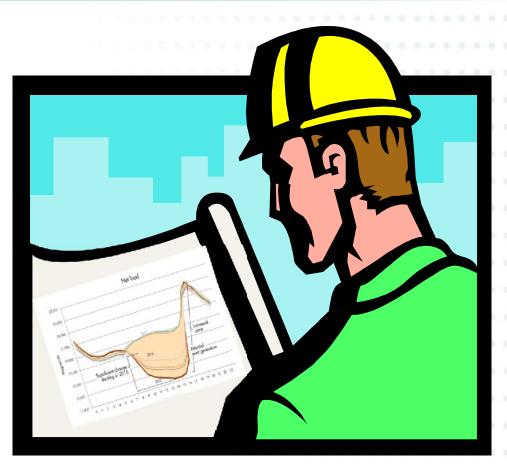


RESOLVE Model Overview

IRP Modeling Advisory Group October 20, 2016

Nick Schlag, Sr. Managing Consultant Arne Olson, Partner Jimmy Nelson, Consultant

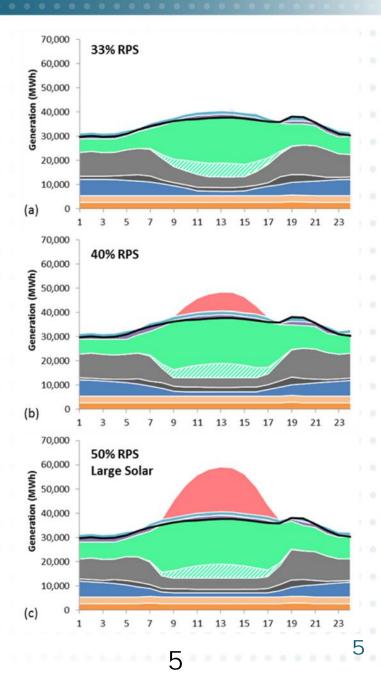
+ Flexibility Planning Paradigm	
Key RESOLVE Features	
 Model overview 	
 Candidate resources 	
 Operational model 	
+ Case Study: CAISO SB350 Ana	alysis
Energy+Environmental Economics	2

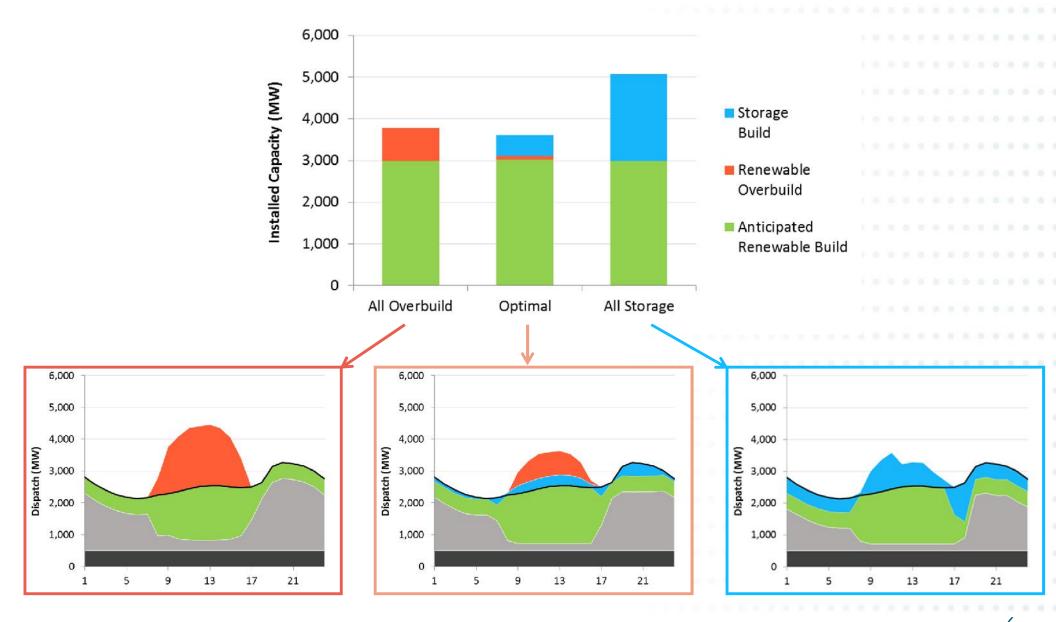

$ \top\rangle$	/	4							•	•	•	.0		

FLEXIBILITY PLANNING PARADIGM

Defining the New Planning Problem

- Introduction of variable renewables has shifted the capacity planning paradigm
- The new planning problem consists of two related questions:
 - How many MW of <u>dispatchable</u> resources are needed to


 (a) meet load, and (b) meet
 flexibility requirements on various time scales?
 - 2. What is the optimal mix of new resources, given the characteristics of the existing fleet of conventional and renewable resources?


													4		

The Renewable Integration Challenge

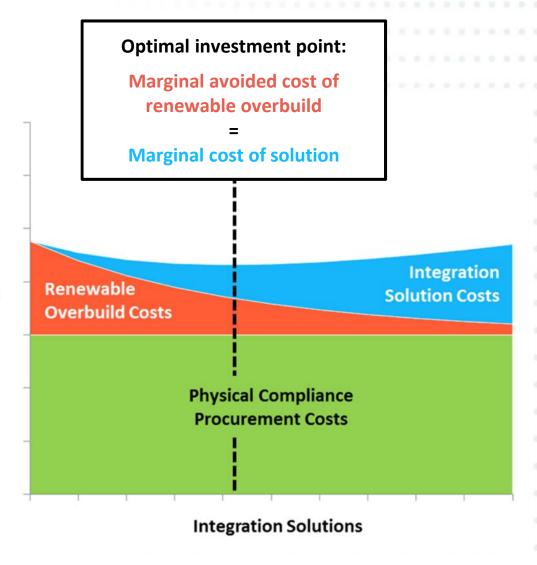
- Primary drivers of renewable integration challenges at high penetrations:
 - Renewable oversupply during low load periods
 - Inflexible conventional generation
 - Must-run resources
 - Technical constraints on ramping, minimum stable levels, minimum up and down times
 - High costs associated with cycling
 - Small balancing areas or constrained interactions with neighboring regions
- Research has shifted to focus on grid integration solutions

Optimal Solution Balances Non-Renewable Solutions with Overbuild

Energy+Environmental Economics

6

Identifying Optimal Investment in Solutions


Single solution case:

 The cost of the solution can be weighed against the avoided cost of overbuilding renewables for RPS compliance

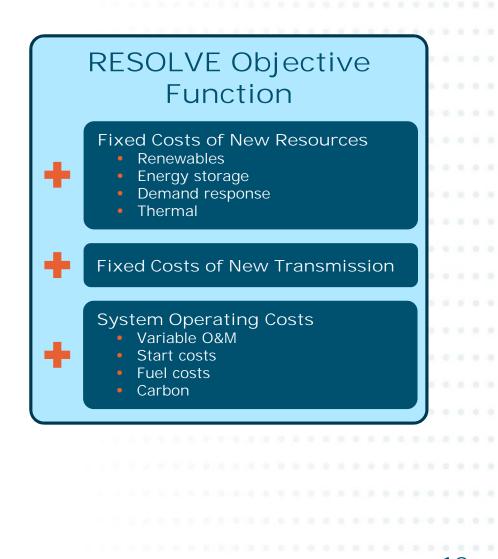
Multiple solution case:

- Multidimensional optimization
- Complex interactive effects
- Requires sophisticated model that treats both operations and investment costs

Total RPS Compliance Cost

. . . 7

RESOLVE OVERVIEW



- RESOLVE is a capacity expansion model designed to identify optimal investments under high penetrations of renewable generation
 - Selects portfolio of solar, wind, geothermal, biomass, and small hydro to meet RPS & GHG constraints
 - Adds cost-effective integration solutions such as energy storage and flexible conventional resources, in combination with the renewable portfolio, to minimize total cost over the analysis period
- Resources are added to meet RPS target, overbuilding renewable portfolio if necessary
 - Renewables are curtailed if the output cannot be consumed in California or exported to neighboring systems due to oversupply or insufficient power system flexibility
 - Renewable contracts are treated as sunk costs and fully compensated for curtailed output
 - Resources added to portfolio if necessary to replace curtailed output; renewable curtailment implicitly valued at replacement cost, which increases geometrically with curtailment

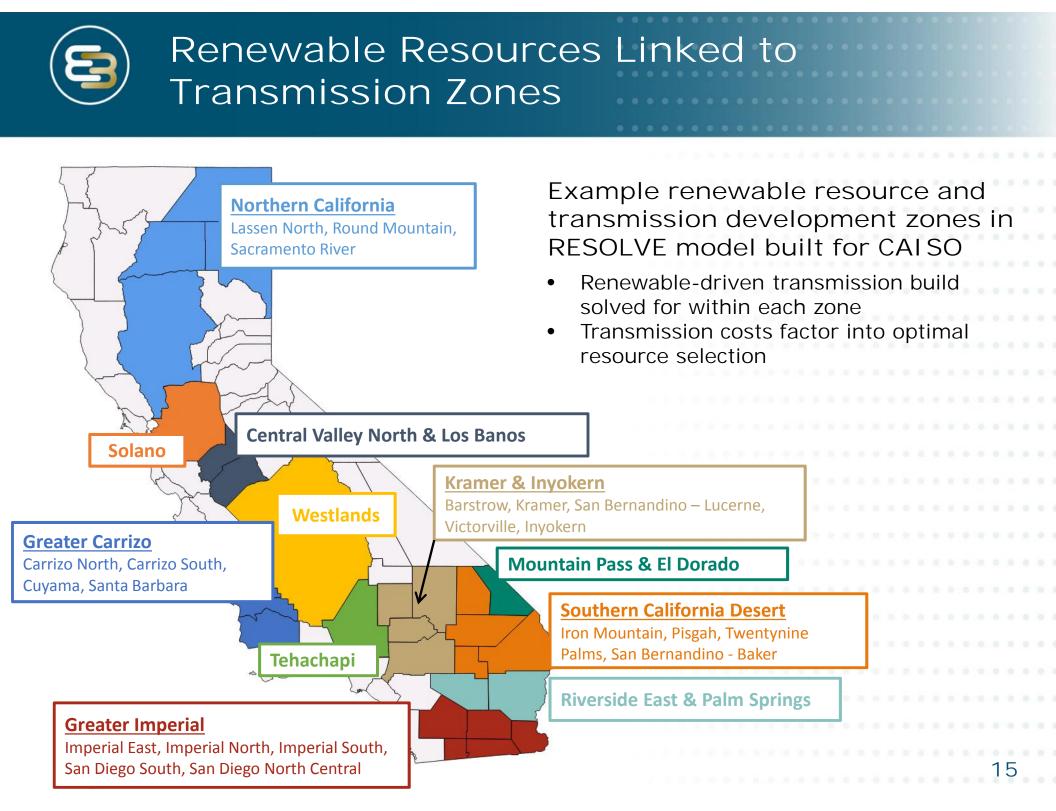
RESOLVE Co-optimizes Investment and Operational Decisions

- RESOLVE allows portfolio optimization across a long time horizon (10-20 years)
 - Investments made in multiple periods
- Fixed costs capture capital, financing, and fixed O&M associated with new physical infrastructure
- Operational detail focuses on primary drivers of renewable integration challenges
- Optimization is constrained by many factors, including:
 - Hourly load
 - RPS target
 - Planning reserve margin*
 - GHG limit*

Flexible Model Designation Scenario Analysis	gn Facilitates
RESOLVE is designed to allow analysis of a variety of uncert	
 Assumptions on key uncertain adjusted to allow analysis of f 	
 Future renewable costs 	
 Future energy storage costs 	
 Customer adoption of behind-the- 	-meter PV
 Export limits from California 	
 Achievement of energy efficiency 	goals
 Deployment of electric vehicles 	
Energy+Environmental Economics	11

CANDIDATE RESOURCES

- <u>Cost</u> captures all fixed costs, including capital, interconnection, fixed O&M, financing, taxes for each resource
 - Cost assumptions can be adjusted through time to reflect changes in underlying technology costs
- Performance characteristics depend on type of resource:

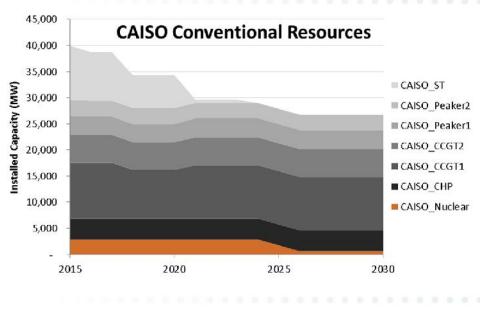

•	Renewables:	hourly	profiles
---	-------------	--------	----------

- Storage: round-trip efficiency, operating limits
- Demand response: load impact
- Thermal units: heat rates, operating costs, operating limits
- Potential reflects feasible or reasonable limits on resource development
 - Renewable potential limited by resource availability & quality in each CREZ

Inventory of Current Candidate Resources

Integration Solution	Examples of Available Options	Functionality
Energy Storage	 Batteries: 1-, 2-, 4-, or 8-hour Pumped Storage: 12-hr, 24-hr 	 Stores excess energy for dispatch in later hours Contributes to meeting minimum generation and ramping constraints
Flexible Loads & Advanced Demand Response	 Flexible electric vehicle charging Flexible water heaters Flexible building thermal loads (eg. pre-cooling or pre-heating) Flexible fuel production (electrolysis) Other flexible loads 	 Delays and dispatches electric loads based on balancing needs subject to service demand constraints Can be scheduled based on seasonal/diurnal trends or dispatched dynamically
Conventional Demand Response	 LTPP modeled programs (\$600/MWh and \$1,000/MWh priced resources) New demand response programs 	 Provides capacity to avoid unserved energy
New Flexible Gas Plants	Simple cycle gas turbinesReciprocating enginesFlexible combined cycle gas turbines	 Dispatches economically based on heat rate, subject to ramping limitations Contributes to meeting minimum generation and ramping constraints
Renewables	 Biofuels Geothermal Solar PV Wind 	 Dynamic downward dispatch (with cost penalty) of renewable resources to help balance load
ergy+Environmental Economics		14

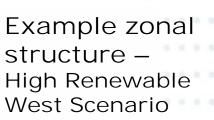
Energy+Environmental Economics


onmental Economics													
								•	•				
OP		2	F	7		•				4			
MODELINGI				$\overline{\mathbf{c}}$			(•		/			
MODELINGI	V				-			0			•		

Second Resolvers Operational Model	
Linear hourly dispatch model	
Zonal WECC representation with transmission constraints	
 Smart sampling of historical load, wind, solar, and hydro conditions 	
Detailed representation of flexibility reserves	
Energy+Environmental Economics	-
Energy+Environmental Economics	

Overview of Operational Model

- RESOLVE uses an hourly operational model to simulate the economics of system operations, accounting for:
 - Hourly profiles for load, wind, and solar resources
 - Daily hydro energy budgets
 - Operating constraints on thermal generators and storage resources
 - Flexibility reserve requirements
- Rather than modeling each generator individually, RESOLVE groups similar plants together to model different classes of thermal generation
 - CAISO existing thermal fleet represented by seven categories of generation



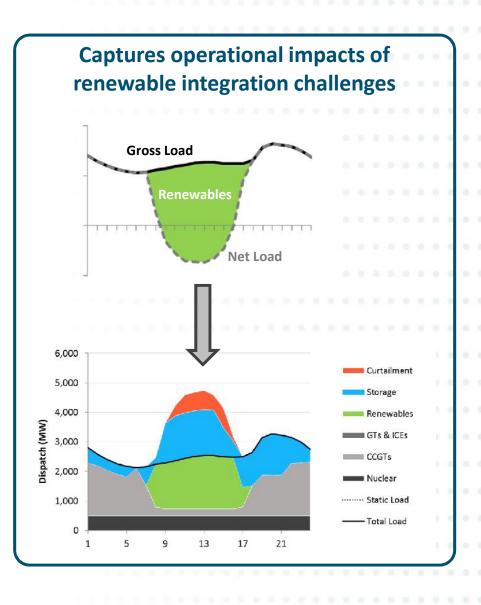
70,000 60,000 Installed Capacity (MW) Solar 50,000 40,000 Wind 30,000 Peakers Bio 20,000 CCGTs 10,000 Coal 2015 2020 2025 2030 **Pacific Northwest and Basin** (includes BANC and TIDC) 80.000 70,000 (MM) 60,000 Capacity 50,000 Peakers 40,000 П Ba 30.000 CCGTs 20,000 10.000 Coal CAISO 2015 2020 2025 **Desert Southwest** (includes IID) N LADWP -CFE (not modeled)

Main zone:

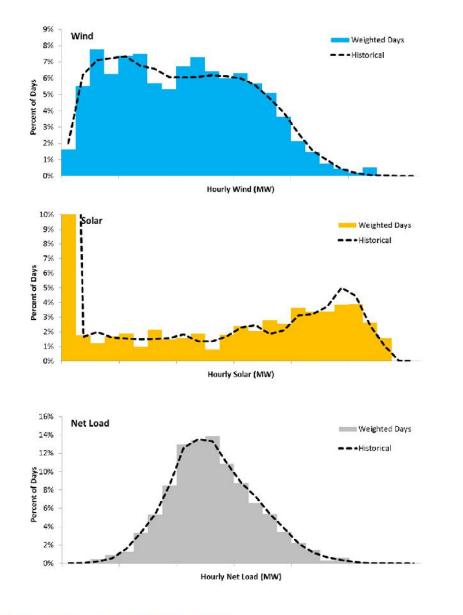
- Optimal investment decisions ٠
- Detailed treatment of operating • reserves
- Other zones:
 - Exogenous resource assumptions and loads by scenario
- Flows may be impacted by:
 - Min and max intertie flow constraints
 - Min and max simultaneous flow constraints for groups of interties
 - Ramping constraints on interties
 - Hurdle rates ۲

Solar

Wind


2030

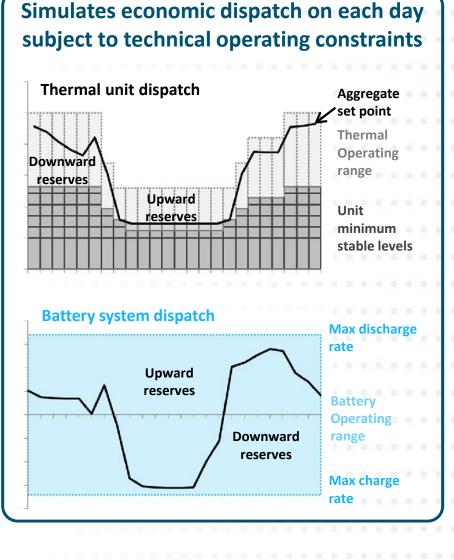
Interactions with Other Regions


Hourly Model Brings Operational Challenges into Investment Decisions

- For each year in the simulation, a subset of days are selected and weighted to reflect long-run distributions of:
 - Daily load, wind, and solar
 - Monthly hydro availability
- Operations modeled using linear dispatch formulation
 - Upward and downward operating reserve constraints
 - Parameterization of subhourly renewable curtailment due to downward reserve shortfalls

Sampling of Days Captures Long-Run Expectation of Net Load Distribution

+


For each year in the analysis horizon, RESOLVE models operations for 37 independent days	
Results of 37 days weighted to approximate long-run distributions of:	
Hourly load	
Hourly solar	
Hourly wind	
Hourly net load	
Daily hydro energy	
 Monthly hydro energy 	
 Monthly renewable capacity factors by site 	

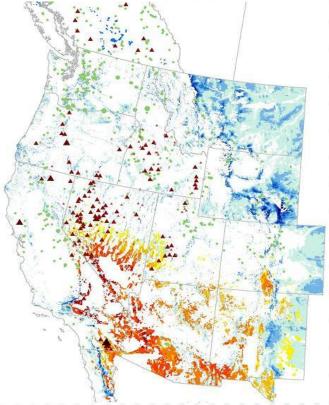
21

Energy+Environmental Economics

Modeling Flexibility Reserves

- At high renewable penetrations, operations become increasingly constrained by the need to meet flexibility reserve requirements (or "load following")
- This, in turn, becomes an important driver of the value of investments in flexible resources
 - Renewables assumed to contribute to meeting downward flexibility reserves through subhourly curtailment
 - Integration solutions that can also provide downward reserves offer a benefit through reductions in curtailment

STU	14		•				•	0				6	0	9		
		ē	•	0		•		0	0	.0	6	0		•		


CASE STUDY: CAISO SB350 STUDY PORTFOLIO RESULTS

SB350 Study: Impact of a Regional Market on Renewable Procurement

Two major effects are tested in RESOLVE:

- 1. Effect of regional operations
 - Increased access to latent flexible capacity across a broad, diverse region
 - Increased ability to export surplus energy
 - Could result in changes to least-cost portfolio
- 2. Effect of regional transmission tariff
 - Reduces wheeling costs across the region
 - Provides a mechanism for needed new transmission infrastructure to be studied and approved for inclusion in rates
 - Provides access to high-quality wind in the Rockies and solar in the Southwest

Renewable Resource Potential in the West

Source: NREL

1. Current Practice Scenario

- Renewable energy procurement is largely from in-state resources, with 5,000 MW of out-of-state resources available over existing transmission
- No regional market to help reduce curtailment
- 2. Regional market operations with 'Current Practice' renewable energy procurement policies
 - Assumes no increase in availability of out-of-state resources, but transmission wheeling charges are de-pancaked
 - Curtailment of renewables is reduced through better integration
- 3. Regional market and renewable energy procurement
 - Like Scenario 2, but with additional high-quality wind resources made available, requiring new transmission facilitated by the regional entity

2015

120,000

100,000

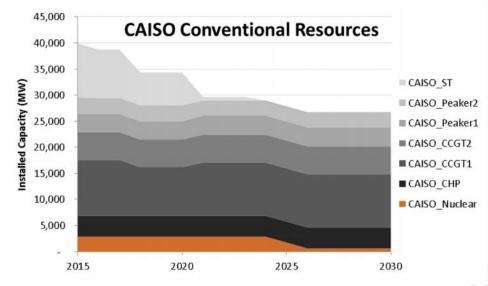
80,000

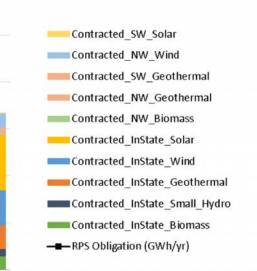
60,000

40,000

20.000

Annual Generation (GWh/yr)


Existing & Contracted Resources


2025

- + Conventional resources based on 2014 LTPP Thermal Stack
- **Existing and Contracted Resources** + are from the RPS Calculator
- **Resources outside of CAISO in the** + rest of the West are from the 2024 **Common Case**

14.6 GW of BTM rooftop PV by 2030

2020

2030

+

CAISO Contracted Renewables

Renewable resources

RPS Calculator (CA resources), TEPPC Common Case (WECC resources), NREL Wind Toolkit (hourly wind profiles), Solar Prospector (hourly solar profiles), hydro dispatch (CAISO)

Load shapes

 CAISO (CA base load shapes), TEPPC Common Case (WECC load shapes), PATHWAYS scenarios (impacts of EE, electrification & flexible loads)

Zonal topology

- WECC Path Rating Catalog, WECC historical path flow data
- Transfer capability between LADWP, TIDC, BANC and CAISO provided by CAISO
- Renewable integration solutions
 - Literature review & synthesis of industry reports assumptions are under development

Total Incremental Resources for California (in GWh)

• Model selects a diverse portfolio of in-state solar and out-ofstate wind across all cases

	Scenario 1a	Sensitivity 1b	Scenario 2	Scenario 3
CAISO simultaneous export limit	2,000	8,000	8,000	8,000
Procurement	Current practice	Current practice	Current practice	WECC-wide
Operations	CAISO	CAISO	WECC-wide	WECC-wide
Portfolio Composition (GWh)				
California Solar	21,482	23,483	22,147	9,827
California Wind	8,480	8,480	5,596	5,596
California Geothermal	3,942	3,942	3,942	3,942
Northwest Wind, Existing Transmission	4,056	1,253	1,574	891
Northwest Wind RECs	2,803	0	2,803	0
Utah Wind, Existing Transmission	1,693	1,693	1,693	1,177
Wyoming Wind, Existing Transmission	1,708	1,708	1,708	1,708
Wyoming Wind, New Transmission	0	0	0	8,037
Southwest Solar, Existing Transmission	0	809	1,489	1,489
Southwest Solar RECs	2,978	2,978	2,978	2,978
New Mexico Wind, Existing Transmission	3,416	3,416	3,416	3,416
New Mexico Wind, New Transmission	0	0	0	7,905
Total CA Resources	33,904	35,905	31,685	19,365
Total Out-of-State Resources	16,654	11,857	15,661	27,601
Total Renewable Resources	50,558	47,762	47,346	46,966
Curtailment (IOUs only, GWh)	4,818	2,022	1,606	1,226
Curtailment (% of available RPS energy)	4.5%	2.0%	1.6%	1.2%

• Curtailment is significantly reduced under regional operations

Scenario 1: Incremental Resources for California

	Scen	ario 1a	Sensitivity 1b	Scenario 2	Scenario 3					
CAISO simultaneous export limit	2,	.000	8,000	8,000	8,000					
Procurement	Curren	t practice	Current practice	Current practice	WECC-wide					
Operations	C	AISO	CAISO	WECC-wide	WECC-wide					
Portfolio Composition (MW)										
California Solar		7,601	8,279	7,804	3,440					
California Wind		3,000	3,000	1.000	1.000					
California Geothermal		500	500	 Under highe 	r export					
Northwest Wind, Existing Transmission		1,447	447	capability, ir	-state solar					
Northwest Wind RECs		1,000	0	displaces out-of-state wind						
Utah Wind, Existing Transmission		604	604	displaces ou	t-of-state wind					
Wyoming Wind, Existing Transmission		500	500	due to reduc	ced curtailment					
Wyoming Wind, New Transmission		0	0	0	1,995					
Southwest Solar, Existing Transmission		0	272	500	500					
Southwest Solar RECs		1,000	1,000	1,000	1,000					
New Mexico Wind, Existing Transmission		1,000	1,000	1,000	1,000					
New Mexico Wind, New Transmission		0	0	0	1,962					
Total CA Resources		11,101	11,779	10,204	5,840					
Total Out-of-State Resources		5,551	3,823	5,166	7,694					
Total Renewable Resources		16,652	15,602	15,370	13,534					
Energy Storage (MW)		972	500	500	500					

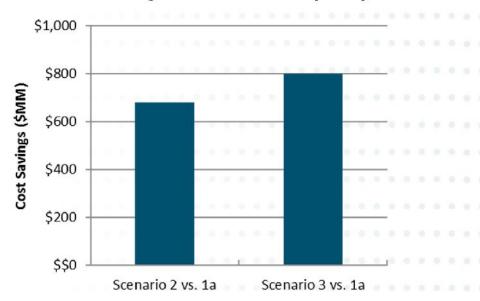
• Additional battery storage selected in Scenario 1a

Scenario 2: Incremental Resources for California

• Ability to export reduces curtailment; procurement of both in-state and out-of-state wind is avoided

	Scenario 1a	Sensitivity 1b	Scenario 2	Scenario 3
CAISO simultaneous export limit	2,000	8,000	8,000	8,000
Procurement	Current practice	Current practice	Current practice	WECC-wide
Operations	CAISO	CAISO	WECC-wide	WECC-wide
Portfolio Composition (MW)				
California Solar	7,601	8,279	7,804	3,440
California Wind	3,000		1,900	1,900
California Geothermal	500	500	500	500
Northwest Wind, Existing Transmission	1,447	447	562	318
Northwest Wind RECs	1,000	0	1,000	
Utah Wind, Existing Transmission	604	604	604	
Wyoming Wind, Existing Transmission	500	500	500	500
Wyoming Wind, New Transmission	0	0	0	1,995
Southwest Solar, Existing Transmission	0	272	500	500
Southwest Solar RECs	1,000	1,000	1,000	1,000
New Mexico Wind, Existing Transmission	1,000	1,000	1,000	1,000
New Mexico Wind, New Transmission	0	0	0	1,962
Fotal CA Resources	11,101	11,779	10,204	5,840
Total Out-of-State Resources	5,551		5,166	
Total Renewable Resources	16,652	15,602	15,370	13,534
Energy Storage (MW)	972	500	500	500

Scenario 3: Incremental Resources for California


	Scenario 1a	Sensitivity 1b	Scenario 2	Scenario 3				
CAISO simultaneous export limit	2,000	8,000	8,000	8,000				
Procurement	Current practice	Current practice	Current practice	WECC-wide				
Operations	CAISO	CAISO	WECC-wide	WECC-wide				
Portfolio Composition (MW)								
California Solar	7,601	8,279	7,804	3,440				
California Wind	3,000		1,900	1,900				
California Geothermal	500			500				
Northwest Wind, Existing Transmission	1,447	WY and NIV	I wind displace	318				
Northwest Wind RECs	1,000	1,000 California solar and lower-						
Utah Wind, Existing Transmission	604		NW wind	420				
Wyoming Wind, Existing Transmission	500	quality		500				
Wyoming Wind, New Transmission	0		0	1,995				
Southwest Solar, Existing Transmission	0	272	500	500				
Southwest Solar RECs	1,000	1,000	1,000	1,000				
New Mexico Wind, Existing Transmission	1,000	1,000	1,000	1,000				
New Mexico Wind, New Transmission	0	0	0	1,962				
Total CA Resources	11,101	11,779	10,204	5,840				
Total Out-of-State Resources	5,551		5,166	7,694				
Total Renewable Resources	16,652	15,602	15,370	13,534				
Energy Storage (MW)	972	500	500	500				

•	•	•	•	•	•	•	•										

- Annual renewable procurement cost savings in 2030: \$680-\$799 million
 - Fixed costs only; variable cost differences accounted for in PSO analysis
 - Modest savings assumed for non-CAISO BAs

Annual renewable investments cost savings due to regional coordination (2030)

	Scenario 1a	Scenario 2	Scenario 3	
Fixed Costs (\$MM) - CAISO	\$2,578	\$1,934	\$1,840	
Fixed Costs (\$MM) – non-CAISO BAs	\$714	\$678	\$652	
Total California Fixed Costs (\$MM)	\$3,291	\$2,612	\$2,492	
Fixed Costs Relative to Scenario 1a		-\$680	-\$799	

Summary of Results with Sensitivity Analysis

- Annual savings from regional integration range from \$391 million to \$1.004 billion per year under 50% RPS
 - High flexible loads and high energy efficiency reduce savings
 - Low Portfolio diversity, high rooftop PV, and higher RPS increase savings
 - High out-of-state availability has limited effect on savings

		Scenario 2	Scenario 3
Cos	t Savings from regional coordination (\$MM)	vs. 1a	vs. 1a
Bas	e assumptions	\$680	\$799
١.	High coordination under bilateral markets	\$391	\$511
Β.	High energy efficiency	\$576	\$692
C.	High flexible loads	\$495	\$616
D.	Low portfolio diversity	\$895	\$1,004
	High rooftop PV	\$838	\$944
F.	High out-of-state resource availability	\$578	\$661
G.	Low cost solar	\$510	\$647
Η.	55% RPS	\$1,164	\$1,341

		>						•	ノ		2			Č				
	_	C			-									C				
		TS	TS	TST	TST	TSTE	TSTE	TSTE	TSTEF	TSTEP	TSTEPS	TSTEPS	TSTEPS	TSTEPS	T STEPS 8	T STEPS &	TSTEPS &	T STEPS &

÷,	Current DR Potential study funded by LBNL has
	allowed E3 to integrate logic to model advanced
	demand response resources

- Additional model development tasks planned within IRP scope:
 - Implementation of GHG constraint
 - Refinement of planning reserve margin constraint
 - Addition of ELCC logic for wind and solar
 - Refinement of demand-side modeling

Thank You!

Energy and Environmental Economics, Inc. (E3) 101 Montgomery Street, Suite 1600 San Francisco, CA 94104 Tel 415-391-5100 http://www.ethree.com