Reliability Analysis for IRP Planning Reserve Margin (PRM)

July 19, 2022

PG&E Reliability Analysis for IRP Draft PRM Results and Key Takeaways

PG&E PRM vs. Energy Division (ED) PRM to achieve a 0.1 Loss of Load Expectation (LOLE)

	PG&E's Draft Results	ED's Draft Results	Delta
PRM	13%	14%	1%

- **1.** PG&E supports ED's proposed PRM methodology changes:
 - a) PRM based on gross peak. Behind-the-Meter Photovoltaic (BTM PV) treated as a resource
 - b) PRM based on perfect capacity modeling
- 2. PG&E's PRM results largely aligned with ED's
 - a) For 2030 IRP benchmarking, ED's 1% higher PRM would result in ~600 MW of incremental CAISO perfect capacity need
- 3. Resource accreditation will be critical in ensuring an appropriate reliability framework

PG&E Reliability Analysis for IRP PG&E's Strategic Energy & Risk Valuation Model (SERVM) Model

- ED's 2020 Reference System Plan (RSP) SERVM model used as a starting point
- RSP SERVM model modified with the following major updates:
 - Resource Portfolio matches 2022 Preferred System Plan (PSP), inclusive of North/South split
 - Load, Solar and Wind profiles
 - Added recent year (2018, 2019, 2020, 2021) weather data
 - Calibrated load duration curve to 2021 Integrated Energy Policy Report (IEPR) or the Interagency Working Group (IAWG) High-Electrification forecast
 - Calibrated solar and wind profiles using historical production data
 - CAISO Imports
 - Net-imports limited to 4,000 MW during Months 6-9, hours ending (HE) 17-22 & ramp down constraint between Maximum Import Capability (MIC) and 4,000 MW limit
 - Approximates rest of Western Electricity Coordinating Council (WECC) regions at 0.1 LOLE
 - Net import allocation to North and South calibrated to 2020
 - Storage forced and planned outages & constraints adjusted to match ED's 2021 PSP Update
 - Storage outage rate assumptions: 5% average outage rate to all storage categories (batteries, both paired and standalone, BTM batteries).
 - Pumped storage calibrated to historical outages embedded.
 - Battery discharge constraint (non-binding during unserved energy events): 90% discharge cap to batteries, both paired and stand-alone (but not pumped storage hydro)
- Updated hydro de-rates, and increased operating reserve requirement from 4.5% to 6% (regional requirement and based on managed load)

PG&E Reliability Analysis for IRP PSP Scenarios Analyzed

In addition to analyzing aPRM requirement using the 2021 IEPR AAEE Scenario 3 – AAFS Scenario 3 Forecast, PG&E's study included scenario analysis for different load forecasts

Year	#	Forecast and Study Year Scenarios	PRM Calculation	Resource Accreditation for PRM
	1	2021 IEPR Additional Achievable Energy Efficiency (AAEE) Scenario 3 – Additional Achievable Fuel Substitution (AAFS) Scenario 3	x	x
2030	2	2021 Inter-Agency Working Group (IAWG) High Electrification	х	
	3	2021 IEPR AAEE Scenario 3 – AAFS Scenario 3 & High EV	х	
2035	4	2021 IEPR AAEE Scenario 3 – AAFS Scenario 3	х	x

$PRM = \frac{Perfect Capacity Needed to Acheive a 0.1 LOLE}{Gross Peak (sales-load modifiers+BTM PV)} - 1$

In 2030, using the IEPR load forecast, ED's draft PRM would result in ~580 MW of incremental perfect capacity at the CAISO-level

2030 PRM Estimation for 2021 IEPR AAEE Scenario 3 – AAFS Scenario 3

	PG&E's Draft Results	ED's Draft Results	Delta
Perfect Capacity Needed to Achieve a 0.1 LOLE (MW)	65,499	66,079	580
CAISO Gross Peak	57,964	57,964	
PRM	13%	14%	1%

PRM =
$$\frac{65,499}{57,964}$$
 - 1 = 13% **PRM** = $\frac{66,079}{57,964}$ - 1 = 14%

PG&E Reliability Analysis for IRP Loss of Load Expectation (*LOLE*) Results

The PSP portfolio includes sufficient capacity to achieve a 0.1 LOLE across different load forecast scenarios

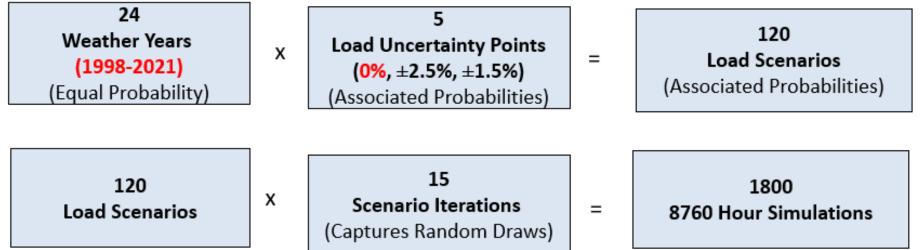
PG&E Draft PSP LOLE Results

	PSP w/2021 IEPR A AAFS Sce		PSP w/IAWG High Electrification	
Metric	2030	2035	2030	2035
Found LOLE	0.02	0.003	0.02	0.07
Thermal Capacity Removed to Achieve 0.1 LOLE	(~2,700)	(~4,200)	(~2,100)	(~950)

Appendix

PG&E Reliability Analysis for IRP Key Modeling Assumptions

ED's 1% higher PRM is largely driven by a more conservative operating reserve requirement and the weather years modeled


	ED PSP Model	PG&E Model	More Conservative PRM Assumption
Supply Resources	PSP Portfolio	$_{\odot}~$ PSP Portfolio $_{\odot}~$ Capacity split North and South based on PSP ratio	N/A
Weather Years	1998-2020	1998-2021	CPUC
Net-Import Constraints	Net-imports limited to 4,000 MW during Months 6-9, hours ending 17-22 & ramp down constraint between MIC and 4,000 MW limit	 Net-imports limited to 4,000 MW during Months 6- 9, hours ending 17-22 & ramp down constraint between MIC and 4,000 MW limit Net-import allocation split between North & South based on the 2020 historical data 	N/A
Load Forecast	IEPR 2021 Scenario 3 – AAFS Scenario 3	 IEPR 2021 Scenario 3 – AAFS Scenario 3 + High EV IAWG High Electrification IEPR 2021 IEPR Scenario 3 – AAFS Scenario 3 	N/A
Forced Outages	NERC GADS Outage Database	Calibrated to August 2020 Resource Outage Rate	N/A
Operating Reserves Requirement	6% on Gross Load – Regional Requirement	~5.5% on Gross Load to replicate 6% on Managed Load – Regional Requirement	CPUC
Renewable and Hydro Profiles	N/A	2020 RSP profiles calibrated to historical CAISO data	N/A
Storage Assumptions and Constraints	 5% average outage rate to all storage categories (batteries, both paired and stand-alone, BTM batteries, PSH). Battery discharge constraint (non-binding during unserved energy events): 90% discharge cap to batteries, both paired and stand-alone (but not PSH) 	 5% average outage rate to all storage categories (batteries, both paired and stand-alone, BTM batteries). PSH calibrated to historical – outages embedded. 90% discharge cap to batteries, both paired and stand-alone (but not PSH, non-binding during reliability events) 	N/A

Reliability Analysis for IRP PRM SERVM Stochastic Framework to Capture Uncertainty

- The LOLE for a given study year is based on a weighted average of the LOLE from all associated simulated 8760 scenarios
- The weather years modeled, and the underlying load forecast for the weather years will have the greatest impact on the LOLE results and subsequent PRM
- PG&E organized its reliability study to ensure an appropriate PRM was informed by different potential load forecasts and study years

SERVM Iterations for a single study year

