Long-Term Viability of Underground Natural Gas Storage in California

An Independent Review of Scientific and Technical Information

Overview

- Welcome and Introductions– Dr. Amber Mace, Project Director
- Study Process Dr. Jane Long, Co-Chair
- Qualitative Comparison of the Risks of Individual Storage Fields – Dr. Curt Oldenburg, Lead Author
- Public Health Dr. Seth Shonkoff, Author
- UGS for Energy Reliability Dr. Jane Long, Co-Chair
- Possible Future Pathways Dr. Jeffery Greenblatt, Lead Author
- Questions

Study Request

In response to Governor Brown's January 2016 state of emergency proclamation regarding the Aliso Canyon gas leak, Governor Brown directed the following agencies to submit a report that assesses the long-term viability of natural gas storage facilities in California:

- Division of Oil, Gas and Geothermal Resources (DOGGR)
- California Public Utilities Commission (CPUC)
- California Air Resources Board (CARB)
- California Energy Commission (CEC)

Via Senate Bill 826, the Budget Act of 2016, the California Council on Science and Technology was asked to enter into a contract with the CPUC to conduct this study.

California Council on Science and Technology (CCST)

- CCST is a nonpartisan, impartial, not-for-profit corporation established via Assembly Concurrent Resolution (ACR 162) in 1988 to provide objective advice from California's scientists and research institutions on policy issues involving science.
- CCST is dedicated to providing impartial expertise that extends beyond the resources or perspective of any single institution.
- CCST is governed by a Board of Directors and studies are funded by government agencies, foundations, and other private sponsors.

Sustaining Institutions

California Community Colleges

California State Universities

Stanford University

University of California

Sandia National Labs

Lawrence Livermore National Lab

National Accelerator Laboratory

Lawrence Berkeley Laboratory

Jet Propulsion Laboratory

NASA Ames Research Center

National Renewable Energy Laboratory

California Council on Science and Technology (CCST)

In recent years, CCST has produced a series of reports on hydraulic fracturing, water, energy, and STEM education in California.

Our role is to oversee a very rigorous process. This involves:

- Convening the most relevant experts to put together a robust and balanced team
- Addressing any potential conflict of interest issues
- And conducting an extensive and rigorous peer review

This process, modeled after the National Academy of Sciences, ensures the produce is credible and responsive to the study charge.

Our goal is to provide credible, relevant and useful science-based information to inform State decision making.

Study Purpose and Key Questions

Conduct an independent scientific assessment of the past, present, and potential future uses of underground natural gas storage in California

- **Key Question 1:** What risks do California's underground gas storage facilities pose to health, safety, environment and infrastructure?
- **Key Question 2:** Does California need underground gas storage to provide for energy reliability in the near term (through 2020)?
- **Key Question 3:** How will implementation of California's climate policies change the need for underground gas storage in the future?

CCST's Underground Natural Gas Storage Steering Committee

- Provided oversight, scientific guidance and input for the project
- Developed consensus conclusions and recommendations

Jana C.S. Long	LINI (not)	Co Chair
Jane C.S. Long		
Jens T. Birkholzer	LBNL	Co-Chair
J. Daniel Arthur	ALL Consulting LLC	Gas injection and well integrity
Riley M. Duren	JPL	Methane emissions
Karen Edson	Retired CAISO	Electric grid operations
Robert B. Jackson	Stanford	Energy use and climate change
Michael L.B. Jerrett	UCLA	Public Health
Najmedin Meshkati	USC	Risk reduction and reliability
Scott A. Perfect	LLNL	Mechanical engineer, safety
Terence Thorn	JKM Consulting	Natural gas industry
Samuel J. Traina	UC Merced	Environmental engineering
Michael W. Wara	Stanford	Energy and environmental law
Ex Officio:		
Curtis M. Oldenburg	LBNL	Lead Author, Chapter 1
Catherine M. Elder	Aspen	Technical Expert, Chapter 2
Jeffery B. Greenblatt	LBNL	Lead Author, Chapter 3

Study Authors

- Analyzed and synthesized project-relevant data and drafted the report
- Lawrence Berkeley National Lab (LBNL)
- Aspen Environmental Group (Aspen)
- ALL Consulting, LLC
- Los Alamos National Lab (LANL)
- JKM Energy and Environmental Consulting
- Sandia National Laboratory
- University of California Berkeley

- National Institute of Standards and Technology (NIST)
- Physicians, Scientists, and Engineers for Healthy Energy (PSE)
- Walker & Associates
- Energy Projects Consulting

The Basis of our Assessment

- Peer-reviewed published literature.
- Analysis of available data from DOGGR, CPUC, CARB and other publicly available sources.
- Other relevant publications including reports and theses. We state the qualifications of the information used in the report.
- The expertise of the committee and scientific community to identify issues.

Key Question 1

What risks do California's underground gas storage facilities pose to health, safety, environment and infrastructure?

Focus of Talk:

Comparative Risk-Related Characteristics Table 7.1-1

Dr. Curtis M. Oldenburg Lawrence Berkeley National Laboratory Lead Author

Key Question 1 Sub-topics

- Characteristics of different storage sites
- Potential failure modes
- Expected trends in capacity
- Human health risks
- Climate impacts of leakage
- Effect of regulatory changes

12 UGS facilities operate in California

~400 UGS wells of various ages are used

The size of the symbol indicates the ratio of withdrawal and injection in each well

UGS wells in California historically used whole diameter of well for flow

Incidents of loss of containment have historically been mostly related to wells

The new DOGGR regulations requiring tubing and packer will greatly reduce likelihood of well loss of containment.

Source: ALL Consulting, 2017

Various external hazards can cause risk at UGS facilities

External hazards

(not intrinsic to gas storage)

- Seismic
- Landslide
- Flooding
- Tsunami
- Wildfire

Earthquake Fault Zone (EFZ) at the Aliso Canyon facility shown in red tint. Fault traces that ruptured during the last 15,000 years are shown in black, and traces that show evidence for activity during the last 130,000 years are shown in red.

Human health hazards are associated with loss of containment

- Exposures to toxic air pollutants (e.g., benzene, toluene, xylene, hydrogen sulfide, mercaptans)
- Explosions and fires

2015 Aliso Canyon incident caused large-scale public health complaints

2015 Aliso Canyon incident was a large disaster that presented significant human health hazards

- Largest leak in US history
- Thousands relocated
- Affected health of tens of thousands of people
- Human exposures to toxic air pollutants not certain

Density of complaints

Methane emissions from UGS are less than 10% of other natural gas sources

- Measured total UGS methane emissions are 1,060 kg/hr (~9.3 GgCH₄ (~0.5 Bcf annually))
 - ~7.8% of total natural gas-related emissions
 - ~0.5% total California CH₄ emissions
 - ~0.05% of total California GHG emissions
- Three facilities currently dominate emissions:
 - Honor Rancho 45%
 - Aliso Canyon (after the SS-25 repair) 16%
 - McDonald Island 14%
- Normal emissions are roughly equivalent to having a 2015 Aliso Canyon incident every 10 years

Flight paths above McDonald Island

Dispersion strongly dilutes leaking gas

- We simulated dispersion of gas assuming major leak was occurring
- Concentrations decline rapidly with distance from a leakage source

La Goleta site showing high-population-density areas could experience high concentrations from leakage incidents.

- hazard
- Fire and explosion are major hazards at UGS facilities
- Leakage rates and dispersion modeling can be combined to estimate the extent of the hazard zone
- Models suggest that flammable gas could extend to the edge of the red contour for leakage rate of 50 t/hr
- For reference, SS-25 well leaked at a rate of 20 t/hr prior to stopping

Flammability is mostly an on-site hazard

Risk includes likelihood AND consequences

- Risk is a measure of how likely an incident is combined with its severity
- Hazards are threats, i.e., what can potentially happen or go wrong
- Failure scenarios, or accident sequences, involve hazards playing out to cause actual consequences

Table 7.1-1 does not show risk

CCCST CALIFORNIA COUNCIL ON SCIENCE & TECHNOLOGY

- Table 7.1 shows salient characteristics of UGS sites in California related to the various aspects of UGS risk, e.g.,
 - How much gas is stored?
 - How old are the wells?
 - What is surrounding the site?
- The table shows does not show risk or how or whether risks are being managed through *prevention* or *mitigation*

Table 7.1 shows aspects of UGS sites that are important in risk assessment

- Rows comprise descriptive attributes, specific hazard categories, health and exposure-related aspects, and GHG emission categories.
- The columns of the table list the 13 California UGS facilities
 - independent facilities
 - northern California utility-owned facilities
 - southern California facilities listed
- Darker shading generally corresponds to larger expected hazard
- Does not take into account any and all risk mitigation actions.
 - (risk mitigation can be prevention and/or consequence mitigation)

Risk-Related Characteristics

	1			Independents						Pacific Gas and Ele	ctric	Southern California Gas				
	Facility*			Gill Ranch Gas	Gas	Gas	Princeton Gas	Wild Goose Gas	Los Medanos Gas	McDonald Island Gas	I Pleasant Creek Gas	Aliso Canyon	Rancho	La Goleta Gas	Playa del Rey	
	2015 Capaci	ty (Bcf)		20.0	15.0	17.0	11.0	75.0	17.9	82.0	2.3	86.2	27.0	19.7	2.4	
illity ristics	Average	ge de la constant de							Independents							
GS fac	to 2015 (Facili	Facility ¹					Gill Ranch		Kirby Hill		Lodi		Princeton	
C H3	reservoir									as	Gas		Gas		Gas	
	Median a Maximur		2015	Capacity	(Bcf)				20	.0	15.0		17.0		11.0	
and hazards	Last fault flow line Hazard o	tic∡	Avera	age depth	h (range) of storage reservoir(s) (ft)				5,850 -	6,216	1,550 - 5,400		2,280 - 2,515		2,170	
likelihood .	Max. 2% accelerat Earthqua Tsunami Flooding Are haza (m ximu	s facilit acteris	Aver to 20	Average annual gas transfer per well per from 2006 to 2015 (million scf) Number of open ² wells connected to storage reservoir in 2015					15	0	69		511		78	
ailure modes,		UG	Num reser						12		18		26		13	
ŭ	(2008) ar Proximit		Medi	ian age of	open ² w	ells as of 2	015 (yrs)		5	5 7		13			4	
h and fety	(km) Population i	n proximity to UGS		909	401	23,771	848	195	223,069	6,473	8,821	325,330	180,359	101,371	691,757	
Healt	Median (max) formaldehyde emissions from 1996 - 2015, predominantly from compressors (lbs/yr)		4 (5)	108 (205)	1,291 (1,291)	not reported	not reported	4,968 (7,204)	11,163 (11,163)	not reported	15,001 (20,640) 18,675 (27,296)	2,197 (3,456)	3,038 (5,772)		
ions	Average observed methane emission rate (kg			88	37	0	43	35	11	150	16	200 ³	740	36	0	
GH emiss	Extrapolated annual emissions/average annual gas injection (%)		0.8	0.4	0.0	0.4	0.1	0.1	0.2	0.4	0.2 ³	1.2	0.1	0.0		
	¹ Storage in f ² "open" incl	acilities whose name includes udes wells with DOGGR statu	s "Gas" is in s "Active" a	depleted gas rese and "Idle", which a	ervoirs; otherwise re unplugged and	storage is in deplet have a wellhead	ed oil reservoirs									

³Aliso emissions measured following repair of the 2015 blowout

Risk-Related Characteristics

				Independents				Pacific Gas and E	lectric		ern California Gas			
	Facility ¹		Gill Ranch	Kirby Hill	Lodi	Princeton	n Wild Goose Gas	Los Medanos McDonald Is		nd Pleasant Creek	Aliso Canyon	Honor	La Goleta	Playa del Rey
	2015 Care site (D-D		Gas	Gas	Gas	Gas	75.0	Gas	Gas	Gas	06.0	Rancho	Gas	2.4
4			20.0	15.0	17.0	11.0	/5.0	17.9	82.0	2.3	80.2	27.0	19.7	2.4
lity stics	Avelage	Maximum	deep-seated landslide susceptibility			/	0	VI	l i	0	0	00	3,950	6,200
is facil	to 2015 (i	Last fault r	rupture through or (*) within 500 m of ;) (yrs ago)				None	<130.	.000	None	Non	4	232	13
C C C	Number o R	flow line(s					None	-100,			tone none		18	54
		Hazard of	Quaternary fault shearing of well(s)										62	70
	Maximun	nresent					No	Ye	s	NO	NO		03 V	79 X
rds	Last fault	May 20/ n	rohohilitu o	fovooding	0.2	tral			_			0.0*	<100.000\$	Nega
1aza	flow line(8 Iviax. 2% p	robability of exceeding 0.2-sec spectral				1.45	1.55		1.25	0.95	5	<130,000*	None
t pu	Hazard of	acceleratio	on in 50 yea	ars (g)			1.40	210	~	2120	0.50	ely	Unlikely	No
ds, a	Max, 2%	Earthquak	ke-induced landslide hazard zone				No	?		No	No			
ooq	accelerat	Tsunami h					No	No	No		No	5	2.65	1.65
ikeli	Earthqua 🖁						110	1.00		NO	NO.	5	?	Yes
es, l	Tsunami B	Flooding h	azard				Yes	Ye	s	Yes	Yes		Yes	?
pou	Flooding E Fire haz		zard severity zones - predominant				Not zoned	Madarata		Not zoned	Not zo	ned 🔛	Yes	No
aure L	(maximur	(maximum	naximum, if different)				(moderate)	oderate) Moderate		e (moderate)		ate) ^{high}	Not zoned	Very high
Failt	Number	Number of					,,			,,	(0	3
	(2008) an	(2008) and	the False at al. (2016)			- vans	0	0		0	0		Ŭ	J
Ţ	(km)	(2008) and	i în Folga et	al. (2010)									0.5	0.0
th an fety	Population in proximity to UGS		909	401	23,771	848	195	223,069	6,473	8,821	325,330	180,359	101,371	691,757
Heal	Median (max) formaldehyde emissi 2015, predominantly from compres	ons from 1996 - sors (Ibs/yr)	4 (5)	108 (205)	1,291 (1,291)	not reported	not reported	4,968 (7,204)	11,163 (11,163	3) not reported	15,001 (20,640)	18,675 (27,296)	2,197 (3,456)	3,038 (5,772)
IG	Average observed methane emissio CH4/hr)	n rate (kg	88	37	0	43	35	11	150	16	200 ³	740	36	0
Gt emis	Extrapolated annual emissions/aver injection (%)	rage annual gas	0.8	0.4	0.0	0.4	0.1	0.1	0.2	0.4	0.2 ³	1.2	0.1	0.0

storage in facilities whose name includes "Gas" is in depleted gas reservoirs; otherwise storage is in depleted oil reserv

²"open" includes wells with DOGGR status "Active" and "Idle", which are unplugged and have a wellhead

³Aliso emissions measured following repair of the 2015 blowout

Risk-Related Characteristics

				Independents						Pacific Gas and Electric				Southern California Gas			
	Facility ¹			Gill Ranch	Kirby Hill	Lodi	Princeton	Wild Goose Gas	Los Medanos	McDonald Is	Island	Pleasant Creek	Aliso Canyon	Honor	La Goleta	Playa del Rey	
				Gas	Gas	Gas	Gas		Gas	Gas		Gas		Rancho	Gas		
	2015 Capac	city (Bcf)		20.0	15.0	17.0	11.0	75.0	17.9	82.0		2.3	86.2	27.0	19.7	2.4	
UGS facility characteristics	Average depth (range) of storage reservoir(s) (ft)		5,850 - 6,216	1,550 - 5,400	2,280 - 2,515	2,170	2,400 - 2,900	4,000	5,220		2,800	9,000	10,000	3,950	6,200		
	Average an to 2015 (m	nual gas transfer per we illion scf)	ll per from 2006	150	69	511	78	866	255	75		22	197	244	232	13	
	Number of reservoir in	open ² wells connected t 2015	o storage	12	18	26	13	17	21	88		7	115	41	18	54	
	Median age	e of open ² wells as of 201	L5 (yrs)	5	7	13	4	7	36	41		41	42	39	63	79	
10	Maximum	deep-seated landslide su	sceptibility	0	VII	0	0	0	VI	0		VII	Х	Х	Х	Х	
ıazards	Last fault ru flow line(s)	upture through or (*) wit (yrs ago)	hin 500 m of	None	<130,000	None	None	None	<130,000*	None		None	<15,000*	<15,000*	<130,000*	None	
, and h	Hazard of C present	Quaternary fault shearing	g of well(s)	No	Yes	No	No	No	Maybe	No		No	Yes	Unlikely	Unlikely	No	
spoor	Max. 2% probability of exceeding 0.2-sec spectral accelerate			1.45	1.55	1.25	0.95	0.65	2.15	1 25		1.85	2 75 2 45		2.65	1.65	
(elit	Earth ga			of handling	handling plant (center) to well field										?	Yes	
s, lil	Ts nami l	-	(km)	······				0.0	0.7			6.5	0.9		Yes	?	
ode	Flooding	Ĕ,	(KIII)												Yes	No	
e m	Fire hazar	fet	Population	n in proximity to UGS				909	40:	1	23,7		848	high	Not zoned	Very high	
Failt	Number o (2008) an	Number o (2008) an P Median (r	Median (m	nax) formaldehyde emissions from 1996 -				4 (5)	108 (205) 1.		1,29	1 (1,291)	not reported		0	3	
p	Proximity (km)	Proximity 2015, pre-			ly from compressors (lbs/yr)			.,	(/ -/		ĺ.				0.5	0.0	
lth al afety	Populatio	2	Average of	bserved me	thane emiss	ion rate (kg		00	37			0	42	159	101,371	691,757	
Hea	Median (şi q	CH4/hr)					00				0	43		2,197 (3,456)	3,038 (5,772)	
	2015, pre	2015, pre H .S		ed annual e	missions/av	erage annua	gas							96)			
Gions	Average (CH4/hr)	ец	injection (%)			0	0.8	0.4	1		0.0	0.4	D	36	0	
GH miss	Extrepolate	ed annuar emissions/avei	age annuar gas		0.4	0.0	0.4	0.1	0.1	0.2		0.4	0.03	1.2	0.1	0.0	
U	injection (%	6)		0.8	0.4	0.0	0.4	0.1	0.1	0.2		0.4	0.2	1.2	0.1	0.0	
	101000000000000000000000000000000000000	facilities where name in	aludas "Cas" is in	deploted ges ress	and the set of the second set of	An and the terral second second	al all managements										

Storage in facilities whose name includes "Gas" is in depleted gas reservoirs; otherwise storage is in depleted oil reservoirs

²"open" includes wells with DOGGR status "Active" and "Idle", which are unplugged and have a wellhead

³Aliso emissions measured following repair of the 2015 blowout

			Posifie Gas and Elect	ic	Southern California Gas					
	Facility ¹	Los Medanos	McDonald Island	Pleasant Creek	Aliso Canyon	Honor	La Goleta	Playa del Rey		
		Gas	Gas	Gas		Rancho	Gas			
	2015 Capacity (Bcf)	17.9	82.0	2.3	86.2	27.0	19.7	2.4		
UGS facility characteristics	Average depth (range) of storage reservoir(s) (ft)	4,000	5,220	2,800	9,000	10,000	3,950	6.200		
	Average annual gas transfer per well per from 2006 to 2015 (million scf)	255	75	22	197	244	232	13		
	Number of open ² wells connected to storage reservoir in 2015	21	88	7	115	41	18	54		
	Median age of open ² wells as of 2015 (yrs)	36	41	41	42	39	63	79		
	Maximum deep-seated landslide susceptibility	VI	0	VII	Х	х	Х	Х		
azards	Last fault rupture through or (*) within 500 m of flow line(s) (yrs ago)	<130,000*	None	None	<15,000*	<15,000*	<130,000*	None		
hoods, and ha	Hazard of Quaternary fault shearing of well(s) present	Maybe	No	No	Yes	Unlikely	Unlikely	No		
	Max. 2% probability of exceeding 0.2-sec spectral acceleration in 50 years (g)	2.15	1.25	1.85	2.75	2.45	2.65	1.65		
keli	Earthquake-induced landslide hazard zone	?	No	No	Yes	Yes	?	Yes		
s, li	Tsunami hazard	No	No	No	No	No	Yes	?		
de	Flooding hazard	No	Yes	No	No	No	Yes	No		
nre mo	Fire hazard severity zones - predominant (maximum, if different)	Moderate	Not zoned (moderate)	Moderate	Very high	Very high	Not zoned	Very high		
Fail	Number of reported distinct LOC incidents in Evans (2008) and in Folga et al. (2016)	1	2	1	3	1	0	3		
p	Proximity of handling plant (center) to well field (km)	0.3	0.0	0.4	0.2	0.0	0.5	0.0		
h ar	Population in proximity to UGS	223,069	6,473	8,821	325,330	180,359	101,371	691,757		
Health safe	Median (max) formaldehyde emissions from 1996 - 2015, predominantly from compressors (lbs/yr)	4,968 (7,204)	11,163 (11,163)	not reported	15,001 (20,640)	18,675 (27,296)	2,197 (3,456)	3,038 (5,772)		
1G sions	Average observed methane emission rate (kg CH4/hr)	11	150	16	200 ³	740	36	0		
GH(emissi	Extrapolated annual emissions/average annual gas injection (%)	0.1	0.2	0.4	0.2 ³	1.2	0.1	0.0		

Notes

Montebello facility

- Officially closed December 31, 2016 following extensive surface leakage of natural gas
- Included in table because it apparently operated for some periods during our 10-year study period January 1, 2006 to December 31, 2015.

Some risk-related characteristics are also benefits

- Storage volume
- Proximity to population correlates to proximity to emergency services

New regs require risk management

- Qualitative and quantitative risk assessment is now required
- Identifying, assessing, and prioritizing prevention & mitigation actions will lead to lower risk

New regs & risk management promise to improve UGS safety and reliability

- UGS has been in a gray area between oil and gas production and energy distribution infrastructure
- New regulations will greatly improve UGS safety and reliability
 - No single-point failure well configurations
 - Mechanical integrity testing
 - Risk management plans (RMPs)
- Regulations now require
 - Quantitative risk assessment
 - Regular review and updating of RMPs
 - Assessment of human factors

Take Away Messages: Key Question 1

Managing Risk

- Risks associated with underground gas storage can be managed and mitigated.
- The new draft regulations are a major step, have room for improvement, and should undergo regular review.
- Conduct methane monitoring for early identification of leaks.

Minimizing Impact

- Consider population proximity and density.
- Require information on gas composition and be ready for rapid monitoring and modeling of gas dispersion.

Facility-by-Facility Evaluation

- A few facilities have relatively higher risk than others in California.
- Quantifying risks for each facility allows examining tradeoff between risk and benefits of individual facilities.

Questions?

Key Question 1

What risks do California's underground gas storage facilities pose to health, safety, environment and infrastructure?

Focus of Talk:

Human Health Hazards, Risks, and Impacts Associated with Underground Gas Storage in California

Seth B.C. Shonkoff, PhD, MPH PSE Healthy Energy / UC Berkeley / Lawrence Berkeley National Lab

Co-Authors & Contributors

Chapter 1: Section 1.4

Human health hazards, risks, and impacts associated with underground gas storage in California

Seth B.C. Shonkoff, PhD, MPH PSE Healthy Energy, UC Berkeley, LBNL

Lee Ann Hill, MPH PSE Healthy Energy

Eliza D. Czolowski, MPS *PSE Healthy Energy*

Kuldeep Prasad, PhD National Institute of Standards and Technology

S. Katharine Hammond, PhD University of California, Berkeley

Thomas E. McKone University of California, Berkeley Lawrence Berkeley National Lab

of Standards and Technology

Bringing science to energy policy

Overview of Talk

- Study Goals & Health Assessment Approach
 - Toxic Air Pollutant Assessment
 - Proximity Analysis
 - 2015-2016 Aliso Canyon SS-25 Well Blowout
 - Occupational Health and Safety
- Key Findings & Recommendations
Health Assessment: Key Findings

- 1. There are a number of human health hazards associated with UGS in California that are **predominantly attributable to exposure to toxic air pollutants and gas-fueled fires or explosions during large LOC events**.
 - However, many UGS facilities also emit multiple health-damaging air pollutants during routine operations — formaldehyde in particular, which is of concern for the health of workers and nearby communities.
- 2. Large LOC events (e.g., the 2015 Aliso Canyon incident) can clearly cause health symptoms and impacts in nearby populations and are a key challenge for risk management efforts.
- 3. There is uncertainty with respect to some of the *mechanisms* of human health harm related to the 2015 Aliso Canyon incident and other UGS LOC events in the future. This is mostly attributable to the lack of access to data on the composition of stored gas in the facilities and limitations of air quality and environmental monitoring during and after these events. While our research team attempted repeatedly to obtain the relevant gas composition data, we were unsuccessful.

Health Assessment: Key Findings, Cont... 🔀

- 4. UGS facilities located in areas of high population density and in close proximity to populations are more likely to cause larger population morbidity attributable to exposures to substances emitted to the air than facilities in areas of low population density or further away populations.
- During large LOC events, if emitted gases are ignited, the explosion hazard zone at UGS facilities can extend beyond the geographic extent of the facility, creating flammability hazards to nearby populations.
- 6. Workers on site are likely exposed to higher concentrations of toxic chemicals during both routine and off-normal operations, and workers on site have greater chance of exposure to fire or explosions during LOC events.
- 7. California-specific as well as other peer-reviewed studies relevant to California on human health hazards associated with UGS facilities are scarce.

Health Assessment Approach

- 1. Analysis of **toxic air pollutant emission data** reported to regional air districts and to the State (CA Hotspots Program)
- 2. Proximity analysis of populations near UGS facilities and their potential exposure to toxic air pollutants and natural gas fires and explosions using numbers, density, and demographics of people in proximity to UGS facilities and air dispersion modeling
- 3. Assessment of air quality and human health impact datasets collected during the **2015 Aliso Canyon incident**
- 4. Assessment of **occupational health and safety hazards** associated with Aliso Canyon and UGS facilities in general

While Our Research Team Attempted Repeatedly To Obtain The <u>Relevant Gas Composition Data</u> We Were Unsuccessful

Chapter 1

Appendix 1.E. Efforts to Seek Information on Stored Gas Composition

In order to better assess the inventory of chemicals available for release from storage wells during a loss-of-containment (LOC) event, the health impacts team worked with the CCST and the CPUC to make a formal request to each of the storage facility operators for information on stored-gas composition. Contained in this Appendix are (1) a copy of the letter of request we sent out along with (2) the letters of response we received from Southern California Gas (operator of Aliso Canyon, Honor Rancho, La Goleta Gas, Montebello, and Playa del Ray). PG&E (operator of McDonald Island Gas, Los Medanos Gas, Pleasant Creek Gas), Rockport Gas Storage Partners (operator of Kirby Hills, Lodi Gas, and Wild Goose Gas), Central Valley Gas (operator of Princeton Gas), and Gill Ranch LLC (operator of Gill Ranch Gas). As an introduction to these attached materials, we discuss here briefly what we requested and what we got back.

Information we were seeking

As part of the health risk assessment and based on emissions reported and detected from the Aliso Canyon event, we compiled a table of priority chemicals (attached to our request letter below) that we determined would be in the stored gas at trace levels but relevant to public health. Our concern is that these trace constituents could come out with the natural gas during a LOC and might lead to exposures on-site (occupational) or to the nearest offsite community that could exceed health-protection guidelines. But the only way to make this determination is by having knowledge of concentrations of these priority chemicals in the stored gas.

In order to obtain this information, we asked first of the operators: "Please show the proportion of each chemical in parts per billion that is present in the gas after a standard operational withdrawal prior to any processing..." We followed this with a question about detection limits for assessing trace concentrations. If the operator could not fully address the first two questions, we included a third questions that asked why they were not monitoring for these chemicals, what are the barriers to more extensive monitoring, and what would it take to make feasible the monitoring of these chemicals

The responses we received

Although we received responses from all of the operators in California, their responses revealed an absence of both the information we requested and the ability to obtain this information in a timely manner. Some of the responses were terse and somewhat incomplete, others were more detailed but still failed to provide new insight about the current inventory of toxic air contaminants in stored natural gas. In reviewing the responses, it is clear that all of the operators are only currently monitoring for the quality of the gas and the presence of sulfur compounds. None measure for other toxic air contaminants. The operators had different responses with regard to the barriers to more extensive monitoring, and what it would take to make feasible the monitoring of these chemicals. Some indicated

- Appendix 1.E (Chapter 1, p. 461) details our request to UGS operators.
- We received feedback from each facility (Appendix 1.F), but were not provided useful data needed to draw meaningful conclusions about chemical composition.
- These data are essential to assess health risks posed by UGS.

Toxic Air Pollutants Associated with UGS

- **Stored Gas:** Toxic compounds are admixed with stored natural gas in depleted oil and gas reservoirs and are emitted from leaks and LOC events.
- Aboveground infrastructure: compressor stations and other equipment emit health-damaging air pollutants (e.g., formaldehyde) into the ambient air during normal and off-normal operations.

Approach to Toxic Air Pollutant Assessment:

- Quantify pollutants reported as historically emitted from California UGS facilities (CA Hotspots Program)
- Assess acute and chronic toxicity for non-cancer and cancer endpoints
- Rank the hazard of chemicals known to be emitted from UGS facilities by annual mass emitted and chemical-specific toxicity for future monitoring and risk assessment considerations.

California Emissions Inventories

Toxic air pollutant data availability for CA UGS facilities

FACILITY NAME Wild Pleasant Princeton Gill Honor Lodi Kirby McDonald Plava del Aliso Los Goleta Montebello YEAR Ranch Rancho Hill Island Creek Canyon Gas Gas Medanos Goose Rev SCAQMD SCAQMD 2016 SCAQMD SCAQMD 2015 SCAOMD CARB CARB CARB CARB CARB CARB CARB 2014 CARB CARB CARB CARB CARB CARB CARB 2013 CARB CARB CARB CARB CARB CARB CARB CARB CARB 2012 CARB CARB CARB CARB CARB CARB CARB 2011 CARB CARB CARB CARB CARB CARB CARB 2010 CARB 2009 CARB CARB CARB CARB CARB CARB CARB 2008 CARB CARB CARB CARB CARB 2007 CARB CARB CARB CARB CARB 2006 CARB CARB CARB 2005 2004 CARB CARB CARB 2003 2002 CARB 2001 CARB CARB 2000 CARB CARB CARB 1999 CARB 1998 CARB CARB CARB CARB CARB CARB CARB 1997 CARB CARB CARB CARB CARB CARB 1996

No data

available

Site not in

operation

Data available –

CARB and SCAQMD

Data available -

CARB or SCAQMD

- UGS facility-specific emissions data available from SCAQMD and CARB
- Data availability vary by facility and year
- Report emissions of criteria pollutants (tons/year) and toxic air pollutants (pounds/year)
- Emission inventories reportedly include routine operations and offnormal events
- NOTE: Emissions reporting lack spatial and temporal information required for formal risk assessment (emissions rates, location, equipment type, etc.).

Toxicity Ranking to Prioritize Compounds

Inhalation Toxicity Score

- 1 Acute toxicant
- 2 Chronic toxicant
- 3 Carcinogen

Table 1.4-6. Chronic (noncancer and cancer) toxicity-weighted emissions from UGS facilities in California between 1987 and 2015. Compounds are listed by most hazardous to least hazardous based on chemical-specific median annual emissions and toxicity weights.

Gas-fired compressors are significant contributors to above ground *formaldehyde emissions* associated with UGS.

NOTE: important compounds associated with UGS (e.g. *mercaptans*) are absent from emissions inventories

	Chemical Name ^{1,2}	CASRN	Median annual emissions (pounds/year)	Toxicity Weights	Toxicity- weighted emissions
1,2,3	Formaldehyde	50-00-0	3159	46,000	145,310,537
1,2	Acrolein	107-02-8	206	180,000	37,066,065
2	Ethylene dibromide	106-93-4	4	2,100,000	8,428,974
1,2,3	1,3-Butadiene	106-99-0	57	110,000	6,236,313
1,2,3	Benzene	71-43-2	171	28,000	4,791,412
2	2-Methyl naphthalene ¹	91-57-6	6	710,000	4,433,950
1,2,3	Acetaldehyde	75-07-0	392	7,900	3,093,610
2	Phenanthrene ¹	85-01-8	2	710,000	1,388,760
2	Tetrachloroethane	79-34-5	4	210,000	760,790
2	Trichloroethylene	79-01-6	44	15,000	657,075

Proximity to UGS Facilities in CA

- We evaluated population proximity and population density near UGS facilities in California.
 - Residents, children and the elderly
 - Day care centers, hospitals, schools, and elderly care facilities
 - 0m 8,000m (~5 mi) from each UGS facility
- We also used meteorological data to assess dispersion patterns of emissions from UGS facilities.

UGS facilities located in areas of high population density and in close proximity to populations are more likely to cause larger population morbidity from air pollutants and explosions

Populations in closest proximity to (within) UGS Facilities

Table 1.4-10. Population counts for the 0 m buffer, by underground storage site.

Underground Storage Facility	Number of Residents	Under Age 5	Age 75 and Older	
Playa del Rey	3,782	165	193	
Montebello	1,470	75	149	
Lodi	242	12	9	
La Goleta	39	1	3	
Aliso Canyon	25	1	2	
McDonald Island	24	4	0	
Princeton	3	0	0	
TOTAL	5,885	258	356	

Figure 1.4-4. Population density measured in people per square kilometer around the Montebello UGS facility.

Statewide Proximity to UGS, including vulnerable populations

Table 1.4-8. Summed population and sensitive receptor counts in proximity tounderground storage sites in California, by buffer distance.

Distance From any UGS Well (meters)	Number of Residents	Under 5	Age 75 and Older	Number of Open Schools	Number of Children Enrolled in School	Number of Open Daycare Centers	Number of Open Elderly Care Facilities	Number of Hospitals
0	5,585	257	356	0	0	1	0	0
100	8,179	408	542	0	0	1	0	0
200	11,443	568	788	3	1,046	5	1	0
400	18,385	876	1,434	4	1,448	7	2	0
600	28,158	1,308	2,058	9	3,699	18	2	0
800 (1/2 mile)	40,503	1,843	2,704	12	5,435	29	2	0
1,000	54,127	2,597	3,458	17	9,974	35	2	1
1,600 (1 mile)	113,721	5,522	6,278	32	23,035	64	3	2
2,000	161,367	8,051	8,467	42	28,868	89	3	3
5,000	743,678	42,543	43,323	213	117,406	516	109	8
8,000	1,864,775	115,124	103,085	556	292,935	1,337	326	23

Distances were determined using concentric, circular buffers

Emission Dispersion & Population Density

 We used estimated facility-specific meteorological data for refined assessment of populations that may be most likely to be exposed to UGS emissions

Figure 1.4-13. Air dispersion quantiles and population density at the Aliso Canyon UGS facility.

During large LOC events, if emitted gases are ignited, the explosion hazard zone at UGS facilities can extend beyond the geographic extent of the facility, creating flammability hazards to nearby populations.

SCIENCE & TECHNOLOGY

Facilities where well pads are located at the boundary of the facility (e.g., Playa Del Rey) would result in potential hazard zones that extend outside the facility.

Aliso Canyon Incident

56,000 45,000 10,000 28,000

10,000 10

More 3

October

Oct 23rd:

SoCalGas

kilograms of methane per hour

in tan)

detects leak at SS-25

Table 1.4-16. Entities monitoring for air quality (excluding methane) during and after the SS-25

Oct 26th: Discre					blowout.			
sampling begin	Agency ¹		Start Date End Date		Analyte(s) ²	Sample Type	# Sites	Location
Max community		SoCalGas	10/30/15	3/11/16	17 compounds	Grab	38	Porter Ranch/SS-25
benzene level (3.0 ppb, ¹ / ₃ acut	out	SCAQMD/CARB	12/16/15	TBD	64 compounds	Trigger/Grab	2	Porter Ranch
REL; 3x 8-hr RE (SCAQMD)	lowe	SCAQMD/CARB	12/21/15	12/26/16	56 compounds	24-hr	4	Porter Ranch/Reseda
ber	ve B	UCLA/Jerrett	1/13/16	2/25/16	NO _x , CO ₂ , tVOC, PM	Continuous	6	Porter Ranch/Northridge
	Acti	UCLA/Jerrett	1/13/16	2/12/16	25 VOCs	Passive Sampler	24	Porter Ranch/Northridge
	ring	CARB	1/14/16	7/21/16	Benzene	Hourly	1	Site 5 (34.294993, -118.558115)
80,000	Dui	SoCalGas	1/11/16	2/3/16	17 compounds	12-hr	13	Porter Ranch/SS-25
70,000		SCAQMD	2/2/16	7/19/16	Benzene	Hourly	1	Site 7 (34.26140, -118.594)
60,000	e	SCAQMD/CARB	2/26/16	2/24/17	H ₂ S	Hourly	1	Site 3 (34.293563, -118.580401)
50,000	Activ vout	LACDPH	3/25/16	4/6/16	250 compounds	24-hr (summa)	210	Porter Ranch/Northridge
40,000	ost-/ Blov	LACDPH	3/25/16	4/8/16	86 compounds	Wipe	210	Porter Ranch/Northridge
10,000	ā —	LACDPH	4/20/16	4/20/16	187 compounds	Soil	5	SS-25
and the second se								

SCAQMD - South Coast Air Quality Management District; CARB - California Air Resources Board; UCLA/Jerrett - University of California, 1 Los Angeles - Michael Jerrett; LACDPH - Los Angeles County Department of Public Health

2 NO₂ – nitrogen oxides; CO₂ – carbon dioxide, tVOC – total volatile organic compounds, PM – particulate matter; VOC – volatile organic compounds; H₂S – hydrogen sulfide

Air and Environmental Monitoring Was Extensive But Insufficient

- All air quality monitoring **missed the first few days of the blowout**, where exposures to the highest concentrations likely occurred
- No continuous health-damaging air pollutant monitoring until well after the peak of emissions
- Only 21 (36%) of chemicals reportedly emitted from Aliso Canyon (according to emission inventories) were monitored for during or after the 2015 Aliso Canyon incident in ambient air
- Compounds that were monitored for were often monitored at limits of detection above health-relevant thresholds

Effective health risk management requires continuous, rapid, reliable, and sensitive (low-detection limit) environmental monitoring of chemicals of concern in both ambient and indoor environment.

Large LOC events can cause health symptoms and impacts in the nearby population

Health complaint density

Complaint distance from SS-25

Reported Symptoms During and After Leaks in Population Nearby Aliso Canyon

CCST

CALIFORNIA COUNCIL ON

SCIENCE & TECHNOLOGY

• While mechanisms of health symptoms are not all understood, it is clear that the majority of nearby residents experienced health symptoms during and after the Aliso Canyon LOC event.

Occupational Health & Safety

Workers on site are exposed to higher concentrations of toxic chemicals during both routine and off-normal operations, and workers on site have greater chance of exposure to fire and explosions during LOC events.

- Hydrogen sulfide exposure is of key concern for workers, as it presents a toxic and flammability hazard at the work site
- Workers at some UGS facilities may live on site for periods of time, rendering occupational exposure values inappropriate.
- Workers require proper safety training SoCalGas was cited by CA Division of Occupational Health and Safety for an insufficient trained incident commander at the Aliso Canyon facility
- UGS workers may not be adequately overseen by any agency

Not All UGS Facilities are Created Equal

										•	•		•
				Independents			Pacific Gas and Electric			Southern California Gas			
	Facility ¹		Kirby Hill Gas	Lodi Gas	Princeton Gas	Wild Goose Gas	Los Medanos	McDonald Island	Pleasant Creek	Aliso Canyon	Honor	La Goleta Gas	Playa del Rey
							Gas	Gas	Gas		Rancho		
acility eristics	2015 Capacity (Bcf)	20.0	15.0	17.0	11.0	75.0	17.9	82.0	2.3	86.2	27.0	19.7	2.4
	Average depth (range) of storage reservoir(s)	5,850	1,550-5,400	2,280	2,170	2,400-2,900	4,000	5,220	2,800	9,000	10,000	3,950	6,200
		6,216		2,515									
	Average annual gas transfer per well per from 2006	150	69	511	78	866	255	75	22	197	244	232	13
is f	to 2015 (million scf)												
UG har	Number of wells connected to storage reservoir in	12	18	26	13	17	21	88	7	115	41	18	20
0	2015												
	Median age of wells as of 2015 (yrs)	39	9	15	6	11	36	41	41	60	56	63	80
	Maximum deep-seated landslide susceptibility	0	VII	0	0	0	VI	0	VII	Х	Х	Х	Х
Inde	Last fault rupture through or (*) within 500 m of	None	<130,000	None	None	None	<130,000*	None	None	<15,000*	<15,000*	<130,000*	None
Iaza	flow line(s) (yrs ago)												
Чp	Hazard of Quaternary fault shearing of well(s)	No	Yes	No	No	No	Maybe	No	No	Yes	Unlikely	Unlikely	No
an	present												
spc	Max. 2% probability of exceeding 0.2-sec spectral	1.45	1.55	1.25	0.95	0.65	2.15	1.25	1.85	2.75	2.45	2.65	1.65
hoe	acceleration in 50 years (g)												
keli	Earthquake-induced landslide hazard zone	No	?	No	No	No	?	No	No	Yes	Yes	?	Yes
s, li	Tsunami hazard	No	No	No	No	No	No	No	No	No	No	Yes	?
ode	Flooding hazard	Yes	Yes	Yes	Yes	Yes	No	Yes	No	No	No	Yes	No
Ĕ	Fire hazard severity zones - predominant	Not zoned	Moderate	Not zoned	Not zoned	Not zoned	Moderate	Not zoned	Moderate	Very high	Very high	Not zoned	Very high
nre	(maximum, if different)	(moderate)		(moderate)	(moderate)	(moderate)		(moderate)					
Fail	Number of reported distinct LOC incidents in Evans	0	0	0	0	1	1	2	1	2	1	0	2
_	(2008) and in Folga et al. (2016)	0	0	0	0	1	1	2	1	3	1	0	5
	Proximity of handling plant (center) to well field	0	0.7	6.5	0.9	8	0.3	0	0.4	0.2	0	0.5	0
P.	(km)												
h a fety	Population in proximity to UGS	909	401	23,771	848	195	223,069	6,473	8,821	325,330	180,359	101,371	691,757
saf	Median (max) formaldehyde emissions from 1996 -	4 (5)	108 (205)	1291 (1291)	not reported	not reported	4,968 (7,204)	11,163 (11,163)	not reported	15,001 (20,640)	18,675	2,197 (3,456)	3,038 (5,772)
Ť	2015 predominantly from compressors (lbs/yr)										(27,296)		
	2013, predominancy norn compressors (bs/yr)												
SU	Average observed methane emission rate (kg	88	37	0	43	35	11	150	16	200 ²	740	36	0
HG	CH4/hr)												
emiss	Extrapolated annual emissions/average annual gas	0.8	0.4	0	0.4	0.1	0.1	0.2	0.4	0.2 ²	12	0.1	0
	injection (%)	0.0	0.4	0	0.4	0.1	0.1	0.2	0.4		1.2	0.1	0

¹Storage in facilities whose name includes "Gas" is in depleted gas reservoirs; otherwise storage is in depleted oil reservoirs

²Aliso emissions measured following repair of blowout

Key Recommendations from Health Assessment

- 1. Require that the composition of gas withdrawn from the storage reservoir be disclosed, along with any chemical use on site that could be leaked, intentionally released, or entrained in gas or fluids during LOC events.
- 2. Require facility-specific meteorological (e.g., wind speed and direction) data-collection equipment be installed at all UGS facilities.
- 3. Require that monitoring approaches to air quality and human health be appropriately and rapidly implemented both during routine operations and during LOC events.
- 4. Require that steps be taken to decrease exposure of nearby populations to toxic air pollutants emitted from UGS facilities during routine operations and LOC incidents. These steps could include:
 - Increase application and enforcement of emission control technologies to limit air pollutant emissions
 - Replace gas-powered compressors with electric-powered compressors to decrease emissions of formaldehyde
 - Implement minimum-surface setbacks between UGS facilities and human populations.
- 5. Require that UGS workplaces conform to requirements of CalOSHA and federal OSHA (Occupational Safety and Health) to protect the health and safety of all on-site workers, regardless if operators are legally bound to comply.

Questions?

Seth B.C. Shonkoff, PhD, MPH PSE Healthy Energy / UC Berkeley / LBNL

sshonkoff@psehealthyenergy.org
sshonkoff@berkeley.edu

@PhySciEng
www.psehealthyenergy.org

Bringing science to energy policy

Questions?

Key Question 2

Does California need underground gas storage to provide for energy reliability in the near term (through 2020)?

Dr. Jane C.S. Long Retired LLNL Co-Chair, Steering Committee

Second Major Conclusion and Recommendation

- Conclusion ES-2: California's energy system currently needs natural gas and underground storage to run reliably. Replacing underground gas storage in the next few decades would require very large investments to store or supply natural gas another way, and such new natural gas-related infrastructure would bring its own risks. The financial investment would implicitly obligate the state to the use of natural gas for several decades.
- Recommendation ES-2: In making decisions about the future of underground natural gas storage, the state should evaluate tradeoffs between the quantified risks of each facility, the cost of mitigating these risks, and the benefits derived from each gas storage facility—as well as the risks, costs, and benefits associated with alternatives to gas storage at that facility.

Key Question 2 Sub-topics

- Current role of gas storage in California today
- Changes to the the role of gas storage
- Impacts of historical storage facility performance problems
- Requirements to replace gas storage while maintaining reliability
- Impacts from the new requirements/regulations on the reliability of gas supply

California gas import capacity

Import takeaway capacity:PG&E:2.9 bcfdSoCalGas:3.4 bcfd

CA production : 1.2 bcfd

TOTAL SUPPLY CAPACITY: 7.5 bcfd

Western Gas Pipelines

Source: California Energy Commission

General Layout of California High Pressure Pipeline and Storage Facilities

Source: California Energy Commission

Underground Gas Storage Working Inventory

	Working Capacity (Bcf)	Maximum Withdrawal Capacity (Bcfd)
U.S.	4735.8	
California	375.5	
Utility-Owned & Controlled	237.5	4.8
PG&E	100.3	1.53
SoCalGas	135.4	3.66
Independently Owned	106.0	2.9
Gill Ranch	20	0.65
Lodi	29	0.80
Wild Goose	50	1.2
Central Valley	11	0.30

Source: EIA, U.S. Field Level Storage Data

• What is underground gas storage used for? Why do we need it?

1. Monthly Winter Demand

Provides supply when monthly winter needs exceed the available pipeline supply capacity.

2. Flat Production

Provides supply when demand exceed supply production rate.

3.

MMcf per Day

4. Intraday Balancing

- Supports hourly changes in demand.
- Allows back up of renewable generation.

Source: Aliso Canyon 2016 Summer Technical Assessment

Supply Receipts and Total Load by Hour for SoCalGas September 9, 2015

- 5. Gas storage provides gas and electric reliability during extreme weather and wild fires.
 - Problems may increase with climate change
 - These emergencies can threaten supply when demand simultaneously increases.

https://www.independent.com/news/2008/j ul/03/early-morning-gap-fire-update/

Financial functions are secondary

U.S. Natural Gas Wellhead Price, Monthly

- 6. Seasonal Price Arbitrage
 - Allows savings through seasonal price arbitrage
 - winter prices usually higher than summer prices
- 7. Liquidity/Short-term Arbitrage
 - Grants marketers a place to hold supply and take advantage of shortterm prices for liquidity and shortterm arbitrage.

Source: U.S. Energy Information Administration

If storage can meet winter demand then it can do all the other functions:

- intraday balancing,
- compensating for steady production,
- creating an in-state stockpile for emergencies, and
- allowing arbitrage and market liquidity.

What could replace underground gas storage?

Additional pipelines could replace UGS

- Would cost approximately \$15B
- Difficult to do by 2020 (maybe by 2025?)
- Shifts the risk of supply not meeting demand to upstream, out-of-state
- Is a further commitment to gas
- Presents its own set of risks
Replace UGS with LNG peak shaving units

To meet the 11.8 Bcfd extreme winter peak day demand forecast for 2020 would be extremely difficult to permit.

Would require about \$10B.

http://www.russoonenergy.com/content/it-time-rethink-gas-storage-and-pipelines

Containerized LNG

CCCST CALIFORNIA COUNCIL ON SCIENCE & TECHNOLOGY

- 2,000 containers required to support a 50 MW power plant for four hours,
- Takes a day to recharge
- Container transportation would incur potential safety issues, increased emissions
- The number of containerized LNG units required to generate each MWh suggest containerized LNG does not appear viable at the scale required to replace California's 4.3 Bcfd winter peak
- May have application in meeting system peaks for a few hours or supporting power plant demands for a few hours.

Figure 32. GE's CNG Technology Solution Source: Photo courtesy of BHGE

L NG from Costa Azul

 LNG from Sempra's Costa Azul terminal in Mexico could provide 300 MMcfd to San Diego, and obviate this amount of gas storage in Los Angeles.

http://www.sandiegouniontribune.com/sdutensenada-municipal-government-orders-sempraplant-2011feb11-htmlstory.html

Winter peak is for heat, not electricity

No method of conserving or supplying electricity can replace the need for gas to meet the winter peak in the 2020 time frame including

- electricity storage,
- new transmission,
- energy efficiency measures, and
- demand response.
- The winter peak is caused by the demand for heat and heat will continue to be provided by gas, not electricity, in that time frame.
- Gas storage is likely to remain a requirement for reliably meeting winter peak demand.

High efficiency gas furnace: https://hvacdealers.com/blog/high-efficiency-gas-furnaces/

Electricity could address the summer peak Caused by demand for air conditioning

- 15 GW of new transmission could offset about 30% percent of 2.8 average summer peak gas requirements.
- 50GW required for 100% plus the emission free supply to put on the grid
- Still doesn't meet the winter peak.

https://cleanenergygrid.org/gulf-coast-electricity-transmission-summit/

Operational and Market Mechanisms

- Regulatory and operational changes can help to reduce reliance on underground gas storage, but will not eliminate the need for these services.
 - Tighter Balancing Rules small gains; already made
 - Core Customers Balancing to Load Instead of Forecast small gains
 - Greater Use of Line Pack already used
 - Closer Gas-Electric Coordination already done
 - Shifting to Out-of-Area Generation on Gas-Challenged Days still need winter heat
 - Day-Ahead Limits on Gas Burn doing this now
 - Shaped Nominations and Flexible Services could reduce peak
 - Weekend Natural Gas Market requires agreement

There is no "silver bullet" to replace underground gas storage in the 2020 time frame

- meet the 11.8 Bcfd extreme winter peak day demand forecast and
- allow California to eliminate all underground gas storage by 2020.
- Two possible longer-range physical solutions would
 - be extremely expensive
 - carry their own risks
 - incur barriers to siting
 - commit CA to more gas infrastructure

Take Away Messages: Key Question 2

• California needs natural gas and natural gas storage to meet the winter demand and winter peak daily demand for heat. Pipelines do not have the capacity to meet these demands.

• Replacing UGS would be very expensive and nearly impossible to do in the near term.

 Nothing done for electricity will have much effect on the peak winter demand because this demand is caused by demand for heat and CA has no policy to electrify heat.

Key Question 3

How will implementation of California's climate policies change the need for underground gas storage in the future?

Dr. Jeffery B. Greenblatt Chief Scientist, Emerging Futures LLC (formerly Staff Scientist, Lawrence Berkeley National Laboratory) Lead Author

Third Major Conclusion and Recommendation

- **Conclusion ES-3:** Some possible future energy systems that respond to California's climate policies might require underground gas storage including natural gas, hydrogen, or carbon dioxide—and some potentially would not. California's current energy planning does not include adequate feasibility assessments of the possible future energy system configurations that *both* meet greenhouse gas emission constraints *and* achieve reliability criteria on all time scales, from subhourly to peak daily demand to seasonal supply variation.
- **Recommendation ES-3:** The state should develop a more complete and integrated plan for the future of California's energy system, paying attention to reliability on all timescales in order to understand how the role of natural gas might evolve and what kind of gases (e.g., natural gas or other forms of methane, hydrogen, or carbon dioxide) may need to be stored in underground storage facilities in the future.

Key Question 3 Sub-Questions

- How might California's climate policies and new technology developments affect the need for gas storage in the future?
- How could regional grid operations and/or gaselectric coordination change the role of storage?
- How would storage need to change between today and 2050?

Energy scenarios

- Examined 26 studies, more than 300 scenarios that looked at future energy systems (California, U.S., and a few global).
- No study provided sufficient detail to convincingly inform the future need for UGS in California.
- Recommendation 3.1: Commission studies to identify future configurations of the energy system with modeling of natural gas use on <u>all relevant time scales</u> (subhourly to seasonal).

Major uses of natural gas

CONFIDENTIAL - Do not redistribute or share.

What will change by 2030?

Electricity gas:

- Renewables will provide >50% of generation.
- Some energy efficiency, energy storage, demand response, and electric vehicle growth.

Non-electricity gas:

 Scenarios estimate that demand will decrease 11-22%, not enough to reduce the need for UGS.

- Total gas demand peaks in winter, driven by gas heating demand
- Demand for gas-fired electricity peaks in summer
- All gas uses expected to reduce somewhat in 2030, but timing of peaks will remain similar to today
- By 2050, gas demand for both electricity and heat could change significantly relative to today

Changes in hourly gas electricity use

- Reduction in natural gas use, directly or indirectly
- However, changes do not necessarily reduce the need for underground gas storage (example: more intermittent renewable electricity)

CEC estimated Diurnal 1-in-2 year average monthly natural gas demand for electricity generation in California in 2017 vs. 2030. June and September averages shown.

Daily load balancing of electricity

- How to address *dunkelflaute* ("dark doldrums") conditions?
- Peak electricity demand ~60,000 MW

Figure ES-3.2. Combined wind and solar output

Projected 2030 electricity capacities

Peak electricity demand (~60 GW)

Figure 2. California monthly average wind and solar output in 2016. Reproduced from data in CAISO (2017a, Figure 1.8).

Demand for heat peaks in winter, when solar and wind outputs are minimal.

Electrified heat could be a key strategy in lowering emissions, but would further exacerbate supplydemand mismatch.

Required backup from gas equal to renewable energy capacity

Technology Assessment for 2030

- Intraday balancing—managing changes in gas demand over a 24-hour period—could possibly be addressed by various forms of energy storage, flexible loads or imports/exports
- Multiday or seasonal supply-demand imbalances must be addressed with low-GHG chemical fuels:
 - Examples: biomethane, synthetic natural gas, and hydrogen (H₂)
 - Have same storage challenges as natural gas
 - CO₂ from fuel production may also need to be managed
 - May introduce new constraints (e.g., H₂ or CO₂)
- The total amount of UGS needed unlikely to change by 2030

Logic diagram for 2050 scenarios

Conclusions and Recommendations

Flexible, non-fossil generation might minimize reliability issues currently stabilized with natural gas generation.

There are widely varying ideas about energy systems that might meet the 2050 climate goals. Some of these would involve some form of gas (methane, hydrogen, CO_2) infrastructure including underground storage, and some may not require as much UGS as in use today.

Take Away Messages: Key Question 3

- Energy storage, flexible loads, and imported (or exported) electricity could play a role in firming intermittent renewable energy.
- Only chemical energy storage—which requires UGS—can supply power in *dunkelflaute* conditions for multiple days and seasonally.
- Electrification of heat could increase electricity demand in winter at the same time that solar and wind output declines.
- More flexible, non-intermittent or baseload low-GHG resources (e.g. geothermal, CCS, nuclear, WY wind, wave power, etc.) could reduce UGS use significantly.
- California needs a plan for energy that accounts for both capacity and reliability at all time scales.

Concluding Remarks

- With appropriate regulation and oversight, the risks associated with underground gas storage can be managed and and mitigated.
- California's energy system currently *needs* natural gas and gas storage to run reliably.
- California's current energy planning does not include adequate feasibility assessments of the possible *reliable and low carbon* future energy system configurations.

Questions?