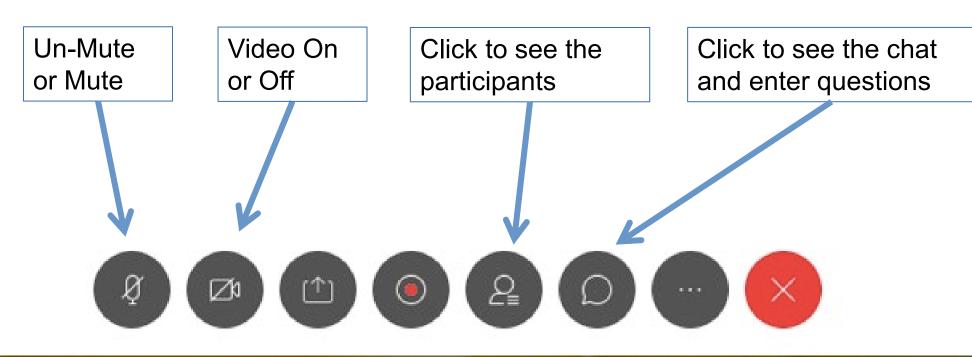
# Water-Energy Nexus Draft Calculator 2.0 Stakeholder Webinar


October 8, 2021, 2 – 3 p.m. PDT

Travis Holtby – CPUC Heather Cooley – Pacific Institute Jeff Sage-Lauck – SBW Consulting






# **Webex Participant Guide**



If your <u>video is</u>
on, you will see
this box appear
showing the video
feed.





Gray means "on" (Not Muted, Sharing Video)

Link to: Cisco Webex Participant
Guide



Red means "off" (Muted, Not Sharing Video)

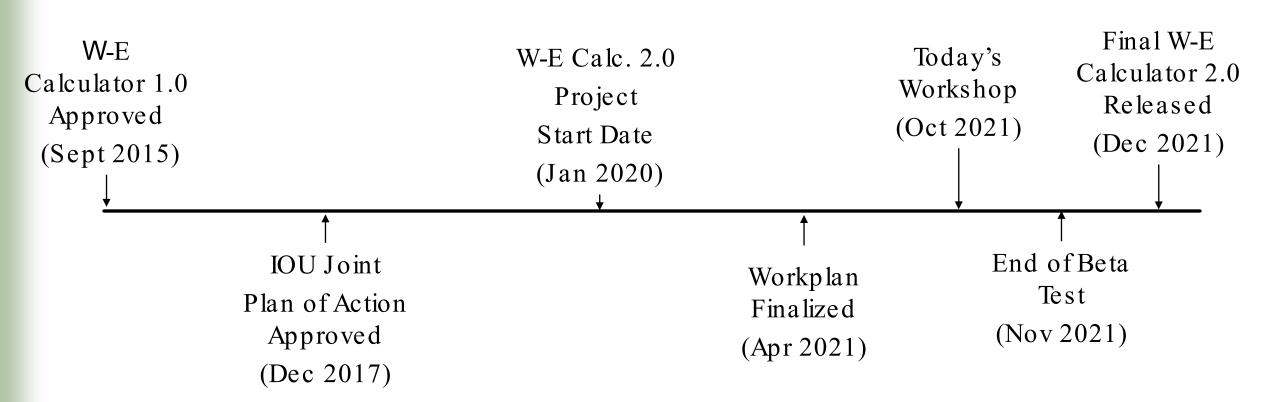
# **Project Team**

Heather Cooley, Pacific Institute Project Lead

<u>CPUC Staff</u> Travis Holtby Pacific Institute Team
Sonali Abraham
Sarah Diringer
Morgan Shimabuku

SBW Consulting
Team
Bing Tso
Jeff Sage-Lauck

- Project Goals, Objectives, Deliverables, and Timeline
- Water-Energy (W-E) Calculator Background
- W-E Calculator 2.0: Key Enhancements
- W-E Calculator 2.0: Demonstration
- Integration with other CPUC Tools: Near and Long Term
- Next Steps: Beta Test the W-E Calculator 2.0 and Guidance Manual

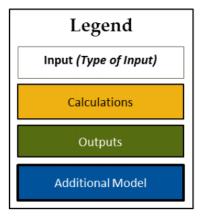

# **Project Goals and Objectives**

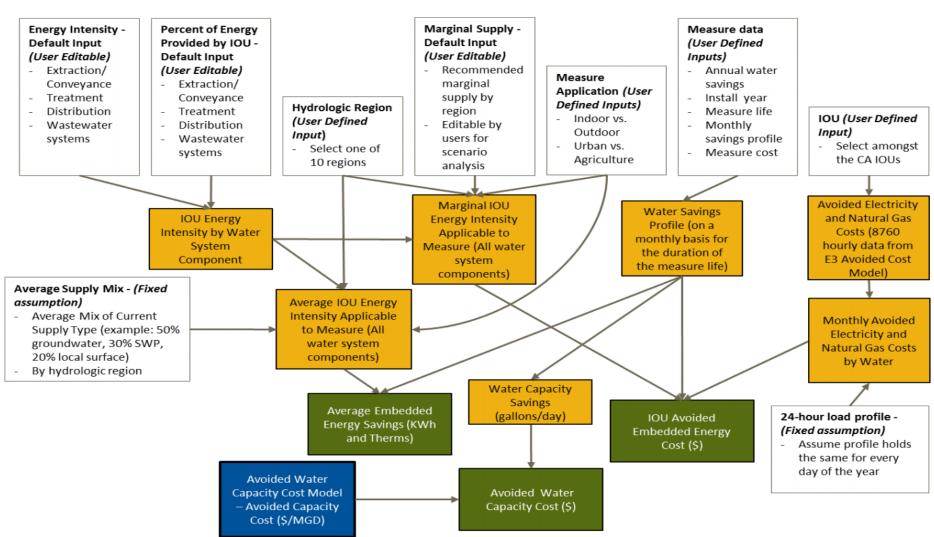
- The goal of the project is to develop a new, simpler Water-Energy Calculator (W-E Calculator 2.0).
- In support of this goal, there are three primary objectives:
  - 1. Engage stakeholders to identify key issues and concerns to inform changes to the W-E Calculator;
  - 2. Revise the W-E Calculator, in accordance with Decision 17-12-010, the Water Energy Joint Utility Plan of Action, and input received from stakeholders; and
  - 3. Provide readable and accessible documentation for the W-E Calculator 2.0, along with a help desk and recorded training session.

# **Project Deliverables**

- **1. W-E Calculator 2.0 Workplan:** The workplan was presented in March 2021 and finalized in April 2021.
- 2. W-E Calculator 2.0: A new, improved, and simpler W-E Calculator to estimate the embedded-energy savings of water conservation activities.
- **3. Guidance manual for W-E Calculator 2.0:** The guidance manual for using the W-E Calculator 2.0 and recorded training sessions.
- **4. Project report:** The final report documenting the process for developing the revised W-E Calculator.

# **Project Timeline**





- Project Goals, Objectives, Deliverables, and Timeline
- Water-Energy (W-E) Calculator Background
- W-E Calculator 2.0: Key Enhancements
- W-E Calculator 2.0: Demonstration
- Integration with other CPUC Tools: Near and Long Term
- Next Steps: Beta Test the W-E Calculator 2.0 and Guidance Manual

# Water-Energy (W-E) Calculator Background

- In 2015, the CPUC adopted two water-energy tools:
- Avoided Water Capacity Cost Model (Water Tool)
  - avoided capacity cost of water (in \$/MGD).
- Water-Energy Calculator (W-E Calculator)
  - average embedded energy savings of water-efficiency programs (in kWh and therms),
  - IOU avoided embedded-energy cost (in \$); and
  - avoided water capacity cost (in \$).

#### W-E Calculator 1.0 Schematic



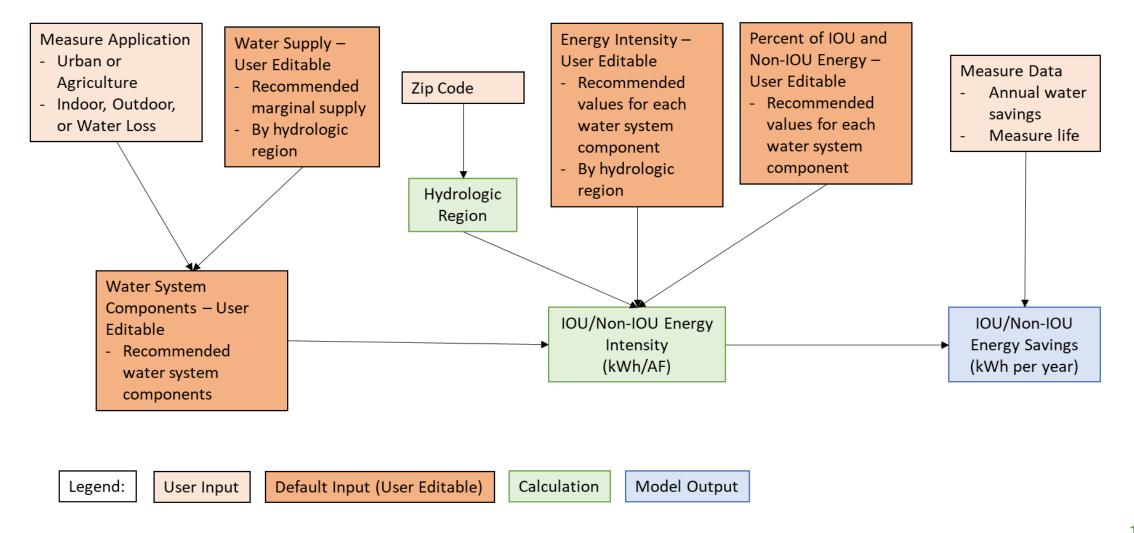


- Project Goals, Objectives, Deliverables, and Timeline
- Water-Energy (W-E) Calculator Background
- W-E Calculator 2.0: Key Enhancements
- W-E Calculator 2.0: Demonstration
- Integration with other CPUC Tools: Near and Long Term
- Next Steps: Beta Test the W-E Calculator 2.0 and Guidance Manual

# **Key Enhancements of the W-E Calculator 2.0**

- Removed the cost-effectiveness analyses (focused on embedded energy estimate, in kWh)
- Added simple menu to select water system components and energy intensity values
- Updated the model default energy intensity values
- Added a look-up table to select the appropriate hydrologic region for the project using installation zip code
- Provided an easier way to adjust the resource balance year

# **Regional Analysis**


- The regional unit of interest is the hydrologic region.
- W-E Calculator 2.0 uses zip code to assign the measure to a hydrologic region.
- The zip code is assigned to the hydrologic region representing the largest areal extent (i.e., majority rules).



#### Resource Balance Year

- Default for Resource Balance Year (RBY) is 2016, consistent with CPUC directive D. 15-09-023, but the default can be overridden by the user.
- Prior to the RBY, the calculator uses the historical water-supply mix to calculate an "historical" embedded-energy savings.
- In the RBY and beyond, the calculator uses the marginal water supply to calculate a "marginal" embedded-energy savings.
- If some water savings occur prior to the RBY and some after the RBY, then the model estimates the annualized embedded-energy savings.

#### W-E Calculator 2.0 Schematic



- Project Goals, Objectives, Deliverables, and Timeline
- Water-Energy (W-E) Calculator Background
- W-E Calculator 2.0: Key Enhancements
- W-E Calculator 2.0: Demonstration
- Integration with other CPUC Tools: Near and Long Term
- Next Steps: Beta Test the W-E Calculator 2.0 and Guidance Manual

# Water-Energy Calculator 2.0: Demonstration

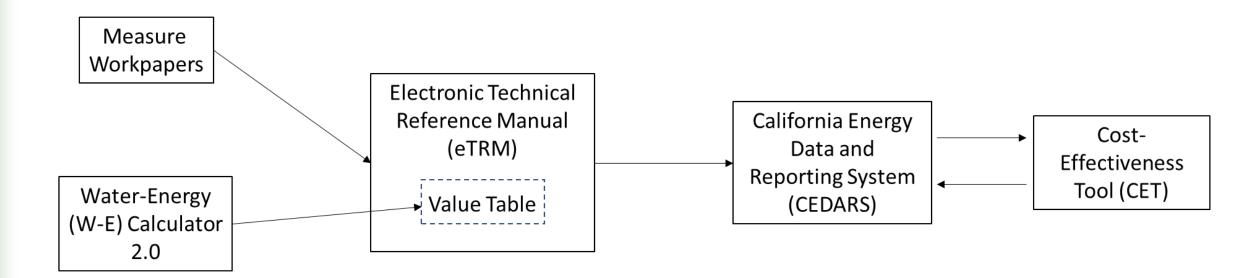
### **Example Measures**

- Low-flow showerheads installed in a hotel in San Francisco
  - Marginal supply: non-potable recycled water
  - Two scenarios for Resource Balance Year
    - Default of 2016
    - User override of 2026
- Drip irrigation system installed outside of Fresno
  - Marginal supply: non-potable recycled water
- Repair of distribution system leaks in San Diego
  - Marginal supply: desalinated seawater

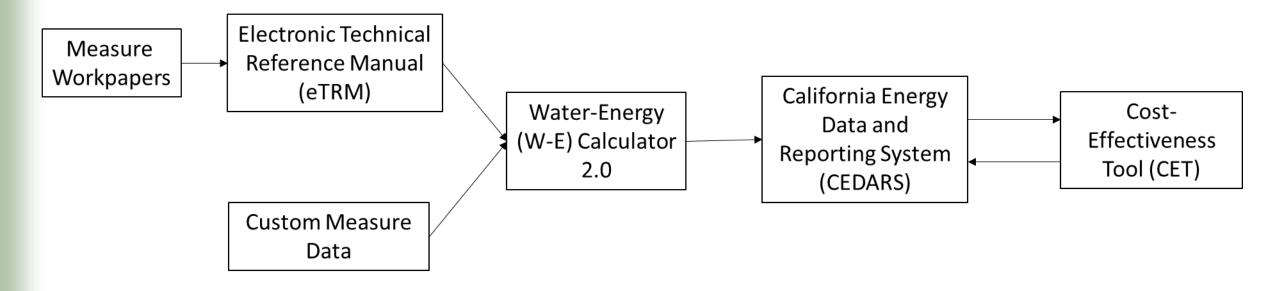
# Embedded Energy Savings: New Model vs Old Model

Comparison of Examples

|                     |      | Hydrologic        |        | Measure      | Annual Water<br>Savings | Annual IOU Embedded<br>Energy Savings (kWh) |             | %          |
|---------------------|------|-------------------|--------|--------------|-------------------------|---------------------------------------------|-------------|------------|
| Example             | RBY  | Region            | Sector | Туре         | (gallons)               | WE Calc 1.0                                 | WE Calc 2.0 | Difference |
| Showerheads         | 2016 | San Francisco Bay | Urban  | Indoor       | 2,979                   | 8.1                                         | 16.2        | 101%       |
| Showerheads         | 2026 | San Francisco Bay | Urban  | Indoor       | 2,979                   | 8.1                                         | 14.0        | 73%        |
| Drip Irrigation     | 2016 | San Joaquin       | Ag     | Outdoor      | 10,000                  | 5.4                                         | 21.3        | 295%       |
| Repair System Leaks | 2016 | South Coast       | Urban  | System Leaks | 80,000                  | 108.0                                       | 1098.9      | 918%       |


Average difference across all hydrologic regions and measures

| Sector           | Measure Type   | Average Difference |  |
|------------------|----------------|--------------------|--|
| Urban            | Indoor         | 142%               |  |
| Urban            | Outdoor        | 226%               |  |
| Ag               | Indoor/Outdoor | 245%               |  |
| Overall Differen | 183%           |                    |  |


Note: after the 10/8 webinar, these values were updated using a more accurate calculation. The underlying data has not changed.

- Project Goals, Objectives, Deliverables, and Timeline
- Water-Energy (W-E) Calculator Background
- W-E Calculator 2.0: Key Enhancements
- W-E Calculator 2.0: Demonstration
- Integration with other CPUC Tools: Near and Long Term
- Next Steps: Beta Test the W-E Calculator 2.0 and Guidance Manual

# **Integration with Other CPUC Tools: Near Term**



# **Integration with Other CPUC Tools: Long Term**



- Project Goals, Objectives, Deliverables, and Timeline
- Water-Energy (W-E) Calculator Background
- W-E Calculator 2.0: Key Enhancements
- W-E Calculator 2.0: Demonstration
- Integration with other CPUC Tools: Near and Long Term
- Next Steps: Beta Test the W-E Calculator 2.0 and Guidance Manual

# Next Steps: Beta Test the W-E Calculator 2.0 and Guidance Manual

The draft calculator is available for review and comment through <u>November 5<sup>th</sup></u>. Please emails all comments to Travis, Heather, and Jeff.

The draft calculator and guide (and soon a recording of the demo) are available at the CPUC's website:

https://www.cpuc.ca.gov/nexus\_calculator/

We will also offer a Help Desk during the comment period. For assistance, please e-mail Jeff Sage-Lauck (<u>jsagelauck@sbwconsulting.com</u>) and Heather Cooley (<u>hcooley@pacinst.org</u>).

# **Key Contacts**

Heather Cooley (Project Lead)
Director of Research, Pacific Institute
<a href="mailto:hcooley@pacinst.org">hcooley@pacinst.org</a>

Sonali Abraham, D. Env Research Associate, Pacific Institute <a href="mailto:sabraham@pacinst.org">sabraham@pacinst.org</a>

Morgan Shimabuku Research Associate, Pacific Institute mshimabuku@pacinst.org Bing Tso
President, SBW Consulting, Inc.
<a href="mailto:btso@sbwconsulting.com">btso@sbwconsulting.com</a>

Jeff Sage-Lauck Engineer/Analyst, SBW Consulting, Inc. <u>jsagelauck@sbwconsulting.com</u>

Travis Holtby
EE Planning and Forecasting, CPUC
travis.holtby@cpuc.ca.gov

# **Questions?**



# California Public Utilities Commission