

Potential Energy Division Staff Proposal: Adoption of Simplified ELCC Methodology

November 8, 2015 Resource Adequacy and Procurement Oversight

California Public Utilities Commission

D.16-06-045 Did Not Adopt ELCC

- Noted concern that the "dramatic increase in the capacity value of wind and solar resources in the off-peak (winter) months relative to the current exceedance values may negatively affect reliability in those months."
- Decision also noted that "SCE's proposed NLP-ELCC, or similar approach may be a viable solution to this challenge and merits further consideration. Alternatively, some of the simplified ELCC methods suggested by CalWEA may be appropriate."

Recap: ED Proposed Combining Tech Factors and ELCC Over Time

	2016 Technology Factors	ELCC	2016 Technology Factors	ELCC
January	3.80%	12.6%	0.24%	57.8%
February	11.98%	12.6%	1.26%	57.8%
March	19.86%	12.6%	6.26%	57.8%
April	18.43%	12.6%	71.68%	57.8%
May	31.05%	12.6%	73.97%	57.8%
June	27.77%	12.6%	75.67%	57.8%
July	17.29%	12.6%	69.10%	57.8%
August	15.72%	12.6%	69.24%	57.8%
September	10.68%	12.6%	70.45%	57.8%
October	7.26%	12.6%	55.59%	57.8%
November	3.23%	12.6%	0.14%	57.8%
December	5.55%	12.6%	0.11%	57.8%

Technology Factors Dependent on Assessment Hours

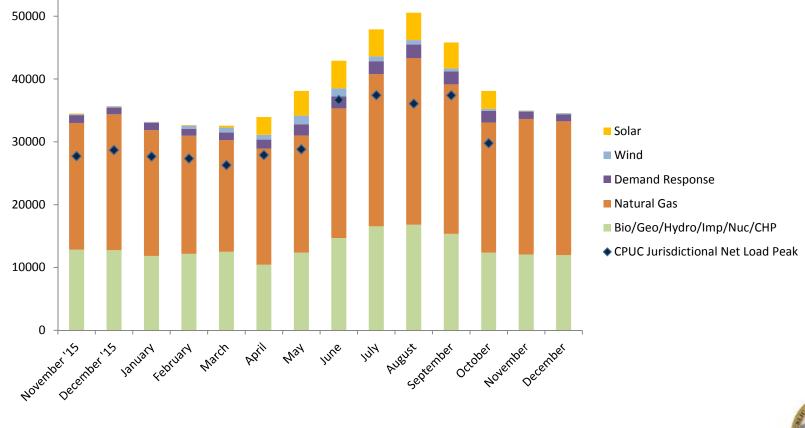
- > Assessment Hours, April October:
 - HE14-HE18
 - 1:00 pm 6:00 pm
- Assessment Hours, January March and November & December
 - HE17-21
 - 4:00 pm 9:00 pm
- Assessment hours determined based peak load hours

Overview of ED's Current Work

- One of the main obstacles to adoption of ELCC appears to be fitting it into the CA monthly RA framework (many jurisdictions have annual RA programs).
- ED staff are currently working on monthly ELCC values, but the approaches are novel.
- If modeling solution to monthly ELCC values lacks consensus, is it possible to adopt some hybrid approach? Would such an approach address potential reliability concerns that have been raised?

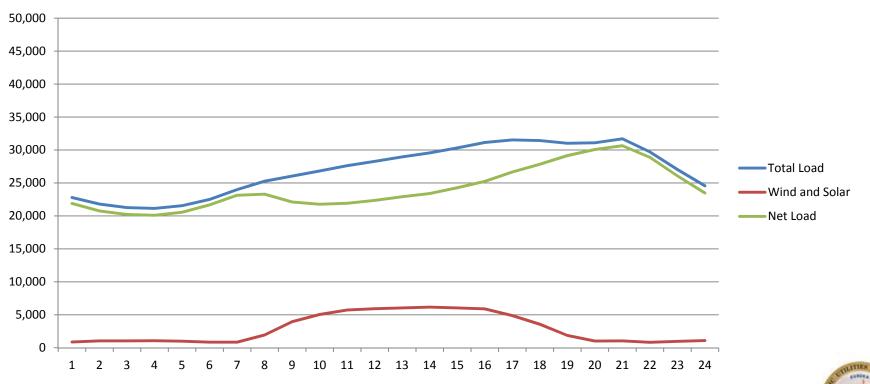
One Possible Proposal, Cap ELCC at Exceedance

	Wind		Solar	
	2016		2016	
	Technology	ELCC Capped at	Technology E	LCC Capped at
	Factors	Exceedance	Factors	Exceedance
January	3.80%	3.8%	0.24%	0.2%
February	11.98%	12.0%	1.26%	1.3%
March	19.86%	12.6%	6.26%	6.3%
April	18.43%	12.6%	71.68%	57.8%
May	31.05%	12.6%	73.97%	57.8%
June	27.77%	12.6%	75.67%	57.8%
July	17.29%	12.6%	69.10%	57.8%
August	15.72%	12.6%	69.24%	57.8%
September	10.68%	12.6%	70.45%	57.8%
October	7.26%	7.3%	55.59%	55.6%
November	3.23%	3.2%	0.14%	0.1%
December	5.55%	5.6%	0.11%	0.1%


Cap ELCC at Exceedance

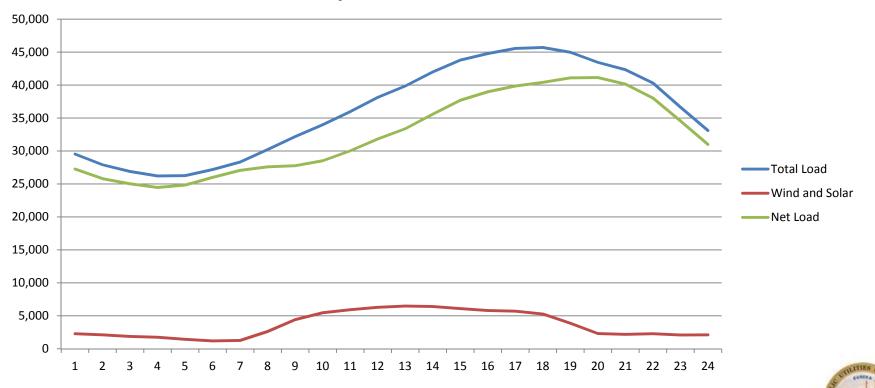
- Allow for adoption of ELCC for a portion of the year (primarily the summer months).
- Address potential reliability concerns for the winter that were raised by parties.
- Ensures that there is not over-reliance on wind and solar in off-peak (winter) periods.

How Much Do We Rely on Wind and Solar for RA?


Calculating the Maximum Net Load Curve

- Used OASIS data -- this is hourly and not nearly as accurate as EMS data, but accessible and easy to use.
- Used ISO hourly actual load less hourly actual wind and solar to determine net load.
- Using this data, located the maximum net load for each month for CAISO and applied August load ratio share – could use monthly load ratio share.
- Possible that you can meet maximum net load due to weather; further analysis might require forward looking planning assumptions (if SCE's methodology were to be used)

Illustrative Example of Max. Net Load Curve (April)


CAISO: April 19, 2016, Load and Net Load

Illustrative Example of Max. Net Load Curve (July)

CAISO: July 26, 2016, Load and Net Load

Follow-Up Discussion

- Potential Alternatives:
 - ELCC, annual value
 - ELCC, monthly value
 - ELCC, capped at exceedance (possibly ED)
 - ELCC, capped at NLP-ELCC (SCE)
- Questions:
 - Is it worthwhile to develop a hybrid approaches (capped at exceedance, capped at contribution to moving peak, other method?)
 - Should one be using historical data or forecast data, hourly or minute-by minute, what level of granularity is needed?
 - Do parties see the need for a working group on potential hybrid approaches?

