

Calpine/E3 ELCC Proposal: Overview and Answers to Stakeholder Questions

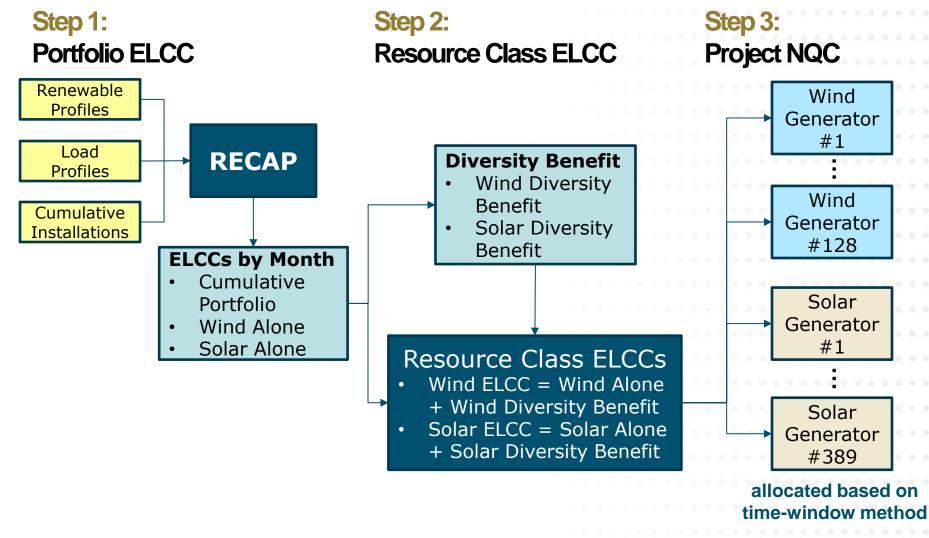
CPUC Workshop February 14, 2017

> Zach Ming, Sr. Consultant Gerrit DeMoor, Sr. Associate Arne Olson, Partner

 Calpine contracted with E3 to help investigate methods for calculating Net Qualifying Capacity (NQC) values for renewable projects in California using an Effective Load Carrying Capability (ELCC) approach

- As California moves toward a 50% RPS, it will be important to ensure that the RA program is accurately valuing the contribution of renewable resources to meeting system reliability needs
- ELCC is emerging as the industry standard method for calculating the capacity contribution of renewable energy resources
- E3's investigation has found that California's current exceedance methodology is increasingly inaccurate at high levels of renewable penetration

 Calpine and E3 have developed a joint proposal for calculating project-specific NQC values using ELCC


(\mathbf{F})	Criteria for a Successful ELCC Calculation Method
	Calculation Method

+ E3 and Calpine developed the following five criteria for a successful ELCC calculation method:

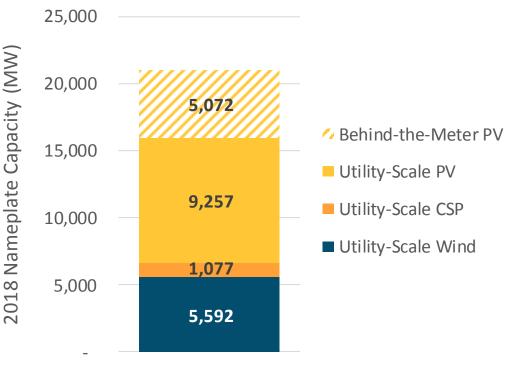
- 1. Ensure system reliability by accurately valuing the renewable portfolio
- 2. Send appropriate signals to inform future procurement
- 3. Send appropriate signals to reward project performance
- 4. Allocate ELCC to specific resources in an equitable manner
- Process should be tractable and computationally manageable

 We designed our proposal to strike an appropriate balance among these five goals

Process Flow Diagram for Calpine/E3 Proposal

2018 Vintage ELCC

	Wind ELCC (MW)	Solar ELCC (MW)	Wind ELCC (%)	Solar ELCC (%)
Jan	853	-2	15%	0%
Feb	1,023	167	18%	1%
Mar	585	998	10%	6%
Apr	934	5,303	17%	34%
May	1,271	5,808	23%	38%
Jun	1,393	6,933	25%	45%
Jul	1,218	7,201	22%	47%
Aug	805	6,562	14%	43%
Sep	519	5,631	9%	37%
Oct	542	4,221	10%	27%
Nov	492	481	9%	3%
Dec	784	2	14%	0%



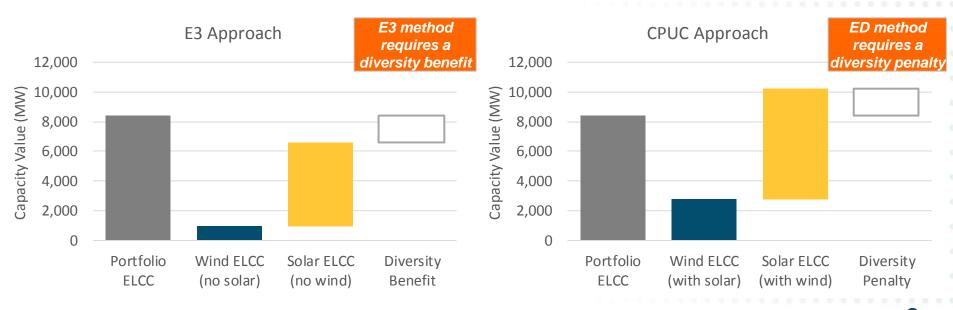
- Using RECAP results, monthly target LOLE does not substantially affect ELCC across a reasonable range of LOLE
- Calpine/E3 are open to alternative approaches to developing monthly LOLE targets

Monthly ELCC (MW) by Annualized LOLE (hrs/yr)										
LOLE (hrs/yr)	0.1	0.5	1	2.4	10					
All Months (MW)	6,350	6,953	7,187	7,374	7,525					
Jan (MW)	744	789	814	852	923					
Feb (MW)	1,043	1,124	1,155	1,190	1,263					
Mar (MW)	1,511	1,541	1,558	1,583	1,644					
Apr (MW)	5,086	5,440	5,746	6,237	5,609					
May (MW)	6,694	6,961	7,059	7,079	7,210					
Jun (MW)	7,971	8,196	8,259	8,326	8,262					
Jul (MW)	7,660	7,932	8,136	8,420	8,499					
Aug (MW)	6,640	6,955	7,123	7,367	7,758					
Sep (MW)	5,321	5,668	5,864	6,150	6,452					
Oct (MW)	4,046	4,274	4,535	4,764	4,794					
Nov (MW)	1,017	1,001	991	972	934					
Dec (MW)	704	824	837	786	798					



- BTM solar must be modeled as a resource to accurately determine its contribution to meeting RA needs
- Unless RA rules and load forecasting protocols are changed, BTM solar will continue to "count" toward RA requirements through its impact on load forecasts
- Calpine/E3 proposal subtracts implicit impact of BTM solar on RA requirements from the Solar Resource Class ELCC between Steps 2 and 3
 - Remaining Solar ELCC allocated to supply-side projects

- Calpine/E3 do not support a transition period to ELCC based NQC values
- Outputs from ED and Calpine/E3 suggest renewable resources are being overcounted toward RA by ~2,500 MW
 - Implies a >5% reduction in PRM assuming an annual peak load of 45,000 MW in 2018
- + This overcounting implies a near-term reliability risk to California
- + A transition may also impact future reliability by undermining the near-term economics of resources that will be needed once ELCC is fully implemented

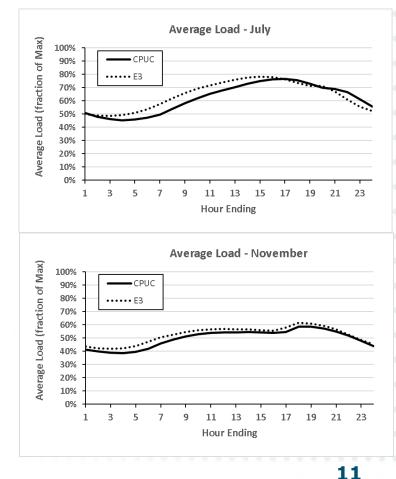


- Calpine/E3 methodology calculates wind and solar ELCCs assuming <u>no</u> other renewables on the system
 - This method requires the calculation of a diversity benefit, which is the Portfolio ELCC minus the sum of the independent wind and solar ELCCs

 Current ED methodology calculates wind and solar ELCCs assuming the other renewables <u>are</u> on the system

> This method requires the calculation of a diversity penalty, which is the sum of the independent wind and solar ELCCs minus the Portfolio ELCC

Calpine/E3 proposal suggests calculating marginal ELCC values for new resources starting in 2019


- This important to accurately signal the incremental value of new wind and solar resources
- Does NOT affect Portfolio ELCC or system reliability, only the allocation of ELCC to different vintages of resources
- Not proposing to implement for the 2018 RA Year

Month	Wind Alone (MW)	Solar Alone (MW)	Portfolio ELCC (MW)	Diversity Benefit (MW)	$\left(\frac{209}{x 4 + 209}\right) = 21$
	[1]	[2]	[3]	[4] = [3]–[2]-[1]	209 + 223
Jan	50	0	51	1	nam
Feb	47	15	62	1	nam
Mar	38	3	40	0	
Apr	133	101	237	3	
May	159	97	258	2	
Jun	193	200	400	7	$\frac{1}{222}$ x 4 + 223 = 22
Jul	223	209	436	4	209 + 223
Aug	167	157	328	4	45
	-			•	na

x 4 + 209 =	Solar ELCC 211 MW		
	11% of increm nameplate so		
x 4 + 223 =	Wind ELCC 225 MW		
	45% of incre nameplate w	10	

Differences Between Calpine/E3 and ED ELCC Estimates

- Calpine/E3 and ED renewable profiles are aligned (both are in standard time year round)
- Adjusting ED load profiles by an hour during DST (to put into standard time) partially closes the gap between Calpine/E3 and ED estimates
- + Other unresolved load shape issues that we recommend investigating jointly with ED
 - ED profiles appear to be slightly peakier than Calpine/E3 profiles

Calpine/E3 used RECAP Model to perform ELCC calculations

+ RECAP has been used in a number of CPUC proceedings

- Formally adopted for calculating the capacity contribution of energy efficiency and demand response programs*
- Also used in the RPS Calculator, LTPP, Net Energy Metering cost shift evaluation, CSI cost-effectiveness assessment
- RECAP version used in this analysis available for download: <u>https://ethree.sharefile.com/d-s379bf15c80e496f9</u>

 Current version uses load & resource profiles developed by E3, however ED's profiles could be substituted in RECAP

Calculations could be performed by E3 or ED staff

+ Alternatively, the Calpine/E3 method could be implemented in SERVM

Scorecard for Calpine/E3 Proposal

Criterion	Comments
Ensure system reliability by accurately valuing the renewable portfolio	 Project ELCC values sum to the Portfolio ELCC for each month
Send appropriate signals to inform future procurement	 ✓ Each new Vintage receives a Marginal ELCC ✓ E.g., ELCC for new solar is 11%, compared to 47% for existing solar
Send appropriate signals to reward project performance	 Project ELCCs are calculated based on actual production data
Allocate ELCC to specific resources in an equitable manner	 ✓ ELCC values for existing projects are protected from degradation due to vintaging of future projects ✓ Existing projects grouped with 2018 Vintage to reflect expectations at time of contracting
Process should be tractable and computationally manageable	 ✓ ELCC calculations are needed only for the Portfolio and Resource Class (three values per Vintage per month) ✓ Could be calculated with RECAP or SERVM

APPENDIX

- Portfolio ELCC is the true contribution to system reliability; Project ELCCs must sum to this value
- Since the RA program calculates capacity values by month, our ELCC calculations are also by month
- Using two resource classes strikes an appropriate balance between accuracy (capturing interactive effects) and simplicity (keeping the process computationally manageable)
- + Individual Project ELCCs are also calculated

Term	Explanation
Portfolio ELCC	The combined ELCC of the portfolio taking into account all renewables on the system. This is the true contribution to system reliability.
Resource Class ELCC	The ELCC that is attributed to a Resource Class. The Calpine/E3 proposal uses two Resource Classes: Wind and Solar.
Project ELCC	The ELCC value that is attributed to a specific renewable project.
Vintage	The set of projects that come online in a given calendar year. The 2018 Vintage includes all projects that came online in 2018 or before.

We propose a three-step ELCC allocation methodology

Part I: Existing Resources

+ Step 1: Calculate Portfolio ELCC by month

Determine monthly Portfolio ELCC (accounts for all wind/solar online)

+ Step 2: Calculate Resource Class ELCC

- Determine additional monthly ELCC added by each Resource Class (wind and solar), starting from no other resources online
- Calculate the diversity benefit, which is the difference between the sum of individual Resource Classes (wind and solar) and Portfolio ELCCs
- Allocate the diversity benefit based on the share of wind versus solar in each month
- Add this proportional diversity benefit to the wind alone/solar alone ELCC to yield monthly Resource Class ELCC

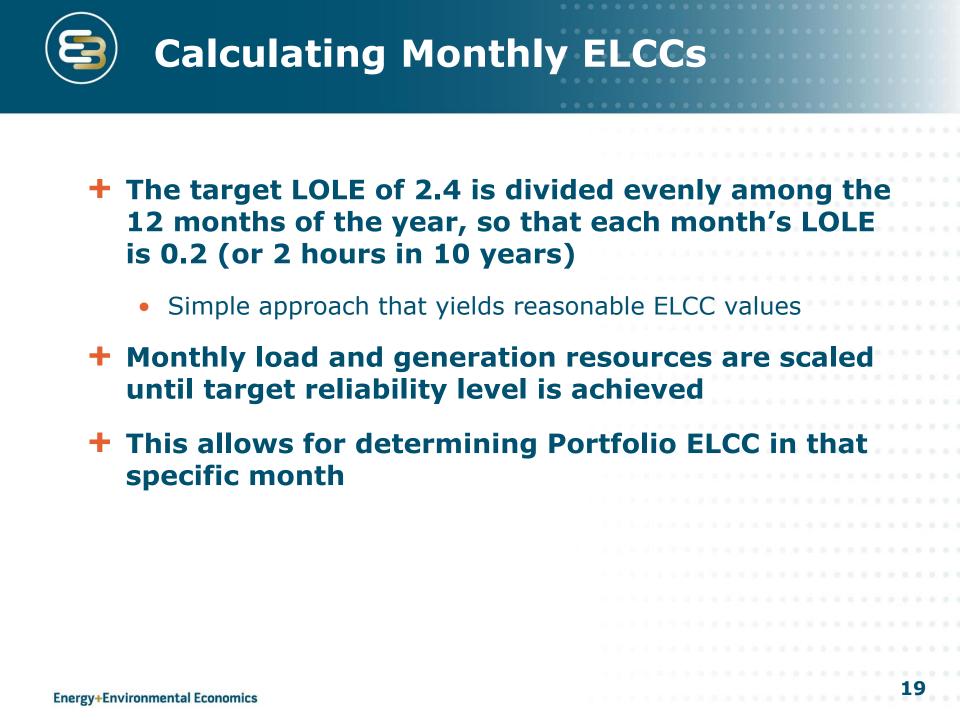
+ Step 3: Calculate Project ELCC

- Determine how much each individual resource contributes to overall generation for that Resource Class during peak load hours per month
- Assign individual resource this proportion of Resource Class ELCC to obtain monthly ELCC value by individual resource (Project ELCC)

Part II: New Resources

 Apply identical methodology, except base allocation off of marginal ELCC from new installations only

STEP 1: CALCULATE PORTFOLIO ELCC



+ Calculate monthly ELCCs for the whole portfolio

- The Portfolio ELCC is the value that maintains system reliability. In the next steps this Portfolio ELCC is allocated to Resource Classes first, and then to individual Projects.
- BTM is included in the total solar nameplate capacity, as there are interactive effects with other wind and solar resources. The treatment of BTM Solar will be addressed later in this presentation.

Installatio	ons (MW)	
	Wind	Solar
Nameplate		
Capacity (MW)	5,592	15,406

Month	Portfolio ELCC (MW)	
Jan	852	
Feb	1,190	
Mar	1,583	
Apr	6,237	
May	7,079	
Jun	8,326	
Jul	8,420	
Aug	7,367	
Sep	6,150	
Oct	4,764	
Nov	972	
Dec	786	

STEP 2: CALCULATE RESOURCE CLASS ELCC

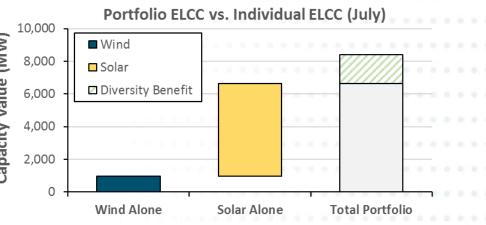
Calculate ELCC for wind alone (zero solar), and solar alone (zero wind)

- Using two resource classes balances simplicity with accuracy:
 - Captures overall diversity and saturation effects
 - Solar/wind projects are similar enough that they can be grouped together
- Calculation is done using the same framework as portfolio ELCC
- Calculating resource alone will not capture diversity benefits. These will be added in the next step (next slide)

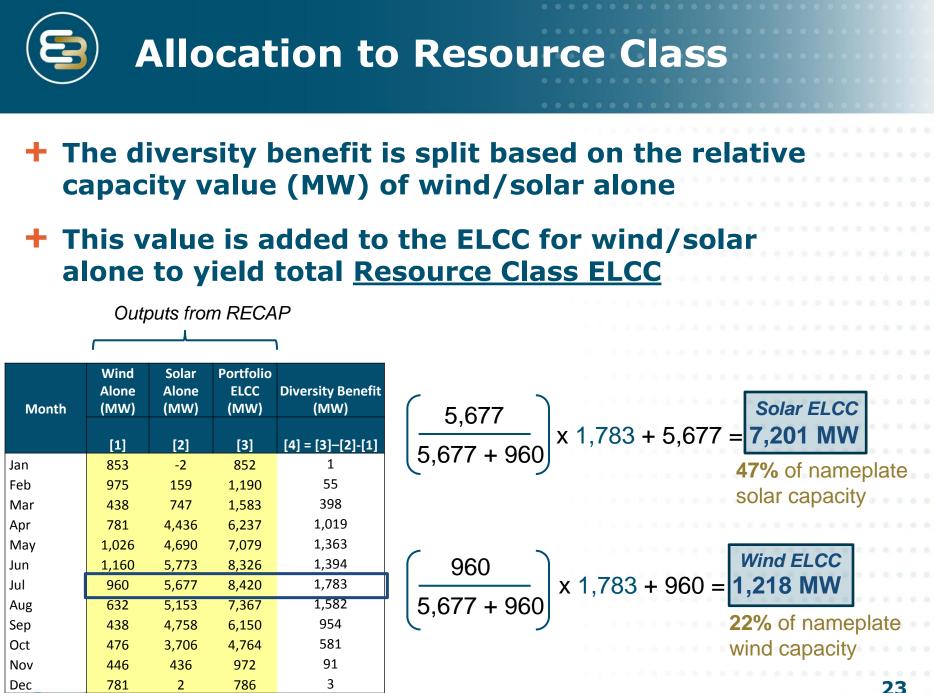
Installations (MW)

Case	Total Wind	Total Solar
Portfolio ELCC	5,592	15,406
Wind Alone	5,592	0
Solar Alone	0	15,406

Month	ELCC, Wind Alone (MW)	ELCC, Solar Alone (MW)	Portfolio ELCC (MW)
	[1]	[2]	[3]
Jan	853	-2	852
Feb	975	159	1,190
Mar	438	747	1,583
Apr	781	4,436	6,237
May	1,026	4,690	7,079
Jun	1,160	5,773	8,326
Jul	960	5,677	8,420
Aug	632	5,153	7,367
Sep	438	4,758	6,150
Oct	476	3,706	4,764
Nov	446	436	972
Dec	781	2	786



 Interactive effects are accounted for via the difference between wind alone plus solar alone and the combined portfolio ELCC


Diversity benefit is calculated on a monthly basis

						10,000 -	
	ſ			1	(MM)		Wind
	Wind	Solar	Portfolio		Ξ	, 8,000 -	🗖 Solar
Month	Alone (MW)	Alone (MW)	ELCC (MW)	Diversity Benefit (MW)	/alue	6,000 -	🛛 Diversit
	[1]	[2]	[3]	[4] = [3]–[2]-[1]	Capacity Value	4,000 -	
Jan	853	-2	852	1	bai	2,000 -	
Feb	975	159	1,190	55	S		
Mar	438	747	1,583	398		0 +	
Apr	781	4,436	6,237	1,019			Wind Alc
May	1,026	4,690	7,079	1,363			
Jun	1,160	5,773	8,326	1,394	_		
Jul	960	5,677	8,420	1,783	→ For	^r exam	ple, in J
Aug	632	5,153	7,367	1,582			677 – 9
Sep	438	4,758	6,150	954	0,-	20 0,	011 0
Oct	476	3,706	4,764	581			
Nov	446	436	972	91			
Dec	781	2	786	3			
Energy	Environme	ntal Econo	omics				

→ For example, in July the diversity benefit is 8,420 - 5,677 - 960 = 1,783 MW

STEP 3: CALCULATE PROJECT ELCC

+ We propose a heuristic approach for Project ELCCs

- Calculating monthly ELCCs for hundreds of individual projects would be overly time-consuming and complex
- Heuristic approach is reasonable for allocating ELCC values among similar resources
- Individual Project ELCC is assigned a fraction of total Resource Class ELCC based on a time-window approach
 - We propose to use historic production data for calculating Project ELCCs
 - Summer: Average production during HE14-HE21
 - Winter: Average production during HE17-HE21
 - This maintains the incentive for performance during important hours

Illustrative example for the month of July:

Individual ELCCs sum up to equal the total July solar ELCC of 7,201 MW.

Solar	r ELCC					Wind ELCC						
	Capacity		solar output		Project ELCC - July (% of Nameplate)	Project	Capacity		wind output	Project ELCC - July (MW)	Project ELCC - July (% of Nameplate)	
1	. 17	7 4,874	4 0.12%	ُن ع	9 53%	1	1 24	1,684	4 0.54%	<u>, (a (a (a (a (a</u>	7 28%	
2	45	5 10,769	9 0.27%	6 20	0 44%	2	2 13	3 671	1 0.22%	<u> </u>	3 21%	
3	50	11,160	0 0.28%	6 20	0 41%	į.	3 59	3,339	9 1.07%	6 13	3 22%	
	· · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	:	:	:	:	:	:	:	
:			:	:	:	:	:	:	:	:	:	
:	:		:	:	:	:	:		:			
389	4	1 911	1 0.02%	2	2 42%	128	3 46	5 3,044	4 0.98%	6 12	2 26%	
Totals	15,406	5 3,921,739	9 100%	6 7,201	1 47%	Totals	5,592	2 310,723	3 100%	6 1,218	8 22%	

This is the total solar generation during all the peak hours in July

The % of total solar output is also the proportion of solar ELCC that gets allocated to this particular generator

Individual ELCCs sum up

to equal the total July

wind ELCC of 1,218 MW.

Behind-the-meter solar treated just like other solar resources

 Behind the meter solar is allocated a Project ELCC using the same methodology as any other solar resource

• This is important to capture interactive effects among BTM solar, utility-scale solar and wind

+ Each LSE is allocated one aggregate BTM Project ELCC for BTM PV in its service area

Solar ELCC

Project	Туре	Nameplate Capacity (MW)	Output during peak period (MWh)		Project ELCC - July (MW)	Project ELCC - July (% of Nameplate)
1	Tracking	17	4,874	0.12%	9	53%
2	Fixed Tilt	45	10,769	0.27%	20	44%
3	Fixed Tilt	50	11,160	0.28%	20	41%
:		:	:	÷	i na ini	
51	BTM, PG&E	2,378	462,691	11.80%	850	36%
52	BTM, SDG&E	674	131,181	3.34%	241	36%
53	BTM, SCE	2,020	393,104	10.02%	722	36%
:		:	:	:	:	
:		:	:	÷		
389	Fixed Tilt	2	911	0.02%	2	42%
Totals		15,406	3,921,739	100.00%	7201	47%

PART II: NEW RESOURCES

In future years, separate ELCCs are calculated for each Vintage

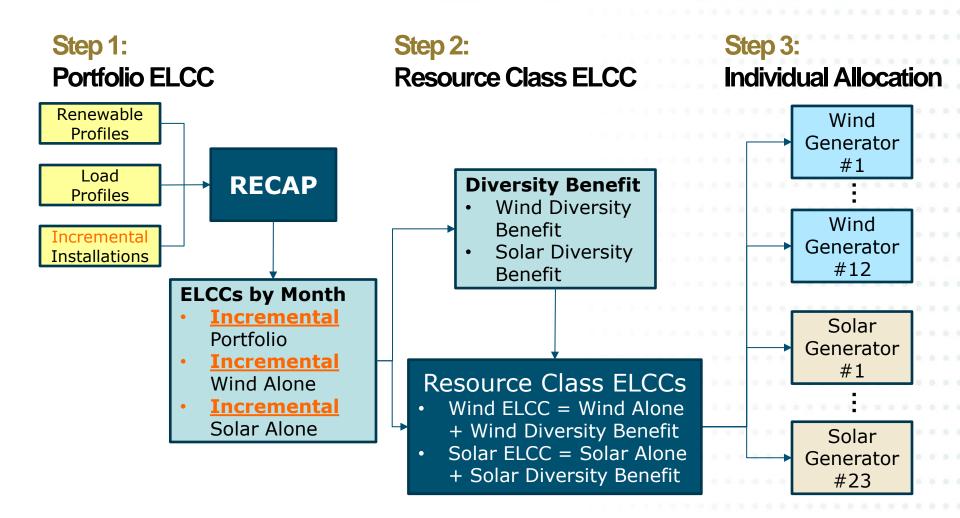
- All resources that come online in a given year are treated as part of the same Vintage
- Each year the Portfolio ELCC for each Vintage is calculated as follows:
 - 1. Calculate Portfolio ELCC for Initial 2018 Vintage (all resources online in 2018)
 - Calculate Portfolio ELCC for 2019 Vintage as the 2019 Portfolio ELCC minus the 2018 Portfolio ELCC
 - 3. Calculate Portfolio ELCC for 2020 Vintage as the 2020 Portfolio ELCC minus the 2019 Portfolio ELCC
 - 4. Etc.

+ This is important to send the correct economic signal for future procurement

 It also protects the ELCC values of existing projects from degrading due to new procurement

- ELCC allocation for 2019 resources looks at 2019 installations only, starting from the 2018 portfolio (i.e. it looks at the marginal ELCC for 2019 resources). The methodology is otherwise the same.
- + In this example, we assume 500 MW of new wind, 1000 MW of utility-solar, and 1000 MW of BTM Solar.

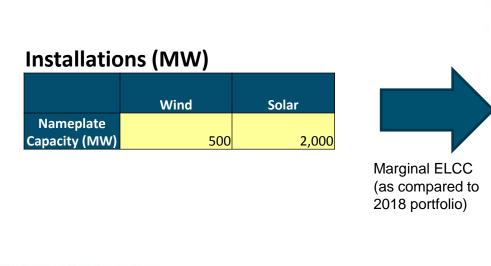
2018 Existing Resources Wind (MW) Solar Combined (MW) (MW) Cumulative Installations 5,592 15,406 20,998


In the 2018 case, ELCC is calculated relative to these values

2019 New Resources

Wind (MW)		Combined (MW)
5,592	15,406	20,998
6,092	17,406	23,498
💉 500	2,000	2,500
	5,592 6,092	5,592 15,406 6,092 17,406

In the 2019 case, ELCC is calculated relative to these values (marginal to the existing 2018 portfolio)



+ Calculate monthly ELCCs for the *marginal* portfolio

- Marginal portfolio includes all resources that come online in 2019
- The Portfolio ELCC is the value that maintains system reliability. In the next steps this Portfolio ELCC is allocated to Resource Classes first, and then to individual Projects.

Month	Portfolio ELCC (MW)	
Jan	51	
Feb	62	
Mar	40	
Apr	237	
May	258	
Jun	400	
Jul	436	
Aug	328	
Sep	246	
Oct	174	
Nov	29	
Dec	46	

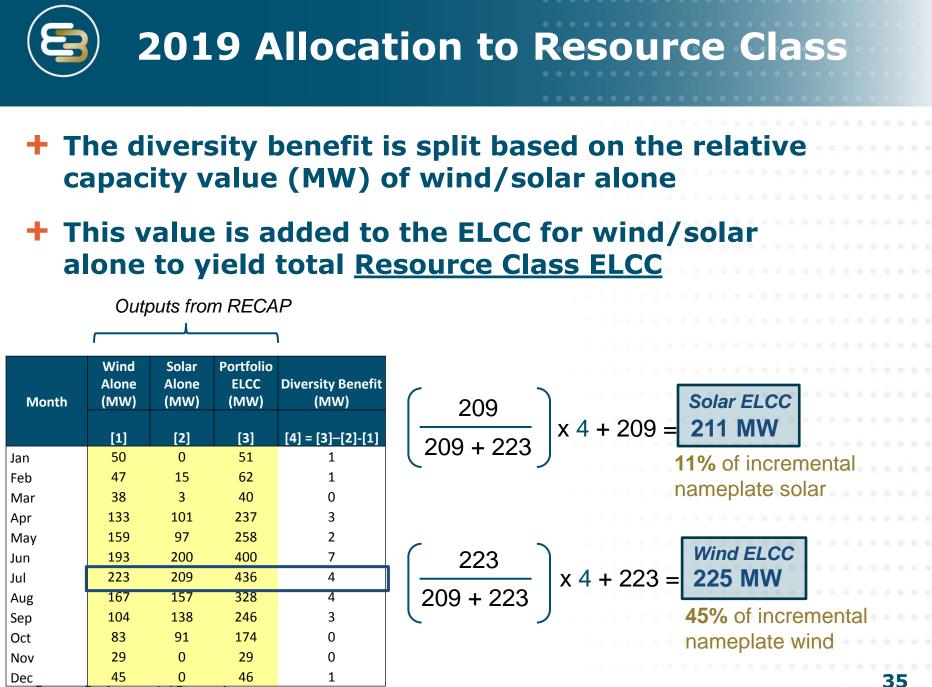
Step 2: 2019 Resource Class ELCC

+ Calculate ELCC for incremental wind alone, and incremental solar alone

- Using two resource classes balances simplicity with accuracy:
 - Capture overall diversity and saturation effects
 - Solar/wind projects are similar enough that they can be grouped together
- Calculation is done using the same framework as portfolio ELCC
- Calculating resource alone will not capture diversity benefits. These will be added in the next step (next slide)

Installations (MW)

Case	Total New Wind	Total New Solar
Portfolio ELCC	500	2,000
Incremental		
Wind Alone	500	0
Incremental		
Solar Alone	0	2,000


Month	Alone (MW)		ELCC (MW)
Jan	[1] 50	[2] 0	[3] 51
Feb	47		62
Mar	38	3	40
Apr	133	101	237
May	159	97	258
Jun	193	200	400
Jul	223	209	436
Aug	167	157	328
Sep	104	138	246
Oct	83	91	174
Nov	29	0	29
Dec	45	0	46

 Interactive effects are accounted for via the difference between wind alone plus solar alone and the combined portfolio ELCC

+ Diversity benefit is calculated on a monthly basis

Illustrative example for the month of July:

Individual ELCCs sum up to equal the total July solar ELCC of 211 MW.

Solar ELCC

Project	Capacity		% of total solar output in July	ELCC - July	Project ELCC - July (% of Nameplate)
1	28	8,377	1.71%	4	13%
2	43	12,135	2.47%	5	12%
3	15	5,469	1.11%	2	15%
:	÷	:	÷	:	:
:	:	:	:	:	÷
:	:	:	:	:	:
Totals	2,000	491,141	100%	211	11%

This is the total solar generation during all the peak hours in July Individual ELCCs sum up to equal the total July wind ELCC of 225 MW.

Wind ELCC

Project	Nameplate Capacity (MW)	during peak	% of total wind output in July		Project ELCC - July (% of Nameplate)
1	39	3,882	5.88%	13	34%
2	46	6,859	10.38%	23	50%
3	42	5,778	8.74%	20	47%
:		n na standar	1.000	$X = X = \{x_i\}$	
:	:				
:	:	:			
Totals	500	66,078	100%	225	45%

The % of total solar output is also the proportion of solar ELCC that gets allocated to this particular generator

Behind the meter solar is allocated a Project ELCC using the same methodology as any other solar resource

 This is important to capture interactive effects among BTM solar, utility-scale solar and wind

Each LSE is allocated one aggregate BTM Project ELCC for BTM PV in its service area Solar ELCC

Project	Туре	Nameplate Capacity (MW)	Output during peak period (MWh)	% of total solar output in July	Project ELCC - July (MW)	Project ELCC - July (% of Nameplate)
1	Fixed Tilt	28	8,377	1.71%	4	13%
2	Fixed Tilt	43	12,135	2.47%	5	12%
3	Tracking	15	5,469	1.11%	2	15%
:		:	:			
51	BTM, PG&E	407	79,246	16.14%	34	8%
52	BTM, SDG&E	134	26,070	5.31%	11	8%
53	BTM, SCE	459	89,277	18.18%	38	8%
:		:	:	:	:	:
:		:	:	:		
Totals		2,000	491,141	100%	211	11%

E3 used its RECAP Model to perform ELCC calculations

- E3's Renewable Energy Capacity Planning (RECAP) Model is a publicly-available reliability planning model that calculates Loss-of-Load Probability (LOLP) and ELCC
- RECAP has been used in a number of CPUC proceedings
 - Formally adopted for calculating the capacity contribution of energy efficiency and demand response programs*
 - Also used in the RPS Calculator, LTPP, Net Energy Metering cost shift evaluation, CSI cost-effectiveness assessment

 RECAP used for demonstration purposes in this investigation; actual ELCC calculations could be performed using RECAP, SERVM or another model

* <u>http://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M163/K338/163338441.docx</u>

Exceedance NQC methods are increasingly inaccurate

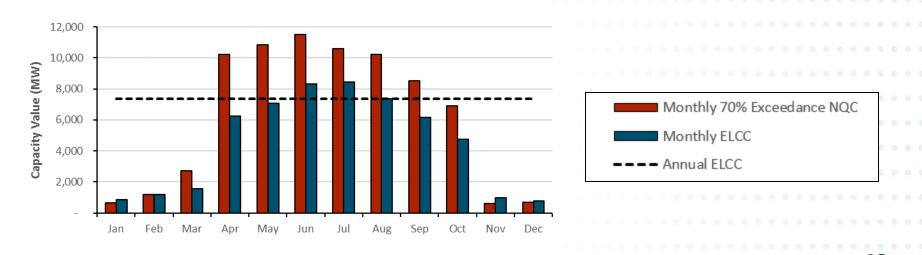
- Current exceedance approach did a relatively good job at capturing the most important hours when there was a low penetration of renewable energy
- At high penetrations of renewables, solar has shifted the peak to later in the day and later in the year, and current approach no longer does a good job at capturing the most important hours

Gross Load LOLP

i.e. LOLP Pre-Renewables

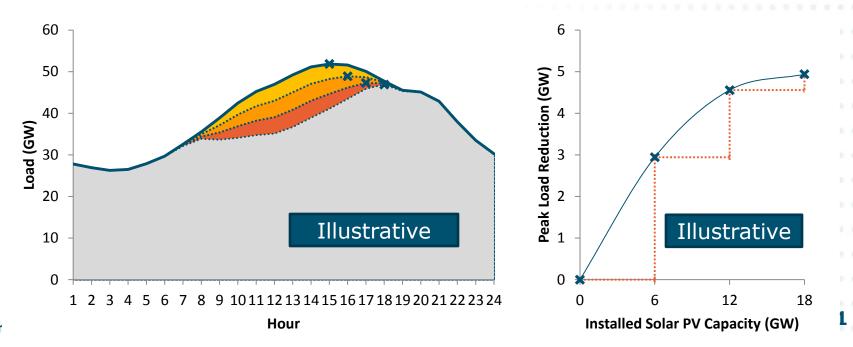
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	-	7.04E-13	0	3.74E-12	0	0	0
11	0	0	0	NQC	Hou	rs	4.75E-09	1.18E-08	2.64E-08	0	0	0
12	0	0	0			. 1	1.31E-06	5.76E-06	7.77E-06	0	0	0
13	0	0	0	0	0	2.99E-09	8.01E-05	0.00014	7.25E-05	0	0	0
14	0	0	0	0	0	2.26E-08	0.0003	0.00052	0.00025	0	0	0
15	0	0	0	0	0	1.45E-07	0.00039	0.00092	0.00045	1.87E-10	0	0
16	0	0	0	0	0	1.05E-07	0.00017	0.00038	0.00021	7.61E-10	0	0
17	0	0	0	0	0	1.43E-09	1.00E-05	1.29E-05	1.19E-05	3.73E-12	0	0
18	0	0	0	0	0	3.53E-15	2.24E-07	2.67E-08	5.27E-08	0	0	0
19	0	0	0	0	0	0	5.99E-10	8.44E-09	8.17E-10	0	0	0
20	0	0	0	0	0	0	8.42E-10	1.31E-12	0	0	0	0
21	0	0	0	0	0	0	0	0	0	0	0	0
22	0	0	0	0	0	0	0	0	0	0	0	0
23	0	0	0	0	0	0	0	0	0	0	0	0
24	0	0	0	0	0	0	0	0	0	0	0	0

Energy+Environmental Economics

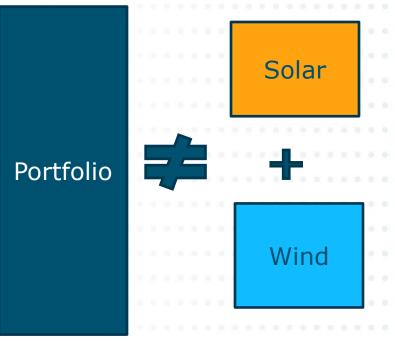

Net Load LOLP i.e. LOLP With Renewables (2018)

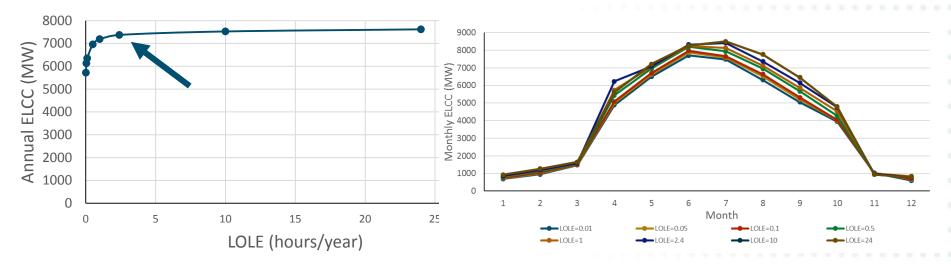
_						•						
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	-	0.00E+00	0	2.51E-16	0	0	0
11	0	0	0	NQC	Ηου	rs	0.00E+00	0.00E+00	6.88E-15	0	0	0
12	0	0	0	I GO	1100		5.35E-16	0.00E+00	3.05E-13	0	0	0
13	0	0	0	0	0	6.53E-17	2.36E-13	9.4E-13	1.42E-12	0	0	0
14	0	0	0	0	0	2.19E-13	7.1E-11	1E-10	2.5E-10	0	0	0
15	0	0	0	0	0	1.51E-11	1.3E-08	4.3E-08	8.7E-08	2.11E-12	0	0
16	0	0	0	0	0	2.16E-10	3.4E-07	2.8E-06	1.1E-05	3.75E-09	0	0
17	0	0	0	0	5.7E-17	6.12E-10	2.88E-06	2.56E-05	2.81E-04	9.04E-07	0	0
18	0	0	0	0	1.3E-15	2.94E-09	1.71E-05	1.35E-04	1.74E-03	3.8E-06	0	0
19	0	0	0	0	0	1.5E-09	1.38E-05	5.71E-04	5.96E-04	9.6E-07	0	0
20	0	0	0	0	0	1.5E-09	2.04E-05	2.53E-05	2.6E-05	3.8E-10	0	0
21	0	0	0	0	0	0	2.3E-09	3.4E-09	4.7E-09	0	0	0
22	0	0	0	0	0	0	0	0	0	0	0	0
23	0	0	0	0	0	0	0	0	0	0	0	0
24	0	0	0	0	0	0	0	0	0	0	0	0
											0.0.1	0.0.0

All NQC hours shown in standard time (PST) Tables show results for annual ELCC



- Monthly ELCC values are low in winter and high in summer due to solar coincidence with highest load hours
- Monthly 70% Exceedance NQC is significantly higher than monthly ELCC in the summer
 - Average <u>NQC based on exceedance</u> in the peak summer months (Jul, Aug, Sep) is <u>9,786 MW</u>
 - Average monthly <u>ELCC</u> in the peak summer months (Jul, Aug, Sep) is <u>7,312 MW</u>
 - Both numbers include 5,072 MW of BTM PV
- Difference is due to <u>diminishing returns</u> as solar shifts the peak to night-time


- A resource's contribution towards reliability depends on the other resources on the system
- The diminishing marginal peak load impact of solar PV is illustrative of this concept
 - While the first increment of solar PV has a relatively large impact on peak, it also shifts the "net peak" to a later hour in the in day
 - This reduces the coincidence of the solar profile and the net peak such that additional solar resources have a smaller impact on the net peak


Calculating ELCCs for specific projects requires both "art" and "science"

- Science: LOLP modeling can accurately measure the capacity value contribution of the entire renewable portfolio
- Art: There is no 'correct' method to allocate the portfolio capacity value to all of the individual resources
 - Summing the individual capacity contribution of resources will not equal the portfolio capacity value because it does not capture <u>interactive effects</u>
 - However, there are several reasonable methods to allocate portfolio capacity value

- As LOLE increases, relatively more daytime hours will matter for the determination of ELCC, slightly increasing the capacity value of solar
 - Portfolio ELCC is sensitive to changes in LOLE at low values, but relatively inelastic at higher values.
- We choose an LOLE of 2.4 hours per year (24 hours in 10 years) as our definition of 1 day per 10 years
 - For simplicity, we propose a flat allocation to months (2.4 hrs./10 yrs.)

Thank You!

Energy and Environmental Economics, Inc. (E3) 101 Montgomery Street, Suite 1600 San Francisco, CA 94104 Tel 415-391-5100 Web http://www.ethree.com

Zach Ming, Sr. Consultant (<u>zachary.ming@ethree.com</u>) Gerrit De Moor, Sr. Associate (<u>gerrit@ethree.com</u>) Arne Olson, Partner (<u>arne@ethree.com</u>)