Water-Energy Cost Effectiveness Tools

Public Workshop Presentation

February 11, 2015
Content of Report

This presentation was prepared by Navigant Consulting, Inc. exclusively for the benefit and use of the California Public Utilities Commission and/or its affiliates or subsidiaries. The work presented in this report represents our best efforts and judgments based on the information available at the time this report was prepared. Navigant Consulting, Inc. is not responsible for the reader’s use of, or reliance upon, the report, nor any decisions based on the report.

NAVIGANT CONSULTING, INC. MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESSED OR IMPLIED.

Readers of the report are advised that they assume all liabilities incurred by them, or third parties, as a result of their reliance on the report, or the data, information, findings and opinions contained in the report.

February 11, 2015
Water/Energy Cost Effectiveness Analysis » Agenda

1. Overview of Study Goals
2. Overview of Methodology
3. The Water-Energy Calculator
The goal of our research effort is to develop a method of valuing the monetary benefits of water savings via CPUC cost effectiveness tests.

» CPUC decision 12-05-01 stated it is “not prudent to spend significant amounts of [energy] ratepayer funds on expanded water-energy nexus programs until the cost-effectiveness of these programs, and particularly the net benefits that accrue to energy utility ratepayers, are better understood.”

» This analysis asks: what future costs associated with water and energy infrastructure can be avoided as a result of water conservation?

California energy IOUs can already rebate high efficiency clothes washers …

… does it benefit energy ratepayers for IOUs to rebate high efficiency toilets?
Objective: develop tools that can be used to augment existing Cost Effectiveness (CE) frameworks to include consideration of water.

» Existing cost effectiveness frameworks value “Site Energy” savings using the avoided cost (AC) of electricity and natural gas.

\[
\text{Benefit Cost Ratio} = \frac{\text{Site Energy AC}}{\text{Equipment Cost} + \text{Program Cost}}
\]

Where:

\[
\text{Site Energy AC} = \text{Site Energy Savings} \times \text{Avoided Cost of Energy}
\]

» Modifications to the benefits portion of the equation are needed to account for water savings.

\[
\text{Benefit Cost Ratio} = \frac{\text{Site Energy AC} + \text{Embedded Energy AC} + \text{Water Capacity AC} + \text{Environmental Benefits}}{\text{Equipment Cost} + \text{Program Cost}}
\]
Scope of the study: examine three benefits of water efficiency not previously considered by the CPUC cost-effectiveness framework.

– Three added benefits
 – **Avoided Cost of Embedded IOU Energy in Water.** The economic value (in dollars) from embedded energy savings.
 – **Avoided Costs of Water Capacity.** The economic value (in dollars) from the avoided investment and fixed operating cost in constructing and operating new capacity in water supply and treatment infrastructure.
 – **Environmental Benefits of Reduced Water Use.** The economic value (in dollars) of environmental services from water that is left in the environment to serve other purposes (e.g., wildlife habitats, instream flows, etc.).

– The scope our study did not include the avoided commodity cost of water

– Scoped with:
 – Developing a set of models and calculators to enable the estimation of these three additional benefits.
 – Populating these models and calculators with reasonable default assumptions based on available secondary data and interviews with experts.
The tools developed in this study should be used to primarily inform energy utility efficiency programs.

» Intended uses:

- Estimate the IOU and non-IOU embedded energy savings that result from joint water-energy programs
- Assess the benefits that accrue to energy utilities and to water utilities from programs and measures that save both energy and water
- Determine if incentivizing measures and programs that save both energy and water is a cost effective use of IOU energy utility funds

» This study does:

- **not** require publicly owned utilities or municipal utilities to use these tools
- **not** require water utilities to change their water supply planning decisions
- **not** require water utilities to fund water efficiency programs
- **not** require energy utilities to fund water efficiency programs (requirements would come from a CPUC decision)
- **not** require water utilities to report their energy use
- **not** dictate any goal or mandate for the level of funding, water savings, or energy savings for joint water energy programs from either energy or water utilities
- **not** consider avoided commodity cost of water
The CPUC currently maintains two core tools to assist the energy utilities in determining the cost effectiveness of energy efficiency programs.

» CPUC Demand Side Avoided Cost Calculator (based on proxy plants)
 – Determines the avoided costs of supplying electricity and natural gas on a per unit basis ($/kWh and $/Therm)
 – Maintains a common set of assumptions about the cost and operation parameters of the proxy resources
 – Outputs avoided costs, these avoided costs serve as inputs to the cost effectiveness calculator

» Cost Effectiveness Calculator
 – Incorporates all costs and benefits to estimate cost effectiveness
 – Users input details about the efficiency measures (savings, cost, lifetime, etc.)
 – Calculator values energy savings using the avoided costs

» These existing tools do not consider the benefits of water savings
The CPUC is considering a multi-part cost-benefit test that is “viewed from multiple perspectives.”

<table>
<thead>
<tr>
<th>Component</th>
<th>TRC Perspective</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Energy</td>
</tr>
<tr>
<td>Administrative costs to energy utility</td>
<td>Cost</td>
</tr>
<tr>
<td>Administrative costs to water agency</td>
<td></td>
</tr>
<tr>
<td>Avoided costs of supplying electricity and natural gas</td>
<td>Benefit</td>
</tr>
<tr>
<td>Avoided costs of water capacity*</td>
<td></td>
</tr>
<tr>
<td>Avoided embedded IOU energy in water*</td>
<td>Benefit</td>
</tr>
<tr>
<td>Environmental benefits of reduced water use*</td>
<td></td>
</tr>
<tr>
<td>Capital (measure) costs to participant</td>
<td>Cost</td>
</tr>
<tr>
<td>Capital (measure) costs to energy utility</td>
<td>Cost</td>
</tr>
<tr>
<td>Capital (measure) costs to water utility</td>
<td></td>
</tr>
<tr>
<td>Increased supply costs</td>
<td>Cost</td>
</tr>
<tr>
<td>Tax credits</td>
<td>Benefit</td>
</tr>
</tbody>
</table>

* New benefits being addressed by this study.
All three water related benefits are combined into one tool that can be used for analyzing the water-related benefits of water efficiency measures: the Water Energy Calculator.
Energy Intensity and Embedded Energy are two terms that are key to understanding the Water-Energy nexus

» **Energy Intensity (EI)**
 - The average amount of energy needed to transport or treat water or wastewater on a per unit basis (kilowatt hours per acre-foot of water [kWh/AF] or therms/AF)
 - Associated with a particular facility
 - EIs of successive facilities are additive

» **Energy Embedded in Water**
 - Captures the entire energy picture both upstream and downstream of an end use customer
 - Embedded energy is not associated with a particular facility but with the water itself
 - Calculated by multiplying energy intensity by a volume of water
 - Embedded energy savings = EI x Water Savings
Nomenclature for System Components

Extraction and Conveyance

Source
Supply & Conveyance

Water Treatment

Water Treatment
Recycled Water Treatment

Distribution
Water Distribution
Recycled Water Distribution

End Use:
Agriculture, Residential, Commercial, Industrial

Wastewater Systems

Source

Discharge

Wastewater Treatment

Wastewater Collection
Average vs. Marginal Energy Intensity

» Marginal Energy Intensity
– Energy intensity is the energy intensity of the selected marginal supply (plus appropriate treatment, distribution and wastewater EI)
– Used to value the avoided embedded energy cost
– Represents the energy use of the supply a region is avoiding developing

» Average Energy Intensity
– Weighted average of the energy intensity of existing supplies within a region (plus appropriate treatment, distribution and wastewater EI)
– Used to estimate, measure, and evaluate embedded energy savings (kWh or therms)
– Better represents the actual energy savings that will occur
– Analogous to estimating greenhouse gas savings from energy efficiency using an average carbon intensity of the electricity grid

» The model further breaks down both of these into IOU and non-IOU components.
The models are set up to conduct analysis at the CA Department of Water Resources (DWR) Hydrologic Region level.

- Selecting DWR Hydrologic Regions allowed the model to be populated with the best publically available data as default values.
- Many existing studies and reports already document water supplies and their energy intensities at the hydrologic region.
- Users can still change default values.
Relationship of Key Inputs, Calculations, and Outputs

- **Energy Intensity**
 - Default Input (User Editable)

- **Hydrologic Region**
 - User Defined Input

- **Marginal Supply**
 - Default Input (User Editable)

- **Distribution Energy Intensity**

- **Energy Utility**
 - User Defined Input

- **Historical Supply Mix**
 - Default Input (User Editable)

- **Average Existing Energy Intensity**

- **Avoided Electricity and Natural Gas Costs**

- **Environmental Benefits Factor**

- **Avoided Water Capacity Cost ($)**

- **IOU Avoided Embedded Energy Cost ($)**

- **Average Embedded Energy Savings (KWh and Therms)**

- **Environmental Benefits ($)**

Measure data (User Defined Inputs)
- Annual water savings
- Install year
- Measure life
- Monthly savings profile
1. Overview of Study Goals
2. Overview of Methodology
3. The Water-Energy Calculator
Having established a methodology for tools, the Navigant team sought out estimates of default data to populate the tools.

» The Navigant team’s scope was to primarily develop tools and methodology
» Inputs serve as reasonable default values based on available secondary data
» Many inputs can be edited by users to conduct custom analysis

» Key energy intensity data sources include:
 – CPUC Embedded Energy in Water Study 1 and Study 2
 – DWR Draft Water Plan
 – Water-Energy Simulator (WESim) Model

» Key avoided water capacity cost data sources include:
 – Integrated Regional Water Management Plans (IRWMP)
 – Capital Improvement Plans (CIPs)
 – California Department of Water Resources (DWR)
 – State and Local Agency Engineering Reports
 – Investor Owned Water Utility reports filed to the CPUC

» Environmental benefits data was sourced completely from the CUWCC’s Environmental Benefits Model
The Water-Energy Calculator is designed to be simple to use.

» Users have the option to customize the analysis.

» A users guide is contained in the appendix of our final report.

» Note: Excel Macros must be enabled
Basic instructions and a legend can be found on the “Information” tab by scrolling down.

Cell formatting indicates where users can edit data.
“Inputs” tab: Section 1 contains basic inputs for the utility service territory being analyzed.

» Energy IOU selection determines which electric and natural gas avoided costs to use in the analysis

» Water utility type selection impacts the assumptions about the cost of capital
“Inputs” tab: Section 2 contains water efficiency measure details.

» Up to 20 measures can be analyzed at once. Key measure inputs include:
 - Annual Water Savings
 - Measure Life
 - Installation Year
 - Monthly Savings Profile (Customizable)
 - Hydrologic Region
 - Sector (Urban vs. Agriculture)
 - Water Use (Indoor vs. Outdoor)
 - Rebate
 - Costs (Installation, Incremental Equipment, Program Administration)

<table>
<thead>
<tr>
<th>Measure ID</th>
<th>Measure Name</th>
<th>Annual Water Savings (gallons)</th>
<th>Measure Life (years)</th>
<th>Installation Year</th>
<th>Savings Profile</th>
<th>Hydrologic Region</th>
<th>Sector</th>
<th>Water Use</th>
<th>Rebate ($)</th>
<th>Installation Cost ($)</th>
<th>Incremental Equipment Cost ($)</th>
<th>Program Administration Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Water savings profile can be customized on the “Water Svgs Profiles” tab.

<table>
<thead>
<tr>
<th>Month</th>
<th>Constant</th>
<th>Irrigation</th>
<th>Cooling Tower</th>
<th>Custom 1</th>
<th>Custom 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>8.3%</td>
<td>3.2%</td>
<td>3.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>February</td>
<td>8.3%</td>
<td>2.5%</td>
<td>3.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>March</td>
<td>8.3%</td>
<td>4.2%</td>
<td>3.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>April</td>
<td>8.3%</td>
<td>8.7%</td>
<td>8.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>May</td>
<td>8.3%</td>
<td>12.0%</td>
<td>12.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>June</td>
<td>8.3%</td>
<td>13.4%</td>
<td>11.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>July</td>
<td>8.3%</td>
<td>14.5%</td>
<td>10.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>August</td>
<td>8.3%</td>
<td>12.8%</td>
<td>13.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>September</td>
<td>8.3%</td>
<td>11.5%</td>
<td>13.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>October</td>
<td>8.3%</td>
<td>8.9%</td>
<td>10.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>November</td>
<td>8.3%</td>
<td>6.6%</td>
<td>7.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>December</td>
<td>8.3%</td>
<td>1.8%</td>
<td>3.0%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: CSA (2012)

ERROR: Values must add up to 100%
Once basic inputs in Section 1 and 2 are completed, the model can be run with its default assumptions; outputs can be viewed on the “Summary Outputs” tab.

Uses can also further customize the model, departing from the default inputs…
“Inputs” tab: Section 4 displays all default assumptions and allows the user to edit default inputs and settings.

» Marginal Water Supply

» Fraction of energy provided by energy IOUs

» Energy Intensity
 – Extraction and Conveyance
 – Treatment
 – Distribution
 – Wastewater Systems

» Historical (Average) Water Supply Mix

» Default values are displayed in the tool and can be overwritten by users.

» Default values can be restored by clicking on “Reset” buttons

» The sources and justification for selection of all default values can be found in the Draft Final Report (dated October 7, 2014)
Marginal Supply Override

» The default marginal water supply is selected to be Tertiary Treated Recycled Water

Optional Override Opportunities:

Marginal supply for each hydrologic region:

<table>
<thead>
<tr>
<th>Region</th>
<th>Supply Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC</td>
<td>Recycled Water</td>
</tr>
<tr>
<td>SF</td>
<td>Recycled Water</td>
</tr>
<tr>
<td>CC</td>
<td>Recycled Water</td>
</tr>
<tr>
<td>SC</td>
<td>Recycled Water</td>
</tr>
<tr>
<td>SR</td>
<td>Recycled Water</td>
</tr>
<tr>
<td>SJ</td>
<td>Recycled Water</td>
</tr>
<tr>
<td>TL</td>
<td>Recycled Water</td>
</tr>
<tr>
<td>NL</td>
<td>Recycled Water</td>
</tr>
<tr>
<td>SL</td>
<td>Recycled Water</td>
</tr>
<tr>
<td>CR</td>
<td>Recycled Water</td>
</tr>
</tbody>
</table>

Drop down boxes allow alternate selections for each HR
Not all water systems are powered by an IOU; thus, the energy IOUs may not be able to claim credit for all embedded energy savings.

Percentage IOU Energy Override

Users can simply type in a new value in any of these highlighted cells.

Important note: State Water Project, Central Valley Project, and Colorado River Aqueduct are not powered by IOU Energy.

Please Note:
Where override values may be entered for different supply types, Local Imported Deliveries, CRA, CVP and Other Federal Deliveries, and SWP have not been included because these supplies represent specific systems. Navigant Team researched these systems and this model uses their known values.
Extraction and Conveyance Energy Intensity Override

Not all water systems are powered by an IOU; thus, the energy IOUs may not be able claim credit for all embedded energy savings.

The denominator for energy intensity values provided should be the total system throughput, not just the throughput for the electric or gas portion of the system.

<table>
<thead>
<tr>
<th>Region</th>
<th>Electric Energy Intensity (kWh/AF)</th>
<th>Gas Energy Intensity (Th/AF)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Seawater Desal</td>
<td>Brackish Desal</td>
</tr>
<tr>
<td>NC</td>
<td>342</td>
<td>168</td>
</tr>
<tr>
<td>SF</td>
<td>342</td>
<td>342</td>
</tr>
<tr>
<td>CC</td>
<td>342</td>
<td>461</td>
</tr>
<tr>
<td>SC</td>
<td>342</td>
<td>566</td>
</tr>
<tr>
<td>SR</td>
<td>342</td>
<td>181</td>
</tr>
<tr>
<td>SJ</td>
<td>342</td>
<td>231</td>
</tr>
<tr>
<td>TL</td>
<td>342</td>
<td>389</td>
</tr>
<tr>
<td>NL</td>
<td>342</td>
<td>167</td>
</tr>
<tr>
<td>SL</td>
<td>342</td>
<td>352</td>
</tr>
<tr>
<td>CR</td>
<td>342</td>
<td>466</td>
</tr>
</tbody>
</table>

Default assumes no gas use, limited data was publically available to determine default values.
Treatment Energy Intensity Override

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Electric Energy Intensity (kWh/AF)</th>
<th>Gas Energy Intensity (Th/AF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional Treatment</td>
<td>443</td>
<td></td>
</tr>
<tr>
<td>Chlorination</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Membrane Treatment</td>
<td>1303</td>
<td></td>
</tr>
<tr>
<td>Conventional Tertiary Treatment</td>
<td>521</td>
<td></td>
</tr>
<tr>
<td>Brackish Desal</td>
<td>2715</td>
<td></td>
</tr>
<tr>
<td>Ocean Desal</td>
<td>4546</td>
<td></td>
</tr>
</tbody>
</table>

Which technology do you use for Recycled Water?

- Conventional Tertiary Treatment

Reset Recycled Water Treatment Technology Override
Distribution and Wastewater System Energy Intensity Overrides

Distribution

<table>
<thead>
<tr>
<th>Region</th>
<th>Electric Energy Intensity (kWh/AF)</th>
<th>Gas Energy Intensity (Th/AF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC</td>
<td>501</td>
<td></td>
</tr>
<tr>
<td>SF</td>
<td>977</td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>501</td>
<td></td>
</tr>
<tr>
<td>SC</td>
<td>501</td>
<td></td>
</tr>
<tr>
<td>SR</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>SJ</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>TL</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>NL</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>501</td>
<td></td>
</tr>
<tr>
<td>CR</td>
<td>54</td>
<td></td>
</tr>
</tbody>
</table>

Wastewater Systems

<table>
<thead>
<tr>
<th>Technology</th>
<th>Electric Energy Intensity (kWh/AF)</th>
<th>Gas Energy Intensity (Th/AF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Primary + Secondary"</td>
<td>1055</td>
<td></td>
</tr>
<tr>
<td>"Primary + Secondary + Tertiary"</td>
<td>2808.5</td>
<td></td>
</tr>
<tr>
<td>Wastewater Collection Pumps</td>
<td>228.5</td>
<td></td>
</tr>
</tbody>
</table>

Default assumes no gas use, limited data was publically available to determine default values.

Determines if wastewater treatment energy use is considered when analyzing outdoor water savings.

Does urban runoff enter your sewer system?
No

Reset Urban Runoff Override
Historical (Average) Supply Mix Overrides

- Used to estimate, measure, and evaluate embedded energy savings (kWh or therms)
- Better represents the actual energy savings that will occur today
- Must sum to 100%

<table>
<thead>
<tr>
<th>Region</th>
<th>Seawater Desal</th>
<th>Brackish Desal</th>
<th>Recycled Water</th>
<th>Groundwater</th>
<th>Local Deliveries</th>
<th>Local Imported Deliveries</th>
<th>CRA</th>
<th>CVP and Other Federal Deliveries</th>
<th>SWP</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC</td>
<td>0.0%</td>
<td>0.0%</td>
<td>20.4%</td>
<td>28.8%</td>
<td>27.7%</td>
<td>1.5%</td>
<td>0.0%</td>
<td>21.5%</td>
<td>0.0%</td>
</tr>
<tr>
<td>SF</td>
<td>0.1%</td>
<td>0.3%</td>
<td>3.2%</td>
<td>19.1%</td>
<td>14.9%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>12.2%</td>
<td>12.2%</td>
</tr>
<tr>
<td>CC</td>
<td>0.0%</td>
<td>0.0%</td>
<td>8.3%</td>
<td>79.1%</td>
<td>2.5%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>7.5%</td>
<td>2.7%</td>
</tr>
<tr>
<td>SC</td>
<td>0.0%</td>
<td>1.7%</td>
<td>10.0%</td>
<td>31.0%</td>
<td>3.7%</td>
<td>5.1%</td>
<td>21.1%</td>
<td>0.2%</td>
<td>27.2%</td>
</tr>
<tr>
<td>SR</td>
<td>0.0%</td>
<td>0.0%</td>
<td>20.2%</td>
<td>19.8%</td>
<td>31.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>28.8%</td>
<td>0.2%</td>
</tr>
<tr>
<td>SJ</td>
<td>0.0%</td>
<td>0.0%</td>
<td>23.3%</td>
<td>31.0%</td>
<td>29.1%</td>
<td>0.1%</td>
<td>0.0%</td>
<td>16.4%</td>
<td>0.2%</td>
</tr>
<tr>
<td>TL</td>
<td>0.0%</td>
<td>0.0%</td>
<td>11.6%</td>
<td>49.6%</td>
<td>16.2%</td>
<td>0.1%</td>
<td>0.0%</td>
<td>15.0%</td>
<td>7.6%</td>
</tr>
<tr>
<td>NL</td>
<td>0.0%</td>
<td>0.0%</td>
<td>34.1%</td>
<td>22.0%</td>
<td>43.9%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>SL</td>
<td>0.0%</td>
<td>0.0%</td>
<td>15.5%</td>
<td>63.7%</td>
<td>6.7%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>78.6%</td>
<td>0.0%</td>
</tr>
<tr>
<td>CR</td>
<td>0.0%</td>
<td>0.0%</td>
<td>11.0%</td>
<td>8.9%</td>
<td>0.1%</td>
<td>0.0%</td>
<td>78.6%</td>
<td>14.1%</td>
<td>1.4%</td>
</tr>
</tbody>
</table>
Avoided Capacity Costs are calculated in a separate model and imported to the water-energy calculator.

- Calculated for each marginal supply option as well as treatment and wastewater treatment under an IOU and non-IOU cost of capital structure.
- Details can be found in the final report.
Craig McDonald, Director-in-Charge
Navigant - Managing Director
Boulder, CO
303.728.2461
cmcdonald@navigant.com

Amul Sathe, Project Manager
Navigant - Associate Director
San Francisco, CA
415.399.2180
Amul.sathe@navigant.com

Ralph Zarumba
Navigant - Director
Chicago, IL
312.583.4167
ralph.zarumba@navigant.com

Lorraine White
GEI Consultants, Inc. - Water-Energy Program Manager
Rancho Cordova, CA
916.631.4540
lwhite@geiconsultants.com